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Abstract. We propose a convex formulation of the correspondence
problem between two images with respect to an energy function mea-
suring data consistency and spatial regularity. To this end, we formulate
the general correspondence problem as the search for a minimal two-
dimensional surface in R

4. We then use tools from geometric measure the-
ory and introduce 2-vector fields as a representation of two-dimensional
surfaces in R

4. We propose a discretization of this surface formulation
that gives rise to a convex minimization problem and compute a globally
optimal solution using an efficient primal-dual algorithm.

1 Introduction

The establishment of spatially dense correspondence is one of the central compu-
tational challenges in computer vision with a wide range of applications including
stereo disparity estimation [1,2], optical flow estimation [3], shape matching [4]
and medical image registration [5–7]. Correspondence estimation is often cast as
an energy minimization problem including a (generally) non-convex data consis-
tency term and a spatial regularizer. Although such optimization problems have
been intensively studied in computer vision, to date an algorithm that finds a
global optimum in polynomial time is not known.

1.1 Problem Statement: Diffeomorphic Matching

We consider a general correspondence estimation problem where the aim is to
compute an optimal diffeomorphic image matching defined as follows. Let Ω ⊂
R

2 denote the image plane, i.e. an open simply-connected subset of R
2. We

describe the data consistency between points on both images as a map g : Ω ×
Ω → R≥0, where g(p, q) measures the consistency between brightness, color,
depth or some high level features at point p ∈ Ω in image 1 and at point q ∈ Ω
in image 2. We define the desired correspondence between both images as the
optimal solution to the constrained minimization problem

min
f∈Diff+(Ω,Ω)

∫
Ω

(
g
(
p, f(p)

)
+ ε

)
W

(
df(p)

)
dp. (1)

Here Diff+(Ω,Ω) is the set of all orientation-preserving diffeomorphisms from Ω
to Ω and df(p) ∈ R

2×2 denotes the Jacobian (or more general the differential)
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of f at p. W : R2×2 → R≥0,W (df) =
√

det(
(

Id
df

)�(
Id
df

)
), measures the deviation

from isometry, Id ∈ R
2×2 being the identity matrix. Solving (1) therefore leads

to a diffeomorphic transformation of Ω favoring data consistency via the term
g(p, f(p)) and spatial regularity (local isometry) via W (df(p)), with ε ∈ R≥0

determining the trade-off.

1.2 Related Work

While the correspondence model (1) is not the only conceivable choice, most
works on correspondence finding propose similar energies that include data con-
sistency and a spatial regularizer. Moreover, we believe that the proposed solu-
tion via geometric measure theory can be generalized to other classes of cost
functions. Due to the non-convexity of the data term coupled with the spa-
tial regularizer, such problems have evaded many attempts to determine global
optima.

Formally, problem (1) differs from optical flow formulations as pioneered by
Horn and Schunck [3] in that we do not search for a displacement field v : Ω →
R

2 but rather directly for a pairing of corresponding points f : Ω → Ω. The
commonly used coarse-to-fine linearization strategies in optical flow estimation
[8–10] often provide high-quality solutions in practice, yet they cannot guarantee
optimal solutions.

To our knowledge, optimal solutions to such correspondence problems only
exist in the one-dimensional setting (the stereo problem) as pioneered in the
spatially discrete setting by Ishikawa [2] and in the spatially continuous setting by
Pock et al. [11]. The latter framework has been generalized to higher dimensions
[12], yet respective convex relaxations only provide approximate solutions with
no (apriori) optimality guarantees.

We would like to stress that our proposed method is not related to the work
of Vaillant et al. [13] that also uses currents and 2-forms: Apparently [13] solves
a different problem not including a arbitrary non-convex data term. Moreover
it involves optimizing a surfaces of codimension 1 while we tackle the minimal
surface problem of codimension 2. It is exactly the codimension 2 which makes
our problem challenging.

In this paper, we propose a convex energy for the correspondence problem
in the framework of geometric measure theory to which we can find the globally
optimal solution. Since this theory is not commonly used in computer vision,
we will briefly review the most relevant concepts such as m-vectors, differential
forms and currents in Sects. 3 and 4. For a more detailed presentation, we refer
the reader to standard textbooks [14,15].

1.3 Contribution

1. In Sect. 2, we prove that the correspondence problem (1) is equivalent to a
minimal surface problem in higher dimension. Subsequently, we express this
minimal surface problem as an optimization problem over 2-vector fields.
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2. In Sect. 5, we propose a discretization of this minimal 2-vector field problem
which gives rise to a convex optimization problem. The discrete problem can
be optimized with standard convex optimization methods that converge to a
globally optimal solution.

3. In Sects. 3 and 4 we select and lay out the mathematical concepts necessary
for the proposed method that are normally embedded into the complex theory
of geometric measure theory. We also derive Lemmas 3 and 4. They do not
exist in standard textbooks, but are crucial for the numerical implementation.

