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Abstract. We extend the concept of generalized roof duality from pseudo-boolean
functions to real-valued functions over multi-label variables. In particular, we
prove that an analogue of the persistency property holds for energies of any order
with any number of linearly ordered labels. Moreover, we show how the optimal
submodular relaxation can be constructed in the first-order case.
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1 Introduction

Markov random fields are a standard optimization method for solving a variety of com-
puter vision problems such as segmentation, denoising, stereo, and optical flow. While
first-order binary submodular energies can be globally minimized [1], researchers have
recently aimed at expanding their applicability to harder optimization problems that are

(NS) non-submodular,
(ML) multiple-label,
(HO) higher-order.

For instance, the swap and expansion algorithms [2] made it possible to approximately
minimize non-submodular multi-label energies, thus tackling challenges (NS) and (ML).
The QPBO algorithm allows optimization of many first-order non-submodular func-
tions of binary variables at least partially - challenging (NS). Energies with linearly-

ordered multiple labels can be globally minimized if convex (i.e., submodular) [3,4,5]
(ML). Moreover, binary higher-order energies can be reduced [6,7,8,9,10] to first-order
ones (HO).

In this paper, we propose to tackle the challenges of non-submodular multi-label
functions (NS, ML) in a non-iterative way, with some theoretical results that apply also
to higher-order energies (HO). We do this by extending the concept of roof duality
[11,12,13,14], the basis of the QPBO algorithm, to energies with multiple labels. The
concept was recently generalized to higher-order binary energies, i.e., to the direction of
(HO), by Kolmogorov [15] and also by Kahl and Strandmark [9,10]. Here, we extend
it toward multi-label (ML), using the non-iterative algorithms [3,4,5]. Similarly to the
binary case, we construct the tightest lower-bound submodular function of the given
energy and minimize the latter instead of the original. The key contribution of this work
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original noisy lower bounds upper bounds

Fig. 1. Image denoising as an example application of the generalized roof dual

The task of removing noise from an image can be modelled as the problem of optimizing the
(generally NP-hard) multi-label functional (20). (Original image on the left and gaussian noise
with o = 0.2 added to the second image from the left.) We show that (given a fixed ordering of
the labels) the optimal submodular relaxation that yields the maximum lower bound of the func-
tional can be computed in polynomial time. This maximum lower bound is called the generalized
roof dual. Due to the Persistency Theorem 1, the computed optimal solution to the submodular
relaxation guarantees, for each pixel, the intensity value of an optimal solution of the original
optimization problem to be in a certain range. The image second from the right shows the lower
bounds of these ranges and the rightmost image shows the upper bounds. On average, only 1.2
intensity values out of 40 per pixel and color channel are possible candidates for the optimal so-
Iution. Thus each of the solutions to the relaxed problem is very close to the optimal solution of
the original problem.

is to prove that an analogue of the persistency property also holds for energies of any
order with any number of linearly ordered labels.

Moreover, we show how the optimal submodular relaxations can be constructed
in the first-order case. This construction turns out to coincide with the algorithm of
Kohli et al. [16], which tries to tackle first-order multi-label problems and also has the
persistency property. In this regard we show that the algorithm of [16] actually computes
the optimal submodular relaxation in the sense of generalized roof duality.

The meaning of Theorem 1, the main result of this paper that proves the persis-
tency property, is illustrated in Figure 1. The persistency gives us information about an
optimal labeling in the form of the range of labels at each pixel in which an optimal
label must lie. In the case of binary QPBO, we acquire no information at all if a pixel
is not labeled. In contrast, according to the multi-label generalization presented in this
paper, we can often exclude labels that are definitely not part of any optimal solution
even if we do not get a partial labeling, effectively reducing the search space of the
optimization problem.

