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Abstract

We propose novel point descriptors for 3D shapes with the potential to match two
shapes representing the same object undergoing natural deformations. These deforma-
tions are more general than the often assumed isometries, and we use labeled training
data to learn optimal descriptors for such cases. Furthermore, instead of explicitly defin-
ing the descriptor, we introduce new Mercer kernels, for which we formally show that
their corresponding feature space mapping is a generalization of either the Heat Kernel
Signature or the Wave Kernel Signature. I.e. the proposed descriptors are guaranteed to
be at least as precise as any Heat Kernel Signature or Wave Kernel Signature of any pa-
rameterisation. In experiments, we show that our implicitly defined, infinite-dimensional
descriptors can better deal with non-isometric deformations than state-of-the-art meth-
ods.

1 Introduction
One of the key tasks in computer vision is the definition and determination of similarities
between elements of a given domain, e.g. image key points, 2D contours or 3D shapes.
Common to all problems of finding similarities is their need to first find an appropriate rep-
resentation of these elements, and then to find a distance function that assigns small values
to pairs of intuitively similar elements, and large values to dissimilar elements. Finding
such a distance function becomes easy when the representation of the elements already in-
corporates this notion of similarity. Therefore, research in this field mainly concentrates
in defining good descriptors, i.e. mappings into a metric space called the feature space in
which the elements can be compared using standard distance functions. In this paper, we
concretely investigate descriptors for points on 3D shapes, which are particularly useful to
identify similar points on different shapes. This provides the potential to match shapes that
represent the same object, but under different deformations. Therefore, we particularly look
at descriptors that are invariant under such deformations.

So far, the most widely used kinds of descriptors for this task are the heat kernel signature
(HKS) [14] and the wave kernel signature (WKS) [1]. They are based on the spectrum of
the Laplace-Beltrami operator of a shape, which only depends on intrinsic properties of
the shape. As a result, the HKS and the WKS are invariant under isometric deformations.
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However, the class of natural deformations does not only consist of isometries, and it can
be different for different applications. This problem is often tackled by tuning parameters
according to the application. In case of the HKS and the WKS, these parameters are related
to the sensitivity of the signature to local and global properties around the point of interest,
but not directly to the accuracy of the descriptor. Since the user is usually interested in
accuracy there is no straightforward solution to obtain an optimal parameterisation.

Our approach is to learn the optimal parameters of a signature from a set of training
shapes that represent the class of deformations to be expected. Furthermore, instead of ex-
plicitly defining a descriptor, we introduce similarity measures based on a Mercer kernel, and
show that the corresponding, infinite-dimensional descriptors can be regarded as generaliza-
tions of the HKS and the WKS. As a result, our trained, generalized descriptor yields a better
performance in terms of identifying similar points on shapes with natural deformations.

1.1 Contribution and Related Work
The spectrum of the Laplace-Beltrami (LB) operator underlying our approach has been
widely used in shape analysis. Reuter et al. [9] proposed to adopt the (truncated) spectrum as
a global shape descriptor. Assigning each shape a “fingerprint”, it was dubbed Shape DNA.
Following similar ideas, Rustamov et al. [11] introduced the Global Point Signature (GPS).
This local feature descriptor corresponds at each point of the shape to the values of the LB’s
eigenfunctions. Similarly to the Shape DNA, GPS is invariant under isometric deformations,
but it suffers from well-known phenomena such as sign flips and order changes of the basis
functions. The heat kernel signature (HKS) was proposed by Sun et al. [14] as a more robust
alternative. It is a local point signature based on the fundamental solutions of the heat equa-
tion on Riemannian manifolds. It is efficient to compute and robust to small perturbations
and nearly-isometric deformations of the shape. However, its practical performance directly
depends on the parameterisation and, by construction, it is severely limited by its inability to
precisely localize features. A direct extension of the HKS to a volumetric counterpart was
proposed in [8]. In an attempt to rectify the poor feature localization of the HKS, Aubry et al.
introduced the wave kernel signature (WKS) [1]. In their work, the authors proposed to re-
place heat diffusion by a different physical model, and analysed the behaviour of a quantum
particle over the shape surface as described by the Schrödinger equation on the underlying
manifold.