4. In Sect. 6.2, we derive a solution to the mass norm’s proximity operator.
This proximity operator is necessary for the numerical optimization of the
discrete problem detailed in Sects. 6 and 7. Additionally we derive a discrete
formulation of the boundary operator for 2-vector fields.

2 Optimal Correspondences and Minimal Surfaces

In this section, we transform the original correspondence problem into an equiv-
alent optimization problem, where we minimize over 2-vector fields (introduced
in Sects. 3 and 4) on the product space Ω × Ω. The transformation consists of
two steps:

The first step is to turn the correspondence problem into a minimal surface
problem. Instead of optimizing directly over sets of diffeomorphisms, we will
optimize over subsets of the product space Ω × Ω = Ω2. In the space of diffeo-
morphisms f : Ω → Ω are represented by their graphs {(p, f(p))|p ∈ Ω} ⊂ Ω2,
which are 2-dimensional surfaces embedded into R

4. Let the projections π1, π2 :
Ω2 → Ω be defined by π1(p, q) = p, π2(p, q) = q for any (p, q) ∈ Ω2 and denote
by π1|S , π2|S : S → Ω the restrictions of π1, π2 to some set S ⊂ Ω2. Now we can
reformulate (1) as the following minimal surface problem:

min
S⊂Ω2

∫
S

w(p)dp

s. t. ∂S ⊂ ∂(Ω2) and π1|S , π2|S ∈ Diff+(S,Ω),
(2)

where we define w : Ω2 → R by w(p) = g(π1(p), π2(p)) + ε for any p ∈ Ω2. Note
that W (df(p)) from (1) is now implicitely included in the surface integral

∫
S

dp
of (2). Indeed both optimization problems are equivalent:

Proposition 1. Let f∗ be a minimizer of (1), then it’s graph {(p, f(p))|p ∈ Ω}
is a minimizer of (2). If S ⊂ Ω2 is a minimizer of (2), then π−1

1|S ◦π2|S : Ω → Ω

is a minimizer of (1).

Proof. For any feasible f : Ω → Ω of (1) let S(f) = {(p, f(p))|p ∈ Ω} be its
graph. Then h : Ω → Ω2, h(p) = (p, f(p)) is a chart of S(f). Now expand the
surface integral and w:∫

S(f)

w(p)dp =
∫

Ω

w(h(p))
√

det(dh�dh)dp

=
∫

Ω

(g(p, f(p)) + ε)
√

det(
(

Id
df

)�(
Id
df

)
)dp.

(3)
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So for any feasible f of (1) there is a feasible S(f) of (2), such that the energy
of f with respect to (1) is equalt to the energy of S(f) with respect to (2).

On the other hand, for any feasible S ⊂ Ω2 of (2) the function fS = π−1
1|S ◦

π2|S : Ω → Ω is a feasible solution to (1). Note that it holds π−1
1|S(p) =

( p
fS(p)

)
∈

Ω2 and ∫
S

w(p)dp =
∫

Ω

w(π−1
1|S(p))

√
det((dπ−1

1|S)�dπ−1
1|S)dp

=
∫

Ω

(g(p, fS(p)) + ε)
√

det(
(

Id
dfS

)�(
Id
dfS

)
)dp.

(4)

��

The second step of our approach is to represent the surfaces S ⊂ Ω2 by their
tangent planes. From differential geometry we know that we can parameterize
some 2-dimensional surface embedded into Ω2 by a diffeomorphic map u : U →
Ω2, where U is an open subset of R2. 1 The directional derivatives ux = ∂u

∂x , uy =
∂u
∂y : U → R

4 yield tangent vectors that span the tangent planes of S, i.e.
ux(u−1(p)), uy(u−1(p)) ∈ R

4 span the tangent space TpS of S at p ∈ S. The
weighted area of S can be evaluated by Aw(S) =

∫
U

w(u(p))A(ux(p), uy(p))dp,
where A(ux(p), uy(p)) is the area of the parallelogram spanned by ux(p), uy(p).
Now define the vector fields tx, ty : Ω2 → R

4 by

tx(p) =

{
ux(u−1(p)) if p ∈ S

0 otherwise,
ty(p) =

{
uy(u−1(p)) if p ∈ S

0 otherwise.
(5)

Using the 2-dimensional Hausdorff measure H2 (see Sect. 4) we can evaluate the
weighted area of S by Aw(S) =

∫
Ω2 w(p)A(tx(p), ty(p))dH2p. The important

observation is that the integral directly depends neither on S nor on the chart u.
The key idea is that the two vector fields tx, ty define the shape, area and bound-
ary of S and we can rewrite the minimal surface problem (2) as an optimization
over two vector fields on Ω2:

min
tx,ty :Ω2→R4

∫
Ω2

w(p)A(tx(p), ty(p))dH2p

s. t. tx, ty represent a surface without boundary inside Ω2 and
π1(tx, ty) = π2(tx, ty) = Ω.