The paper is structured as follows. In the next section, we fix notation. In section
3, we define the generalized roof dual for multi-label energies. In section 4, we discuss
the main theorem of this paper, which says that a persistency property holds for the
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generalized roof dual for multi-label energies of any order. In section 5, we give a
closed-formula optimum lower bound in the case of first order energies. In section 6,
the exact construction of the optimal submodular relaxation of given general first-order
multi-label function is explained. The experimental section 7 investigates our approach
of computing the generalized roof dual in an image denoising example. To improve
readability we deferred all proves to the appendix.

2 Notation

Throughout this paper, we deal with variables that can take values in a finite label set
with a linear order. Thus, whenever we use such a label set £, we identify it with £ :=
{0,...,¢—1}. We define the negation of a scalar multi-labeled variable = € £ analogous
to its boolean counterpart by

T:=0—(z+1).

For vectors x € L™ we extend the operators ~, +, —, min, and max component-wise.

3 Generalizing Roof Duality to Multi-Label Problems

The goal of multi-label minimization is to minimize a real-valued function f : £ — R
of n variables that can take values from a finite set £, called the label set:

min f(x).

Inin f(x)

Of course, this problem is at least as hard as pseudo-boolean optimization (which is
the special case that the set £ contains only two values). It is easier to minimize the
following submodular function that gives a lower bound of f:

(x;r)lienﬁgn 9(x,y),
where ¢ : £2™ — R is such that
Vx € L™ 1 g(x,%) = f(x), (1)
g is submodular, and 2)
V(x,y) € L2 : g(x,y) = 9(¥,%) (symmetry). 3)

Property (1) assures that the image of f is included in the image of g. As a consequence,

e, 9(x,y) < min f(x)
and the minimum of g is a lower bound of f. The symmetry property (3) allows to
prove a persistency statement, which allows to obtain a partial labeling of f from a
minimizer of g and will be explained later. The central property that makes g easier to
solve than f is the submodularity. Originally defined for pseudo-boolean functions, it
can be extended to linearly-ordered multi-labeled functions as well.
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Definition 1 ([17]). Given a linearly-ordered finite set L = {0,...,¢ — 1}, a function
0 : L x L — R is said to be submodular if for any four labels x1,x2,y1,y2 € L that
satisfy r1 < xa,y1 < y2, the inequality

O(z1,y1) + 0(x2,y2) < 0(z1,y2) + 0(x2,y1)
holds.

Definition 2 ([17]). Given a function g : L™ — R and z € L", the projection of g to its
i-th and j-th components (i,j € {1,...,n},i < j)is

91i,5,2] (.’E,y) = g(zla e 2=y 241y - R5—1 Y5 Bj41 - ‘7271)'

Then the function g is said to be submodular if for all i,5 € {1,...,n},i < j and all
z € L" the projection gj; ; , is submodular.

This definition of submodularity is due to Flach and Schlesinger [ 7], who denom-
inate it as subconvexity. Throughout this paper will will use the term submodularity to
emphasize the connection to pseudo-boolean optimization.

For a given f, there are infinitely many choices for g in general. Since g is a lower
bound, one is interested in finding the g with the highest minimum and thus the highest
lower bound for f.

max min X,
o min, 966Y) @

s. t. g satisfies (1)-(3).
We call the maximum of (4) the generalized roof dual of f. This is clearly a general-
ization of the generalized roof dual by Kahl and Strandmark [9,10]. In this paper, we
will show that their persistency guarantees still hold even if we move from functions on
boolean variables to functions on multi-labeled variables.

It would be beneficial if the whole optimization problem could be stated as a lin-
ear program. We will see later that the requirements (1),(3) (and with some additional
assumptions (2)) can be expressed by linear constraints. The (potentially) higher-order
objective function g can also be transformed into linear constraints by introducing a
variable  for the minimum of g:

max [
g,l
s.toV(x,y) € L2 g(x,y) > 1 ®)
g satisfies (1)-(3).

Keep in mind that the number of constraints including ! can be exponential in n.
We end this section by stating that the symmetry constraint does not affect the max-
imum of (5).