A different perspective was recently taken in [7]. Regarding both the HKS and WKS
as filters in the Laplace-Beltrami spectral domain, the authors asserted that natural deforma-
tions affect the different ”shape frequencies” in a different way. In this view, they proposed
a learning approach that attempts at separating the information-carrying from the noise-
carrying frequencies as measured on a representative dataset for which point-to-point corre-
spondences are known in advance. To our knowledge, [7] currently represents the only effort
at applying machine learning techniques for the purpose of feature detection and description
in the area of deformable shape analysis. Taking a similar perspective that in principle arbi-
trary filters can be applied to the LB spectrum, Li and Ben Hamza [6] more recently proposed
a multi-resolution signature based on a cubic spline wavelet generating kernel. More recent
advances include the approach of Rodolà et al. [10], who propose the adoption of random
forests in order to directly establish correspondences among two given shapes, rather than
providing an optimal descriptor to employ in subsequent steps of the matching pipeline.

In our approach we use the LMNN method introduced by Weinberger and Saul [15] to
find the best metric in the descriptor space. For a recent survey on this active field of research
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called metric learning we refer to Bellet et al. [2]. In contrast to [7] we propose an infinite
dimensional descriptor. The LMNN optimization in infinite dimensions is based on work
done by Chatpatanasiri et al. [4] using the kernel PCA method [13]. We would like to point
out the papers contributions, which distinguishes our proposed method especially from [7]:
• The method eliminates the need of tuning descriptor parameters. Neither does it have

time parameters such as the HKS, nor do we need to choose the dimensionality of the
descriptor as in [7]. In contrast, the adjustment of the descriptor is completely driven
by the data, i. e. the shapes’ deformations fed to the training process. The only two
parameters of the objective function are directly related to the descriptor precision.
Experiments suggest they can be fixed to constant values across applications, making
the framework virtually parameter free.

• The method is a true generalization of the WKS and HKS and can potentially gener-
alize other descriptors as well. Most importantly, we formally show that the proposed
descriptors are guaranteed to be at least as accurate as WKS and HKS under any pa-
rameterisation with respect to the given shapes. Applications using WKS or HKS can
avoid the parameter tuning problem by plugging in the proposed descriptor and are
guaranteed to get optimal precision.

2 Intrinsic Geometry and Point Descriptors
We model a shape as a compact two-dimensional Riemannian manifoldM without bound-
ary. Our aim is to design a pointwise descriptor, i.e. a function φ that assigns to each
point on the shape an element of a metric space, the descriptor space, such that corre-
sponding points on different shapes are assigned similar descriptor values, while at the
same time non-corresponding points are assigned dissimilar descriptors. The descriptor we
propose is based on the spectrum of the Laplace-Beltrami operator ∆M = −divM(∇M).
Being a compact, symmetric operator, the spectrum of ∆M consists of real eigenvalues
λ1,λ2, . . . and the corresponding eigenfunctions γ1,γ2, . . . can be chosen to be orthonormal.
Moreover, ∆M is a non-negative operator with a one-dimensional kernel, so we can or-
der the eigenvalues 0 = λ1 < λ2 ≤ . . . and assign to each point x ∈M a vector p ∈ R2K ,
p = (λ1, . . . ,λK ,γ1(x), . . . ,γK(x)). This vector is a representation of x that is invariant un-
der isometric deformations of the shape. Since the class of isometric deformations includes
reflections, any feature descriptor based on this representation will assign identical values
to a point and its symmetric counterpart, whenever shapes exhibit bilateral intrinsic sym-
metries. In the following, we present two descriptors based on this representation that have
been shown to perform well in the near isometric case. Later, we introduce descriptors that
generalize both in order to tackle more general deformations.

2.1 Heat and Wave Kernel Signature
The heat kernel signature (HKS) [14] is defined as a mapping Hθ :R2K→RT , parametrized
by θ = {t1, . . . , tT} ⊂ R+. Each component Hθ (p)l = htl (p) is a real-valued function htl :
R2K → R defined by

htl (p) =
K

∑
j=1

e−λ jtl γ j(x)2. (1)
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RT
M1 M2 MI

Figure 1: Comparing points with a point descriptor: The point descriptor φ : P → RT takes points
from a set of shapes and maps them to the high-dimensional vector spaceRT . Ideally, the descriptors of
points that are at corresponding locations on the shapes should have a small distance in the descriptor
space RT . Points at distinct locations on the shapes are mapped to distinct locations in the descriptor
space.