(6)

Keep in mind, that this is only a loose definition of the optimization problem
that we will actually solve. We will state a more refined definition in Sect. 5 that
makes heavy use of the tools of geometric measure theory. Since these tools are
not common in computer vision, we will introduce them in the following.

1 For the sake of simplicity, we will ignore the concepts of multiple charts and changes
of parameterization. They will not be necessary, as we will directly get rid of the
chart u.
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We start with the introduction m-vectors and alternating forms that are used
to represent our two vector fields in Sect. 3. In Sect. 4 we will discuss differential
forms and currents. We will glue those concepts together and propose a refined
form of (6) in Sect. 5. The latter can be discretized into a convex minimization
problem. This discretization will be presented in Sect. 6. Finally we will show
how to optimize the convex optimization problem in Sect. 7.

3 m-Vectors and m-Covectors

As indicated in optimization problem (6) we want to optimize over two vector
fields. At each point we need to measure the area of the parallelogram of both
vectors, their boundary and orientation and make sure that both vectors are
linearly independent. Especially the latter constraint will make this optimization
problem hardly tractable, if we use two separate vector fields. Instead we will
use more sophisticated concepts, namely simple m-vectors, m-vectors and m-
covectors.2

3.1 m-Vectors

Loosely speaking, simple m-vectors represent an oriented m-dimensional sub-
space of Rn spanned by m linearly independent vectors plus some positive area.
The area is defined by the parallelotope of these vectors. The set of m-vectors is
the vector space obtained by the linear extension of the set of simple m-vectors.
m-covectors are the elements of the dual space to the space of m-vectors. We will
first give a formal definition of (simple) m-vectors and then discuss the relevant
concepts.

Definition 1 (Simple m-Vectors and m-Vectors [15, p. 23]). Let m,n ∈
N,m ≤ n.

1. Define an equivalence relation ∼ on (Rn)m, such that for any (v1, . . . , vm) ∈
(Rn)m and any α ∈ R it is

(v1, . . . , αvi, . . . , vj , . . . , vm) ∼ (v1, . . . , vi, . . . , αvj , . . . , vm), (7)
(v1, . . . , vi, . . . , vj , . . . , vm) ∼ (v1, . . . , vi + αvj , . . . , vj , . . . , vm) and (8)
(v1, . . . , vi, . . . , vj , . . . , vm) ∼ (v1, . . . , vj , . . . ,−vi, . . . , vm). (9)

Denote the equivalence class of any (v1, . . . , vm) ∈ (Rn)m with respect to ∼
by v1 ∧ . . . ∧ vm and call it a simple m-vector.

2. Consider the vector space of all linear combinations of simple m-vectors and
define the equivalence relation ≈ on this vector space by

α(v1 ∧ v2 ∧ . . . ∧ vm) ≈ (αv1) ∧ v2 ∧ . . . ∧ vm and
(10)

(v1 ∧ v2 ∧ . . . ∧ vm) + (v′
1 ∧ v2 ∧ . . . ∧ vm) ≈ (v1 + v′

1) ∧ v2 ∧ . . . ∧ vm (11)

2 We will not proof most of the statements in Sects. 3 and 4 but refer to the textbooks
[14–16].
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for any v′
1, v1, . . . , vm ∈ R

n, α ∈ R. Denote this vector space modulo ≈
by ΛmR

n and call any element of ΛmR
n an m-vector. Additionally define

Λ0R
n = R.

· ∧ · is called the wedge product. It will be generalized later in Definition 5. For
the time being, let us take a closer look at simple m-vectors and make a first
observation:

Observation. The m-vector ω ∈ ΛmR
n is simple if and only if there exist

v1, . . . , vm ∈ R
n such that ω = v1 ∧ . . . ∧ vm.

Let e1, . . . , en ∈ R
n be the oriented orthonormal basis of R

n pointing in
the standard direction. We call this basis the standard basis of Rn. This basis
induces an orthonormal basis {ei1 ∧ . . .∧eim}i1<...<im ⊂ ΛmR

n of ΛmR
n. Let us

call this basis the standard basis of ΛmR
n. It directly follows that dimΛmR

n =(
n
m

)
. We can write any m-vector ω as a weighted sum of basis m-vectors: ω =∑

i1<...<im
ωi1···imei1···im , where {ωi1···im ∈ R}i1<...<im are the coefficients or

coordinates (with respect to the standard basis).

Notation. For some indexed set of vectors {vi}i we abbreviate the wedge prod-
uct by vi1···im = vi1 ∧ . . . ∧ vim . For example e132 = e1 ∧ e3 ∧ e2. Additionally
we will abbreviate the decomposition of some m-vector ω into basis vectors by
ω =

∑
σ ωσeσ.