Lemma 1. Given a function f : L™ — R, there exists a g* : L™ — R defined by
(¢",1") € argmax
g5l
5.1 Y(xy) € L g(x,y) > (6)
vx € L™ g(x,%) = f(x),

g is submodular,
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such that g* is symmetric, i.e. Vx,y € L" : g* (x,y) = ¢* (¥, X).

4 Persistency

In this section, we show that a global minimizer of any submodular relaxation g of f
defines a range in which a global minimum of f must lie. Moreover moving any point
into this range does not increase the energy with respect to f. This property is called
persistency.

We begin by defining the subset S™ C £2" as

S"i={(x,y) € L2 |Vie{1,...,n} ;i +y; < [}
The following lemma tells us that there is alway a minimizer of g lying in S™:

Lemma 2. For any submodular symmetric function g : £L*™ — R the following state-
ment is true:
Vx,y € L™ g(x,y) > g(min(x, ¥), min(X, y)). (M

Since (min(x,y), min(X,y)) € S", there always exists a point in S" that minimizes g.

Equation (7) allows us to transform any minimizer of ¢ into an element of S™ that
still minimizes g. Interestingly a point (x,y) € S™ defines a range of labels for each
variable, since for any ¢ the inequalities 1 < z; < i, < £ are true. The next definition
fixes the projection of a point in £™ onto these ranges.

Definition 3. For any point x € L™ and (x*,y*) € 8", the overwrite operator £" x
8™ — L" denoted by x + (x*,y") is defined component-wise by

z; ifx; <z,

* * — . —

[x « (x",y9)], =4 Ui ifzi >},
x; otherwise.

Now we come to the central persistency statement that tells us that parts of the
minimizer of g can be optimal for function f. We can overwrite any point x € L" by
these parts and still get a lower or equal value for f.

Theorem 1 (Persistency). Let g be a function satisfying (1)-(3) and (x*,y*) € S" be a
minimizer of g, thenVx € L™ : f(x + (x*,y")) < f(x). In particular, if x € arg min(f),
then also x + (x*,y™) € arg min(f).

Theorem 1 tells us that, similarly to binary labeling, if =] = 7 then setting z; = x
is an optimal choice. It does not increase the energy, no matter what the other values
of x are. What is different in the multi-label case is that a label pair z},y; contains
information about an optimal labeling of f even if z; < y;. Combining Theorem 1
and Definition 3 for any optimizer x of f, we can assume without loss of generality
that the value of variable z; satisfies ] < z; < y;. If x; lies outside these boundaries
we can move it into the inside without losing the optimality of x. Thus, labels outside
the range {z;,...,7;} don’t have to be taken into account when optimizing f. This
effectively reduces the search space of the optimization problem. Only in the case where
(x*,¥™) = (0,0) we do not acquire any information at all.
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5 First Order Case

We show that if f has degree 2 the optimum g of (4) can be expressed by a closed
formula. First, note that any degree 2 function can be written in the form

F) = vijwi, ), (®)
i<j
by adding the terms of the form v;;(z;,z;) with i < j to ~;;(z;, ;) and those of the
form ~;(x;) and ~;(x;, z;) to one of the terms of the form ~;;(z;, z;) or vg;(zk, ;).
We begin by fixing a representation of g that directly includes the symmetry con-
straint (3).

Lemma 3. Any symmetric function g : £L*™ — R of degree 2 can be represented as
1 _ _ -
9x,y) =5 > (O (i w5) + 05 (T, ) + 035 (s, ;) + 055 (T, ) )]
i<j
using a set of functions 0 := {0, ng}igj, which we call a parameter set of g.