Physically, this can be interpreted as the amount of heat remaining at point x after time tl
when starting with a unit heat source δx at the very same point.

Similar to the HKS the wave kernel signature (WKS) [1] is a parametrized mapping
Wθ : R2K → RT . Here the parameters θ = {(µl ,σ

2
l )|l = 1, . . . ,T} ⊂ R2

+ describe mean and
variance of probability distributions given by their densities fµ,σ . Examples are

fNµ,σ (λ ) ∝ exp(− (λ −µ)2

2σ2 ) and fLµ,σ (λ ) ∝ exp(− (log(λ )− log(µ))2

2σ2 ). (2)

The components of the wave kernel signature Wθ (p)l = wµl ,σl (p) are then of the form

wµl ,σl : R2K → R,wµl ,σl (p) =
K

∑
j=1

f(µl ,σl)(λ j)γ j(x)2. (3)

We write WN
θ
(p)l = wN

µl ,σl
(p) and WL

θ
(p)l = wL

µl ,σl
(p) to denote the choice of the probabil-

ity distribution. This descriptor has a physical interpretation, namely the average probability
(over time) to measure a particle in x, with an initial energy distribution described by fµ,σ .

3 Proposed Method
As mentioned above, we aim at identifying corresponding (”similar”) points on a given set of
different shapes {M1, . . . ,MI}. We do this by finding a distance function d :P×P →R≥0,
where P =M1∪ . . .∪MI , so that d(p,q) is small if p∈P and q∈P 1 are similar and large
if they are dissimilar. Given a set θ of T parameters the heat kernel signature Hθ : P → RT

maps any point p to a T -dimensional vector space. Using the `2-metric in RT , we can then
define d as dH(p,q) := ‖Hθ (p)−Hθ (q)‖2. Similarly, we can define a distance dW using the
wave kernel signature, i.e. dW(p,q) := ‖Wθ (p)−Wθ (q)‖2. For a collection of shapes that
arise from isometric transformations of one base shape, the distance functions dH,dW fit very
well. From the discussion of Section 2 it is easy to see that dH(p,q) = dW(p,q) = 0 if the
isometric transformation t :M1→M2 deforming shapeM1 into shapeM2 maps p ∈M1
to t(p) = q ∈M2. This concept is illustrated in Fig. 1 for a general descriptor φ : P → RT .

1From here on we identify every point x directly with its representation p= (λ1, . . . ,λK ,γ1(x), . . . ,γK(x)) ∈R2K ,
such that we can say P ⊂ R2K .
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RT
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Figure 2: Optimal distance in the descriptor space: In general one cannot assume that a given
descriptor φ groups similar points as well as depicted in Fig. 1. The proposed method optimizes for the
distance dφ

M in the descriptor space RT such that the point descriptors are grouped as good as possible.
Since the symmetric positive semi-definite matrix M has a decomposition M = L>L, dφ

M is equivalent
to transforming RT by the linear transformation L and then taking the squared `2-distance. In the
illustration we see that L projects the images of φ onto the dotted line resulting in the much better
descriptor L◦φ .

If the shapes in the collection differ by more than isometries there is no obvious solu-
tion. From the ill-posed nature of the problem (i.e. the ambiguity in the human notion of
similarity) we can even argue that there is no point descriptor that will work out-of-the-box
on every shape collection. For this reason many point descriptors have parameters that allow
to adapt the descriptor to the shapes under consideration. Because this tuning of parameters
can be very tedious, we propose a method that picks the optimal combination of parameters
with respect to a given set of shapes.

The general idea of the proposed method is illustrated in Fig. 2. Given a point descriptor
φ : P → RT , we cannot in general assume that φ is very discriminative. But we can hope
that φ is more discriminative along some dimensions of RT than along other dimensions.
The proposed method finds the linear combinations of dimensions that are as discriminative
as possible with respect to the given set of shapes. More precisely the method finds the
best distance dφ

M(p,q) := (φ(p)− φ(q))>M(φ(p)− φ(q)), represented by the symmetric
positive semi-definite (spsd) matrix M, such that similar points are close to each other and
dissimilar points are well separated in the descriptor space. The optimal distance is defined
as argminM∈ST E(M), where ST ⊂ RT×T is the set of all spsd matrices and E is a suitable
objective function. As depicted in Fig. 2, this is equivalent to finding the best linear transfor-
mation L of the descriptor space RT : Since M admits the decomposition M = L>L, we can
rewrite dφ

M(p,q) = (Lφ(p)−Lφ(q))>(Lφ(p)−Lφ(q)) = ‖Lφ(p)−Lφ(q)‖2
2. Whenever we

speak of optimal distance dφ

M, we can also say optimal descriptor L◦φ .