Definition 2. For any two vectors ω =
∑

σ ωσeσ, ξ =
∑

σ ξσeσ ∈ ΛmR
n we

define the standard inner product 〈·, ·〉 : ΛmR
n × ΛmR

n → R of ΛmR
n by

〈ω, ξ〉 =
∑

σ ωσξσ and define the Euclidean norm ‖·‖2 : ΛmR
n → R on ΛmR

n

by ‖ω‖2 =
√

〈ω, ω〉 for any ω ∈ ΛmR
n.

Observation. Whenever the m-vector ω is simple, then for every decomposition
ω = v1 ∧ . . . ∧ vm, v1, . . . , vm ∈ R

n, it holds that the m-dimensional volume
of the parallelotope spanned by v1, . . . , vm is exactly ‖ω‖2. It directly follows
the important property that ω = 0 if and only if v1, . . . , vm are not linearly
independent.

If the simple m-vector ω = v1 ∧ . . .∧vm �= 0, then v1, . . . , vm is an oriented basis
of the m-dimensional subspace V ⊂ R

n. For any orthonormal basis w1, . . . , wm

of V with the same orientation it holds:

v1 ∧ . . . ∧ vm = ‖ω‖2(w1 ∧ . . . ∧ wm). (12)

In other words, there is a one-to-one correspondence between simple m-vectors
and oriented m-dimensional subspaces (also called oriented m-planes through
0) of Rn with an associated positive volume. Furthermore we can set all simple
m-vectors of unit-length and all oriented m-dimensional subspaces of Rn into a
one-to-one correspondence. These concepts are illustrated in Fig. 1.
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v1

v2

e1

e2e3

v1 ∧ v2 2v1 ∧ 1
2
v2

v1

v2

e1

e2e3

v2 ∧ v1−v1 ∧ −v2

2v1

1
2
v2

e1

e2e3

−v1

−v2 e1

e2e3

Fig. 1. Examples of simple 2-vectors in R
3: From Definition 1 it follows that the 2-

vectors v1∧v2 = 2v1∧ 1
2
v2 = −v1∧−v2 ∈ Λ2R

3 are identical. This is in line with the geo-
metric interpretation of the corresponding vector pairs (v1, v2), (2v1,

1
2
v2), (−v1, −v2):

All three span the same 2-dimensional subspace of R
2, induce the same orientation

on this subspace and their parallelogram has the same area. On the other hand
v1 ∧ v2 �= v2 ∧ v1 = −(v1 ∧ v2), since the orientations of the corresponding subspaces
are inverted.

3.2 The Mass Norm

What is the difference between m-vectors and simple m-vectors? Indeed up to
R

3 all m-vectors are simple. The most basic example of a non-simple m-vector is
e12+e34 ∈ Λ2R

4 (i.e. = (e1∧e2)+(e3∧e4)). This 2-vector cannot be decomposend
into a single wedge product (v1∧v2) between two vectors in R

4. Interestingly the
two subspaces spanned by e12 and e34 intersect only at the origin and therefore
e12+e34 does not represent a “simple subspace”. Now the important observation
is that while the areas of the two parallelograms spanned by e12 and e34 add up to
2 the Euclidean norm ‖e12 + e34‖2 =

√
2 is strictly smaller. This is a problem

because an optimization of 2-vectors in R
4 with respect to the Euclidean norm

would naturally prefer non-simple 2-vectors while the minimal surfaces we are
looking for are represented by simple 2-vectors. The solution is the so-called
mass norm. Its definition is based on duality, so we will introduce it along the
definition of m-covectors. Recall that the dual of some real vector space V is the
set of all real linear functions f : V → R on that space.

Definition 3 (m-Covectors). The dual space (ΛmR
n)∗ of ΛmR

n is called the
space of m-covectors and is denoted by Λm

R
n. We write 〈φ, ω〉 = φ(ω) ∈ R for

any ω ∈ ΛmR
n, φ ∈ Λm

R
n.

Observation. Λm
R

n = (ΛmR
n)∗ = Λm(Rn∗) holds, such that the dual basis

e∗
1, . . . , e

∗
n ∈ R

n∗ induces the dual inner product 〈·, ·〉 and the dual Euclidean
norm ‖·‖2∗ on Λm

R
n.

Definition 4 (Mass Norm and Comass Norm). The comass norm denoted
by ‖·‖∗ is the norm on Λm

R
n defined for any φ ∈ Λm

R
n by

‖φ‖∗ = sup{〈φ, ω〉 | ω ∈ ΛmR
n is simple, ‖ω‖2 ≤ 1}. (13)
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The mass norm denoted by ‖·‖ is the norm on Λm
R

n defined for any ω ∈ ΛmR
n

by

‖ω‖ = sup{〈φ, ω〉 | φ ∈ ΛmR
n, ‖φ‖∗ ≤ 1}. (14)

Lemma 1. For any ω ∈ ΛmR
n it holds

‖ω‖2 ≤ ‖ω‖ ≤
(

n
m

) 1
2 ‖ω‖2,

‖ω‖2 = ‖ω‖ ⇔ ω is simple and

‖ω‖ = inf

{
N∑

i=1

‖ωi‖2 | ω =
N∑

i=1

ωi, ωi is simple

}
.