Let f be given in the form (8) (we assume ~;;(z,y) = 0) and compare it with

9(x,X) :== Z (0i(wi, z5) + ng(xi,mj)) :

1<

Lemma 4. If g satisfies f(x) = g(x,X), there is a parameter set 0 of g that satisfies
ij(2,y) = 035(z, y) + 03 (x,y) forall i < j. (10)
Let us denote
a;j (w1, 72,91, ¥2) = Yij (@1, Y1) + Vi (T2, y2) — vij (€1, y2) — vij (T2, Y1),
a;;(x1, 2,91, 92) == min (0, i (1, 22,91, y2)) ,

and for a parameter set 0 of g,

5%(361,93272/1,1/2) = 0i(w1,91) + 055 (2, y2) — 0i5(w1,y2) — 055(x2,y1), and

=0
Bid (1,2, y1,y2) = O} (x1,31) + 075 (22, y2) — 05 (21, y2) — 05 (22, 91)-
Now we can rewrite our optimization problem (4) as

max min X, 11
2 x’yemg( y) an

1 _ _ _
=3 > (04 (i, x5) + 055 (@i, 7;) + 05 (i, ;) + 045 (i, )
i<j

s.LVi<jiVo,yeLl: vz y) =0i(z,y) + 05, y), (12)
Viﬁjivthmylvl;&@ﬁ,ml <Z2,y1 <Y2: OZﬂ?j(fUl,fQ,yl:yZ)’ (13)
Vi <jiVer,ao,yye € Lo < @2,y <y2: 0< B (x1, a0, y1,02),  (14)

Note that because of (12) and v;;(x, y) = 0, 0;;(z,y) = —0.;(x, y) and therefore for i = j
(13) is automatically satisfied if (14) is, and vice versa.
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0;j(zi, ;)

Fig. 2. Optimal submodular relaxation of a pairwise term ;.
The plots of of a non-submodular function ~;;(z;,z;) = min(|x; — x;|,10) and its optimal
submodular relaxation 6;;, 6;;. They are derived from ~y;; by the rules explained in Section 6.
Note that while 6;; is submodular, the function 9§j = 7 — 055 is only submodular when one of
its arguments is flipped.

Theorem 2. Let 0* be a parameter set of g satisfying (12) and

Bl @rm,ym) = Y. > ap(l+Lkk+1).  (15)

z1 <k<w2 y1 <I<y2

Then 0* is a maximizer of (11).

6 Implementation

In this section, we will specify how to find an optimal submodular relaxation g of a
given general first-order multi-label function f. Consider f having the form of f(x) =
Zig j 7ij(xi,z;). The optimal relaxations 6, ng for each pairwise term can be con-
struct by setting

Vi<j:Vexel:
Qij(it,O) :7ij(0737)7 a7
Vi< j:Vag,zj € L,z >0,z >0:
eij(ii,l‘j) = a;j(xi,xi —lLzj,z; — 1)
— Gij(:r:i — 1,:Ej -1+ Hij(a:i,xj -1+ aij(xi — 1,1’j) and (18)
Vi< j:Vr,x; € L:
0ij(wi, x5) = vij (i, x5) — 03 (wi, ). (19)

Where the terms 6;;(x;, z;) in (18) are defined iteratively by increasing labels x; and x ;.
It can be easily verified that this parameter set satisfies (12) and (15). Due to Theorem
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2 this parameter set defines a submodular function g that attains the maximum (4) and
thus the generalized roof dual. The submodular function g can be optimized globally in
polynomial time by finding a minimum cut in a special graph using the construction of
Schlesinger and Flach [4].

We note that this construction of g coincides with the construction by Kohli et al.
[16] after the application of QPBO. Thus by Theorem 2 we have shown the optimality
of [16] regarding the generalized roof dual for multi-label problems.

In Figure 2 we show an example of an optimal submodular relaxation of a non-
submodular function ;;(z;, ;) = min(|z; — x|, 10).