In the next section the Large Margin Nearest Neighbour (LMNN) function is introduced
as the objective function E. This choice has two benefits: First, LMNN is a convex function
such that we are able to obtain the globally optimal distance. Second, it admits T = ∞

using the Kernel PCA method [4, 13]. In other words, LMNN can choose from an infinite
number of dimensions of the descriptor function φ . The main contribution of this paper takes
advantage of this fact and is laid out in Section 5: We propose several descriptor functions
φ :P →R∞ and show that the optimal metric learned with LMNN is as good as any possible
HKS and WKS.
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margin

margin

Figure 3: Optimal LMNN distance: The neighbourhood of an input sample (blue circle) changes as
a result of the training process. In this example, the learned distance is such that the k = 2 nearest
intra-class neighbours (green and red circles) lie within a smaller radius after application of the linear
mapping L. Similarly, the extra-class neighbours are left outside this optimized neighbourhood by a
fixed margin. Recall that the linear transformation L is an equivalent representation of distance matrix
M.

4 Metric Optimization

In the optimization step the objective function E is optimized with respect to a given set
of shapes P = {M1, . . . ,MI} ⊂ R2K with known correspondences among its points. The
correspondences are expressed as relations: We write p∼ q if the two points p,q ∈ P are in
correspondence. Otherwise we write p� q.

We choose the large margin nearest-neighbour function ELMNN : ST →R≥0, introduced
by Weinberger et al. [15], to evaluate possible distance matrices M ∈ ST . It is defined by:

Eφ

LMNN(M) =(1− c) ∑
i, j:

pi∼p j

dφ

M(pi,p j) +c ∑
i, j,l:

pi∼kp j ,pi�pl

[1+dφ

M(pi,p j)−dφ

M(pi,pl)]≥0.
(4)

φ :R2K→RT is the descriptor and c∈ (0,1) is a real parameter that weights the two objective
terms. The first term favours a small distance between descriptors of corresponding points,
since we are looking for the minimum of Eφ

LMNN. The second term uses parameter k ∈N and
denotes the nearest k corresponding points p j around point pi by pi ∼k p j. It draws a margin
around these points and penalizes every non-corresponding point entering this margin. Here,
[·]≥0 is the projection onto the non-negative reals. The concept is illustrated in Fig. 3.

For any given finite-dimensional point descriptor φ , we can now find an optimal distance
by solving for argminM∈ST Eφ

LMNN(M) using convex optimization. However, as we will see
in the next section, we can give performance guarantees if we allow the function φ to map
into an infinite-dimensional descriptor space. This means optimizing ELMNN over S∞. While
this looks at a first glance computationally intractable, we see that the descriptors {φ(p)}p∈P
lie in a finite subspace of R∞. And indeed, the approach of Chatpatanasiri et al. [4] allows to
optimize Eφ

LMNN globally for φ : R2K → R∞.

The subspace spanned by descriptors Φ = {φ(p)}p∈P has dimension of at most |P|.
Thus, it exists an orthonormal basis Ψ = {ψ j ∈ R∞}n

j=1,n ≤ |P|, of that subspace. The
kernel PCA method [13] allows to compute the now finite-dimensional coordinates β ∈ Rn

of φ(p) with respect to this basis. Using matrix notation it holds:

φ(p) =
n

∑
j=1

ψ jβ j = Ψβ ⇒ β = Ψ
>

φ(p) =
n

∑
j=1
〈ψ j,φ(p)〉. (5)
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Note that, according to [13], we do not need to compute φ(p), but we only need to be able to
compute the kernel function κ : R2K ×R2K → R defined as κ(p,q) = 〈φ(p),φ(q)〉. Kernel
functions of this form are also known as Mercer kernels [12].

Now, the representer theorem of Chatpatanasiri et al. [4] (Theorem 3) states that the min-
imum of ELMNN with respect to φ(p) is equivalent to the minimum with respect to the pro-
jections β . Moreover, we can compute the distance between two new descriptors dφ

M(v,w),
where v,w ∈ R2K possibly v,w /∈ P, whenever we can compute the kernel function κ.