(15)

Continuing the discussion from above, Lemma1 gives us the intuition why the
mass norm is the right choice: If some m-vector is not simple, its mass norm will
be strictly larger than its Euclidean norm and from the decomposition identity
of Eq. (15) we can deduce that the mass norm ‖e12 + e34‖ = 2 has the “correct”
value.

3.3 Grassmann Algebra

Recall that the gradient of a scalar field is a vector field and the divergence of
a vector field is a scalar field. In the next section we will apply integration and
differentiation to m-vector fields, which will require us to change the “order”
of the m-vector field in a similar fashion. Therefor we will now introduce the
Grassmann algebra, the wedge product and the interior product.

Definition 5 (Grassmann Algebra). The Grassmann algebra (or exterior
algebra) of R

n, denoted by the Λ∗R
n, is the union of ΛmR

n, i.e. Λ∗R
n =⋃

m ΛmR
n, together with the exterior multiplication (or wedge product) ∧ :

Λ∗R
n×Λ∗R

n → Λ∗R
n. The exterior product of two simple vectors (v1∧. . .∧vm) ∈

ΛmR
n and (u1 ∧ . . . ∧ uk) ∈ ΛkR

n is defined by

(v1 ∧ . . . ∧ vm) ∧ (u1 ∧ . . . ∧ uk) = v1 ∧ . . . ∧ vm ∧ u1 ∧ . . . ∧ uk ∈ Λm+kR
n

(16)

and is linearly extended to all m-vectors in Λ∗R
n. Define the Grassmann algebra

Λ∗
R

n with respect to covectors analoguously.

Definition 6 (Interior Product). Let φ ∈ Λm
R

n and ω ∈ ΛpR
n, if p ≤ m,

the interior product ω�φ ∈ Λm−p
R

n is an alternating m − p form defined by
〈ω�φ, ξ〉 = 〈φ, ξ ∧ ω〉 for any ξ ∈ Λm−pR

n. If p ≥ m, the interior product
ω�φ ∈ Λp−mR

n is an p − m vector defined by 〈θ, ω�φ〉 = 〈φ ∧ θ, ω〉 for any
θ ∈ Λp−m

R
n.

4 Differential Forms and Currents

Denote the tangent space of Rn at point p ∈ R
n by TpR

n and its dual space by
TpR

n∗. We can construct Grassman algebras from both spaces because they can
be identified with R

n. Denote the standard basis of TpR
n by ∂1, . . . , ∂n ∈ TpR

n

and the standard basis of TpR
n∗ by dx1, . . . , dxn ∈ TpR

n∗.
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4.1 Differential Forms

Definition 7 (m-Vector Fields and Differential m-Forms). An m-vector
field on R

n is a function ω : Rn → ΛmTpR
n. Any m-vector field ω on R

n can
be uniquely decomposed into ω(p) =

∑
σ ωσ(p)∂σ, where ωσ : Rn → R are ω’s

coefficient functions.
A differential m-form φ on R

n is a field of m-covectors of TpR
n, i.e. φ :

R
n → ΛmTpR

n, such that each coefficient function φσ : R
n → R of φ(p) =∑

σ φσ(p)dxσ is differentiable. For simplicity we will call differential m-forms
just m-forms. We denote the set of all m-forms on R

n by Dm
R

n = {φ : Rn →
ΛmTpR

n}.
The support of φ is the closure of {p ∈ M|φ(p) �= 0} and is denoted by spt φ.

Definition 8 (Exterior Derivative). Let φ(p) =
∑

σ φσ(p)dxσ ∈ Dm
R

n. The
exterior derivative dφ ∈ Dm+1

R
n of φ is defined by

dφ =
∑

σ

dφσ ∧ dxσ, wheredφσ =
∂φσ

∂x1
dx1 + · · · +

∂φσ

∂xn
dxn. (17)

Lemma 2 ([15] Lemma 6.1.8). Let φ ∈ Dm
R

n, θ ∈ Dp
R

n, it holds d(φ ∧ θ) =
(dφ) ∧ θ + (−1)mφ ∧ (dθ).

4.2 Currents

Definition 9 (Currents). We denote the dual space of Dm
R

n by DmR
n =

(Dm
R

n)∗. The elements of DmR
n are called m-currents.

We will mostly use currents that are constructed from measures and m-vector
fields. We start by defining 0-currents induced by measures:

Definition 10 (Measure Induced Currents). Let μ be a measure on R
n, we

define the associated current μ ∈ D0R
n induced by measure μ by

μ(φ) =
∫ n

R

〈φ(p), 1〉dμp (18)

for any φ ∈ D0
R

n. (The meaning of μ will be directly clear from the context.)