7 Image Denoising Example

The goal of image denoising is to remove the noise from a noisy image. In order to
cast the denoising problem as a multi-label MRF, we consider a grey-scale image as
a discrete function Z : P — {0, ..,255} defined on a finite set of pixels P. On the one
hand, the denoised image x* : P — £ C {0,..,255} should be close to the original
image Z; but on the other hand, it should be less noisy. We define the denoised image
as the minimum of the first-order multi-label MRF energy

x* = arg min Z Dp(x) + A Z Spq(x), (20)
pEP pgeN

where N is a neighborhood structure on the pixels, A € R is a parameter, and Dy, Spq
are the data terms and smoothness terms, respectively. In all our experiments, we used
the 4-neighborhood as the neighborhood structure. The data term D,(x) makes x to
stay close to Z and is defined as Dp(x) = (Z(p) — x(p))?. We assume that a denoised
image is much smoother than the given noisy image. The so-called smoothness prior
penalizes strong gradients in x by measuring the absolute differences of values between
two neighboring pixels truncated by some maximum value 77 € N. It is defined as
Spq(x) = min(|x(p) — x(q)|, T). This pairwise term is clearly non-submodular. Its plot
and that of its submodular relaxation are shown in Figure 2.

By constructing the optimal submodular relaxation g, we can compute the maxi-
mum lower bound of the optimal x* with respect to (4). Moreover, the minimizer of g
also yields a partial labeling. A partial labeling for some variable indicates constraints
on the labels that can be assigned to this variable. In the case of image denoising, these
constraints are lower and upper bounds on the intensity values of each pixel. In Figure
3, the denoising of a small image with different parameters is shown (]£| = 32 and the
standard deviation of the added gaussian noise ¢ = 0.2). On the right, the upper and
lower bounds for three different parameter values are shown. The Persistency Theorem
| guarantees that the optimal denoised image is between these two bounds. For param-
eters T'= 6 and T' = 8, the range in which the optimum lies is rather large; on average,
the widths of the range from which each pixel is allowed to take a value are 17.60 and
17.03, respectively. For parameter 7' = 10, on average the range in which the optimal
denoised pixel lies is 1.09. On the left of Figure 3, a plot illustrates the connection be-
tween different values for parameters 7' and A and the size of the range in which the
optimal denoised pixels lie.
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Fig. 3. Computing the generalized roof dual for an image denoising functional (20) with
different parameters.

Noise is removed from an image by using energy functional (20) with different parameter values.
Due to the Persistency Theorem 1, the computed minimizer of the submodular relaxation yields
for each pixel a range in which the optimal labeling must lie. The plot on the left shows the
average size of this range per pixel for different parameter values. The smaller the range, the
closer the solution of the submodular relaxation is to the optimal solution of the original problem.
On the right, the images show the lower and upper bounds of these ranges for three parameter
values. For T' = 6 and T' = 8, the average sizes are 17.60 and 17.03, respectively, whereas for
T = 10 the average size is only 1.09.

8 Conclusion

We generalized the concept of roof duality from binary labeling problems to multi-label
problems where labels exhibit a linear ordering. As a consequence, we can tackle non-
submodular multi-label problems in a direct and non-iterative manner. In particular, we
prove that an analogue of the persistency property prevails in the multi-label scenario
of arbitrary order, which gives us information about an optimal labeling by allowing
the exclusion of labels at each pixel that are certainly not part of any optimal solution.
Moreover, we show how the optimal submodular relaxation can be constructed for non-
submodular first-order case of multi-label problems.

Acknowledgment This work was partially supported by the Erasmus Mundus-BEAM
program, the JST Mathematics Program Sakigake (PRESTO), the JSPS Grant-in-Aid
for Scientific Research (B) #24300075, the MEXT Grant-in-Aid for Scientific Research
on Innovative Areas #24103709, and the ERC Starting grant ‘Convex Vision’.
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A Proof of Symmetry

Proof (Lemma 1). Given a function g : £2" — R we define its symmetric and asym-
metric parts by

gsym(%,y) = 1/2(g9(x,y) + 9(¥
Gasym (X%, y) == 1/2(g(x,y) — 9(¥, X))

We see that the decomposition

9(%,¥) = gsym(%,y) + Gasym (X, y)

follows from the definitions. We show that if (g, ) is a maximum of (6), then (gsym, !) is
also a maximum.
To see gsym(x,y) > ! for any point (x,y), using the maximality of (g, ), we have

9(%,¥) = gsym(X,y) + Gasym(x,y) > ! and
9(7,%) = gsym(X,¥) — Gasym(x,y) > 1.