5 Generalized Intrinsic Point Descriptors
We propose point descriptors φN ,φL,φH and show that the WKS and HKS of arbitrary
parameterisations can be expressed by a linear combination of the proposed descriptors.

Proposition 1 (WKS). 2 Let the point descriptors φN ,φL : R2K → R∞ be defined by

φ
N
i, j,k(p) :=

√(2 j
k

)
λ k

i√
j!

γ
2
i , φ

L
i, j,k(p) :=

√(2 j
k

)
log(λi)

k

√
j!

γ
2
i , where

i∈{1,...,K}
j∈{0,...,∞}

k∈{0,...,2 j}
. (6)

For any µ,σ ∈ R+ there exist vectors aN ,aL ∈ R∞, such that wN
µ,σ (p) = 〈aN ,φN (p)〉 and

wL
µ,σ (p) = 〈aL,φL(p)〉 for all p ∈ R2K .

Proposition 2 (HKS). Let the point descriptor φH : R2K → R∞ be defined by

φ
H
i, j (p) :=

λ
j

i√
j!

γ
2
i , where i∈{1,...,K}

j∈{0,...,∞} . (7)

For any t ∈ R+ there exists a vector a ∈ R∞, such that ht(p) = 〈a,φH(p)〉 for all p ∈ R2K .

Consequently all wN
µ,σ lie in a vector space of real-valued functions which is spanned by

{φN
i, j,k}i∈{1,...,K}, j∈{0,...,∞},k∈{0,...,2 j}. Let θ be fixed parameters of WKS WN

θ
and let p,p′ ∈P

be two points. As a result of Proposition 1 there exists a matrix M, such that taking the
squared `2-metric between the descriptors WN

θ
(p),WN

θ
(p′) is identical to taking the distance

between φN (p),φN (p′) with respect to M, i.e. ‖WN
θ
(p)−WN

θ
(p′)‖2

2 = dφN

M (φN (p),φN (p′)).
Since the proposed framework finds the optimum over all possible M, it also optimizes over
all possible WKS WN

θ
. The main result follows directly from this observation:

Corollary 3. Let M∗= argminM∈SEφN

LMNN(M) be the minimizer of function (4) for a given set

of shapes. It holds for all WN
θ

with any parameterisation θ that EφN

LMNN(M
∗)≤ E

WN
θ

LMNN(M
′)

for all M′ ∈ ST . Analogously, the same holds for φL and arbitrary WL
θ

and φH and any Hθ .

Note that E
WN

θ

LMNN(Id) measures the performance of the WKS with respect to the squared
`2-metric. In other words: We cannot choose parameters for the wave kernel signature such
that it is better than the proposed optimal descriptor on the given set of shapes.

It remains to show that the infinite dimensionality of φN ’s images is tractable. Remem-
ber, it suffices for the kernelized LMNN method to compute the kernel function κ of two
points. The next proposition states that this is possible in finite time and space.

2All proofs can be found in the supplementary material. Moreover we shorten γi(x) to γi for better readability.
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reference wave kernel learned cubic proposed descriptor
shape signature [1] spline descriptor [7] with kernel κL

Figure 4: Qualitative comparison of descriptors: Distance maps between the descriptor at a reference
point (indicated by a red arrow) and the descriptors computed on the shape after deformation. Colours
range from blue (small distance) to red (large distance). Qualitatively, WKS and the proposed method
do very well at indicating the right location while the cubic spline descriptor exhibits several local
minima across the shape. Both test shapes are from the class michael (TOSCA), whereas the proposed
descriptor and the spline descriptor were trained on the class david. The distance map on the reference
shape is generated by the proposed method. Colours are in log scale and clipped to the ranges, thus
they are not comparable across shapes.