The only measure we will use is the Hausdorff measure (see [16, p. 9]):

Definition 11 (Hausdorff Measure). The m-dimensional Hausdorff measure
Hm of some set A ⊂ R

n is defined by

Hm(A) = lim
δ→0

inf

⎧⎨
⎩

∑
j

αm

(
diam(Sj)

2

)m

|A ⊂
⋃
j

Sj ,diam(Sj) < δ

⎫⎬
⎭ , (19)

where Sj are n-dimensional balls and αm is the volume of the m-dimensional
unit ball.
Define the Hausdorff measure restricted to some B ⊂ R

n by Hm
B (·) = Hm(·∩B).
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We combine currents with vector fields and differential forms by:

Definition 12. Let T ∈ DkR
n, ξ ∈ Dl

R
n and ω an l-vector field on R

n, we
define (T �ξ) ∈ Dk−lR

n and (T ∧ ω) ∈ Dk+lR
n by

(T �ξ)(φ) = T (ξ ∧ φ) foranyφ ∈ Dk−l
R

nand

(T ∧ ω)(φ) = T (ω�φ) foranyφ ∈ Dk+l
R

n.
(20)

It directly follows from Definition 12 that we can combine some measure μ and
an m-vector ω on R

n to an m-current μ ∧ ω ∈ DmR
n that evaluates on any

m-form φ to

(μ ∧ ω)(φ) = μ(ω�φ) =
∫
Rn

〈ω�φ, 1〉dμ =
∫
Rn

〈φ, 1 ∧ ω〉dμ =
∫
Rn

〈φ, ω〉dμ. (21)

Definition 13 (Partial Derivative). Let T ∈ DkR
n, its partial derivative

Dxi
T ∈ DkR

n is again a k-current defined, sucht that for any φ ∈ Dk
R

n it
holds: (Dxi

T )(φ) = −T ( ∂φ
∂xi

).

Definition 14 (Boundary). The boundary ∂T of some k-current T ∈ DkR
n

is again a current in Dk−1R
n of dimension k − 1 defined, such that for any

φ ∈ Dk−1
R

n it holds ∂T (φ) = T (dφ).

Definition 15 (Mass). The mass M(T ) ∈ R≥0 of some T ∈ DmR
n is defined

by M(T ) = sup{T (φ)|φ ∈ Dm
R

n, supp∈Rn ‖φ(p)‖∗ ≤ 1}.
Observation. If S is an (oriented) m-dimensional surface and ω is an m-vector
field induced by the tangent planes of S, we can associate with S a current
TS = Hm ∧ ω. The important insight from geometric measure theory is that the
notion of mass and boundary of a current coincides exactly with the area and
boundary definition from differential geometry. I.e. M(TS) = A(S), ∂TS = T∂S

and M(∂TS) = A(∂S).

In the next section, we will cast our optimization problem as an optimization
over the set of currents induced by 2-vectors and we need to numerically com-
pute their boundary. We will now introduce a general notion of divergence that
will eventually lead to the crucial Lemma4, which enables us to discretize the
boundary operator as a matrix-vector multiplication.

Definition 16 (Divergence). The divergence div ω of some differentiable m-
vector field ω on R

n is an m − 1 vector field defined by div ω =
∑n

i=1
∂ω
∂xi

�dxi.

Indeed this is a generalization of the known divergence of (differentiable) 1-vector
fields ω =

∑
j ωj∂j since div ω =

∑
i,j

∂ωj

∂xi
∂j�dxi =

∑
i

∂ωi

∂xi
.

Lemma 3. Let ω be a differentiable m-vector field on R
n and let T ∈ D0R

n,
then ∂(T ∧ ω) = −T ∧ div ω −

∑
i(Dxi

T ) ∧ (ω�dxi).

Lemma 4. Let U ⊂ R
n be open, n∂U the 1-form associated to the outward-

pointing unit vector orthogonal to ∂U and ω an differentiable m-vector field, it
holds that ∂(Hn

U ∧ ω) = −Hn
U ∧ div ω + (−1)mHn−1

∂U ∧ (ω�n∂U ).
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5 Minimal 2-Vector Problem

Using the tools introduced in previous sections, we will now propose a formula-
tion of the minimal surface problem (2) that is based on 2-vector fields of mini-
mal mass. Let S ⊂ Ω2 be a surface satisfiying the constraints of (2). Obviously
π−1

1|S : Ω → Ω2 is a chart of S. Define the two vector fields tSx , tSy : Ω2 → TpR
4

by

tSx (p) =

{
∂π−1

1|S
∂x1

(π1(p)) if p ∈ S

0 otherwise,
tSy (p) =

{
∂π−1

1|S
∂x2

(π1(p)) if p ∈ S

0 otherwise.
(22)

The wedge product of tSx , tSy is a 2-vector field we will denote by ωS = tSx ∧ tSy :
Ω2 → Λ2TpR