A\VARAY,

Adding both inequalities we get the desired result
2gsym(x,y) > 21
The condition gsym (x,X) = f(x) for all x € L™ follows from
Vx € L™ : gsym(x,%) = 1/2(g9(x,%) 4 ¢(X, X)) = g(x,X) = f(x).
It remains to show submodularity of gsym. Choose and fix ¢,j5 € {1,...,2n},i < j

and (z,2') € £2". Let := (i +n) mod 2n and j" := (j + n) mod 2n . By definition, the
projection of gsym t0 i, j, (z,2’) can be expressed as

symli,j,(z,2')] (:C, y) = 1/2 (g[i,j,(z,z’)} (:E, y) + g[i/,j/7(?j)] (T, y)) .

Because g is submodular, for any =1, z2, y1,y2 € £ satisfying x1 < z2,y1 < y2, the two
inequalities

Ili.jy(2,2)) (@1, Y1) + i, (2,2)] (22, Y2) < (i, (2,21)] (2, Y1) + 93 5 (2.20)) (15 Y2)
o, 2] LI + G o 7,21 (T2, 92) < Gpar o 57.29) (T2, 1) + Gy o (7,2 (F1, 52)

hold. Adding both inequalities yields the submodularity condition for gsym, concluding
the proof. O

B Proof of Persistency

The proof of the persistency statement needs several preliminary observations. The first
one is a equivalent definition of submodularity.
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Lemma 5 ([17] Lemma 1). g : £" — R is submodular if and only if
Vx,y € L™ : g(x) + g(y) > g(min(x,y)) + g(max(x,y)).
This allows us to prove Lemma 2.

Proof (Lemma 2). For any point (x,y) € £2™ it holds:

9(x,¥) = 1/2(9(x,y) + 9(¥,%)) (symmetry)
> 1/2(g(min(x,y), min(X,y)) + g(max(x,y), max(x,y))) (Lemma (5))
= 1/2(g(min(x,y), min(X,y)) + g(min(X, y), min(x,y))) ~ (max(z,y) = min(z,7))
= g(min(x,y), min(X, y)). (symmetry)

Finally observe that (min(x, ¥), min(X,y)) € S". O

The next lemma is directly used in the proof of persistency.

Lemma 6. Let g : S — R be a submodular, symmetric function, for any point (x,y) €
S™ and any minimizer (x*,y*) € 8" of g the following inequality is true:

9(x,y) = g(min(max(x,x"),¥,¥"), min(max(y,y"),%,X")).
Proof. From submodularity and Lemma 5 we have
9(x,y) +9(x",y") > g(min(x,x"), min(y,y")) + g(max(x,x"), max(y,y")). (21)
Because (x*,y") is a minimizer of g it is also true that
9(x",y") < g(min(x,x*), min(y,y")). (22)
Using (22) to simplify (21) and applying Lemma 2 afterwards yields the proposition:

9(x,y) 2 g(max(x, x*), max(y,y"))

> g(min(max(x, x"), max(y, y*)), min(max(x, x*), max(y,y"*)))
= g(min(max(x,x"),y,¥"), min(X, X", max(y,y")))

0

Before we come to the final proof we state a direct consequence of the overwrite
operator’s definition:

Corollary 1. For any point x € L™ and (x*,y*) € 8" define z .= x + (x*,y"). It
holds

z; = min(y;, max(z;, z;)) and

Z; = min(ir7 maX(y;ﬁ,Ei))'
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Proof (Theorem 1). For any x € L£" it holds

f(x) = g(x,%)
> g(min(max(x,x"),x,¥"), min(X, X", max(X,y")))
= g(min(X7 y*)7 min(x, X ))
S ¢( min(max(min(x,y¥"),x"), min(X,x*),y"),
2" min(max(min(X, X*), y*), mn(x, 3, X))
_ g( min(max(min(x,¥"),x*), max(x,x*),y¥"
" min(max(min(X,X*),y*), max(%, y*), X

C Proofs of the First Order Case

Proof (Lemma 3). Any degree 2 function g(x,y) can be written

(Property (1))
(Lemma 6)

(simplification)

(Lemma 6)

(simplification)

(simplification)
(Corollary 1)

g(x,y) = Z (xij (i, 25) + Xi T U;) + Xag (@i, T5) + Xij T w5)) -

i<j

Then we have

966, ¥) + 93, %) = > (xij (@i, x5) + xi5 (@i, 25) + Xi5 T3 U;) + Xi5 @i U;)+

1<

1 — 1 — "o ",
Xij (@i, 75) + Xij (€4, 75) + Xa5 ir ) + Xij T 5)) -

The proposition follows if we define

0:i5(z,y) = xij (2, y) + Xij(x,y),  0ij(z,y) = Xi;(x,y) + xij (T, y).

Proof (Lemma 4). Let 0 be a parameter set of g. Define

nij (2, y) = 035 (x,y) + 035 (x,y) — vij (z, y).

Because of f(x) = g(x,X), we have for any x € £™:

h(X) = Z’I]ij(l‘i,mj) =0

i<j

and therefore if we define 0 as

(23)

0i(z,y) = 055 (z,y) —mij(x,y),  0i(z,y) = 0i;(z,y),

it is a parameter set of g because of (9) and (23), and it satisfies (10). |
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Proof (Theorem 2). By (12), we have

aij(z1, 22,91, y2) = B (x1, 22, y1,¥2) + Bil (€1, 22, y1,y2).
Thus the conditions (13) and (14) are equivalent to

Vi < j, Vo, w2, y1,y2 € L1 < @2, Y1 < Y2 (24)
— 0
aij(£17$27y17y2) 2 5ij(£17$27y17y2)~

Moreover, for any z; < xz2 < x3,y1 < y2 < y3, we have

0 0 0
Bij(w1,23,y1,y3) = Bij(@1, w2, Y1, 92) + Bij (1, 22, y2,¥3)+

0 0
Bij(x2, 3, y1,y2) + Bij(w2, x3,y2,y3), and

az; (1,73, 1, 3) > oy (1, 22,91, 92) + oy (w1, 22, y2,y3)+
a;j($2,$37ylay2) + a;j(l'z,.fﬂg,yz’yg),

Thus, the constraint a;j > 5% for the block (z1,z3,y1,y3) follows from that for the

four blocks (x1,z2,y1,¥2), (1,22, ¥2,¥3), (2, 23,y1,y2), and (x2,23,y2,y3). In other
words, the constraints for smaller blocks are more strict. Therefore, (24) is equivalent
to the conditions for the smallest blocks:

Vi<j:Vaz,y€{0,....,1 -2}y (zx+1ly,y+1) > ﬁ%(m,x—kl,y,y—i— 1). (25)
Thus, from (15), 6* is a feasible solution to (11). By (25), the constraint

Vi <j:Vry,22,y1,y2 € £,71 < T2,Y1 < Y2 ¢
2 E — 0
o (I,$+1,y,y+1) 25ij($1717272/17y2) (26)

z1<z<z2 Y1 <Y<y2

is also necessary. Because Lemma 2 allows us to assume z; < g; and z; <y,

1 0 . — _ _ _
g(x,y) = 3 Z (ﬁij(xhyial‘j’ ;) + i (i, Y5) + Yig (s, ij))
i<j
is maximum if equality is attained on all constraints of (26). Thus, 6* is optimal. O
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