Proposition 4. Let the kernel function κN :R2K×R2K→R express the dot product between
any two pairs p,p′ ∈ R2K in the descriptor space, i. e. κN (p,p′) := 〈φN (p),φN (p′)〉. κN

can be computed by the expression

κ
N (p,p′) =

K

∑
i=1

exp((1+λiλ
′
i )

2)γ2
i γ
′
i
2
. (8)

Similarly, the kernel functions κL(p,p′) := 〈φL(p),φL(p′)〉 and
κH(p,p′) := 〈φH(p),φH(p′)〉 can be computed via the identities

κ
L(p,p′) =

K

∑
i=1

exp((1+ log(λi)log(λ ′i ))
2)γ2

i γ
′
i
2 and κ

H(p,p′) =
K

∑
i=1

exp(λiλ
′
i )γ

2
i γ
′
i
2
. (9)

6 Experiments
In order to evaluate the performance of our method, we conduct two kinds of experiments.
The first kind of experiments is aimed at evaluating our approach against several comparable
state-of-the-art point descriptors in a deformable shape matching scenario. Specifically, we
evaluate the robustness of the descriptors when the underlying shapes are allowed to undergo
non-rigid deformations. An example of such deformations is shown in Fig. 4. For this
experiment we used shapes from the TOSCA dataset [3], for which ground-truth point-to-
point correspondences are available. We built the training set by using only the 7 shapes
from the class david, restricted to 600 farthest point samples [5] (under the geodesic metric)
on each shape. For the test set we used the first 10 shapes from the class michael.

The kernelized LMNN algorithm was fed with these samples and the corresponding
ground-truth labels; the parameters in Eq. (4) were set to c = 0.5 (margin violation trade-off)
and k = 10 (nearest intra-class neighbours). We used the kernels κL and κH. In all the
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Figure 5: Descriptor comparison CMC
curves of different descriptors on the
TOSCA dataset; the method proposed in this
paper with kernel κL is plotted as a blue
curve.
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Figure 6: Parameter sensitivity analysis Left: Precision of the learned descriptor on the test set
michael with kernel κL, fixed c= 0.5 depending on different values for learning parameter k. Precision
directly increases with higher values of k. Right: Same experimental setup as on the left, with fixed
k = 7 and different values of c. The plot shows the hitrate when looking at the 2% best matches. The
difference in precision among different values of c is only visible in this close-up.

experiments we compare with the method from [7] using the downloadable software made
available by the authors. For this method we used the same training set described above,
with a cubic spline basis and a descriptor size of 64. In Fig. 5 we report the quantitative per-
formance of the standard WKS, as well as the descriptors learned using the approach of [7]
and our approach. Following the experimental setup of [7], we plot for each method the cor-
responding cumulative match characteristic curve (CMC). This curve evaluates the relative
frequency of finding the correct match within the first k best matches (expressed in percent-
age and called hitrate in the plot) with respect to the appropriate metric. Note that, in this
experiment, only the exact matches (according to the ground-truth) are considered correct;
this is different from the evaluation appearing in [7], where a candidate match is deemed
as ”positive” if the distance of the matching descriptors is below a fixed threshold. From
the plots we can observe that, while both methods give excellent performance, our learned
descriptor with kernel κL has almost a 10% improvement over the cubic spline approach. In
Fig. 4 we show qualitative examples of the similarity maps produced by each method.

In the second type of experiments we evaluate the influence of learning parameters c
and k on the descriptor accuracy. We set up the training set as described before and only
used kernel κL. In the first round of experiments we keep c = 0.5 and train the descriptor
with different values k ∈ {1, . . . ,10}. The quantitative evaluation on class michael, this time
evaluated on all points of the shapes, is plotted on the left of Fig. 6. The plot shows how the
accuracy of the descriptor increases consistently with higher values of k. Next, we repeat
the experiment with fixed k = 7 and linearly increasing values of c (Fig. 6, right). We can
observe in these plots that the proposed method is largely insensitive to the specific choice
of this parameter, whereas larger values for k directly increase the descriptor’s accuracy.
This observation suggests that we can even eliminate parameter k completely by choosing k
always large enough, sucht that p∼ q⇔ p∼k q for all p,q ∈ P.
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7 Conclusions
We presented a learning-based framework for the construction of optimal intrinsic descrip-
tors on deformable shapes. The proposed approach is based on the intuition that typical
feature descriptors carry larger discriminativity along certain dimensions, rather than across
the whole space. In order to elicit this discriminative power, we formulated the problem
as one of metric learning in an infinite-dimensional descriptor space. The resulting opti-
mization problem is solved optimally via a kernelized large-margin method. The learned
descriptors generalize previous proposals, and are optimal in the sense that one cannot find
a parameterisation of the baseline descriptors that perform better on the given training set.
Our descriptors compare favourably with respect to the state of the art on a standard dataset.
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