4. Now the important observation is that we can write the area of S
weighted by the data term w as the mass of the current H2

S ∧ w ∧ ωS

‖ωS‖ ∈ D2R
4:

∫
S

w(p)dp =
∫

Ω2
w(p)

‖ωS(p)‖
‖ωS(p)‖dH2

Sp = M(H2
S ∧ w ∧ ωS

‖ωS‖ ). (23)

This allows us to modify (2) into

min
S⊂Ω2

M(H2
S ∧ w ∧ ωS

‖ωS‖ )

s. t. ∂S ⊂ ∂(Ω2) and π1|S , π2|S ∈ Diff+(S,Ω).
(24)

While we now have an objective based on the integration of some 2-vector field
we still have several problems: we still optimze over S ⊂ Ω2, the measure H2

S

depends on S and ωS jumps when entering S from Ω2\S. We will overcome these
problems by the observation that we can approximate any ωS by a differentiable
2-vector field ω : Ω2 → Λ2TpR

4 (i.e. a 2-vector field whose coefficient functions
are differentiable). We are thus able to state our final optimization problem:

inf
ω:Ω2→Λ2TpR

4
M(H4 ∧ w ∧ ω) =

∫
Ω2

w(p)‖ω(p)‖dH4p

s. t. ω’s coefficient functions are differentiable,
div ω = 0 and
π1(ω) = π2(ω) = Ω.

(25)

The constraint on the divergence of ω directly comes from Lemma 4. Although
the infimum is not attained in the continuous setting, this formulation has several
key benefits. If we discretize Problem (25) as described in Sect. 6, it has the
following properties:

1. The search space of differentiable 2-vector fields is convex.
2. The objective is convex.
3. The divergence div is a linear operator leading to a convex constraint.
4. The projections π1, π2 are linear operators leading to convex constraints.
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In summary, the discrete version of (25) is a convex optimization problem, which
can be optimized with standard methods that converge to a globally optimal
solution. On the downside we cannot prove that the optimal 2-vector field of
(25) is simple. While our intuition and experiments suggest that this holds, it is
still an open question and a formal proof would be a major challenge and is well
beyond the scope of this paper.

6 Discretization

We would like to discretize all normal 2-currents in R
n that have the form Hn∧ω,

where ω is a differentiable 2-vector field with support on the open set P ⊂ R
n.

We will do this by sampling ω on the integer grid.
Let w1, . . . , wn ∈ N, define P = {1, . . . , w1} × · · · × {1, . . . , wn} ⊂ N

n ⊂ R
n,

then a 2-vector field sampled at points P is a function ω : P → Λ2TpR
n and

we have a discrete representation of any such ω via the coefficient functions
αij : P → R, i < j,, such that ω(p) =

∑
i<j αij(p)∂ij , for any p ∈ P . For the

relevant case of n = 4, the space of all 2-vectors is represented by the six scalar
functions α12, α13, α14, α23, α24, α34 : P → R or just by α : P → R

6.

6.1 Divergence

We define the partial derivatives of ω using finite differences by ∂ω
∂xi

= ω(p +
∂i) − ω(p). Now fix some point p0 ∈ P , denote α0 = α(p0) and αk = α(p0 + ∂k)
and let δk = αk − α0. It is ∂ω(p0)

∂xk
=

∑
i<j δk

ij∂ij . Expanding Definition 16 and
some calculations yield

div ω(p0) =
∑

i

⎛
⎝∂i

⎛
⎝ ∑

j:j<i

(
αj

ji − α0
ji

)
+

∑
j:i<j

(
α0

ij − αj
ij

)⎞
⎠

⎞
⎠ . (26)

For n = 4, the discrete divergence operator expands to

div ω(p0) =(α0
12 + α0

13 + α0
14 − α2

12 − α3
13 − α4

14)∂1+

(−α0
12 + α0

23 + α0
24 + α1

12 − α3
23 − α4

24)∂2+

(−α0
13 − α0

23 + α0
34 + α1

13 + α2
23 − α4

34)∂3+

(−α0
14 − α0

24 − α0
34 + α1

14 + α2
24 + α3

34)∂4.

(27)

6.2 Mass Norm

The primal-dual algorithm for convex optimization used in Sect. 7 solves in each
step a minimization problem that depends on the current point in the search
space. This minimization problem is described by the so-called proximity oper-
ator proxf : V → V defined by

proxf (x) = arg min
y∈V

1/2‖x − y‖2
2 + f(y), (28)
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where f : V → R ∪ {∞} is a convex function on the normed vector space V .
In this section we will derive a solution of the proximity operator prox c

L‖·‖ :
Λ2TpR

4 → Λ2TpR
4, where c, L ∈ R>0 are positive constants. Each 2-vector

φ =
∑

i<j φij∂ij ∈ Λ2R
4 can be represented by a skew-symmetric matrix S(φ) ∈

R
4×4, defined as

S(φ) =

(
0 φ12 φ13 φ14

−φ12 0 φ23 φ24
−φ13 −φ23 0 φ34
−φ14 −φ24 −φ34 0

)
. (29)

Clearly ‖φ‖2 = 1√
2
‖S(φ)‖F, where ‖·‖F is the Frobenius norm.

Let U(φ), T (φ) ∈ R
4×4 be two matrices where U(φ) is orthogonal and T (φ)

has the form

T (φ) =

(
0 T12 0 0

−T12 0 0 0
0 0 0 T34
0 0 −T34 0

)
, (30)

such that S(φ) = U(φ)T (φ)U(φ)�. Such a decomposition of S(φ) is called a (real)
Schur decomposition. From linear algebra we know, that such a decomposition
always exists and T12i,−T12i, T34i,−T34i are the purely imaginary eigenvalues
of S(φ).

Interestingly, ‖φ‖ = 1
2‖T (φ)‖1. This allows us to express the proximity oper-

ator as

prox c
L‖·‖(φ) = arg min

ψ∈Λ2R4

1
4
‖S(φ − ψ)‖2

F +
c

2L
‖T (ψ)‖1

= arg min
ψ∈Λ2R4

1
2
‖U(φ)�S(φ − ψ)U(φ)‖2

F +
c

L
‖T (ψ)‖1

= arg min
ψ∈Λ2R4

1
2
‖T (φ) − U(φ)�S(ψ)U(φ)‖2

F +
c

L
‖T (ψ)‖1

= arg min
ψ∈Λ2R4

1
2
‖T (φ) − T (ψ)‖2

F +
c

L
‖T (ψ)‖1, s.t. U(φ) = U(ψ).

(31)
The objective in the last line is identical to the well known ‖·‖1-prox operator
thus

prox c
L

‖·‖(φ) = U(φ)T̃ (φ)U(φ)�, s.t. T̃ (φ)ij = sign(T (φ)ij) max{0, |T (φ)ij | − c

L
}.

(32)

7 Optimization

Let c ∈ R
n, b ∈ R

m and A ∈ R
m×6n where m,n ∈ N. After discretization we can

find the optimum of (25) by solving an optimization problem of the following
form:

min
x∈R6n

n∑
i=1

ci‖Xi‖ s. t. Ax = b, (33)
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where Xi ∈ R
6 is the i-th column of matrix X ∈ R

6×n that is the reshaped vector
x. These Xi represent the 2-vector at point p by its six coefficients. A, b represent
the discrete divergence and projection operators and constraints. The system
can be transformed into the primal-dual framework by defining the functions
F : Rm → R, G : RN → R by

F (y) =

{
0 if y = b,

∞ otherwise,
and G(x) =

n∑
i=1

ci‖Xi‖. (34)

Clearly the primal problem

min
x∈RN

P(x) = min
x∈RN

F (Ax) + G(x) (35)

has the same optimimum and optimizer as Problem (33), but is now a convex
unconstrained problem, that can be directly solved by the primal-dual algorithm
[17–19]. It is also possible to use ADMM for the optimization.

8 Experiments

In this Section we will present typical correspondence maps that we computed
with the discretization of our proposed optimization problem. Since the minimal
surface is represented by a discrete 2-vector field on the discrete product space
Ω2 corresponding points might not be unique. We will take the center of gravity
to construct the map f : Ω → Ω: Let x : Ω2 → Λ2TpR

4 be the optimal 2-vector

left image right image map left to right map right to left

Fig. 2. Examples of optimal solutions computed by the proposed method:
we computed correspondences between two pais of images. In the first row we see that
the energy function prefers isometric transformations. The rotation between the two
images is correctly recovered. In the second row we add a quite large translation. In
both cases we see that the proposed method generates solutions that are dense and
continuous in both directions.
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field, p ∈ Ω, then define f by f(p) =
∑

q∈Ω ‖x(p, q)‖q. We define the map in the
other direction analoguously.

In Fig. 2 we depict two examples of optimal correspondences computed by
the proposed approach. We used the distance in color space for the data term.
Boundary conditions ensure that the boundary of one image is mapped to the
boundary of the other image. The correspondence map f is visualized by the
transformation vectors t : Ω → R

2, such that f = Id +t. These vectors are then
color coded using the HSV color space.

9 Conclusion

We proposed a method for computing regularized dense correspondences between
two images. The key idea is to rephrase the correspondence estimation in the
framework of geometric measure theory. To this end, we first introduce a fairly
general correspondence cost function on the space of diffeomorphisms which
combines a generally non-convex data term with a smoothness regularizer that
favors isometries. Secondly, we turn this problem into a minimal surface problem
in higher dimension which can be written as an optimization over 2-vector fields.
The latter problem can be discretized as a convex optimization problem for which
we can efficiently compute an optimal solution using (for example) a primal-dual
algorithm.
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