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Abstract: Even though end-to-end supervised learning has shown promising re-
sults for sensorimotor control of self-driving cars, its performance is greatly af-
fected by the weather conditions under which it was trained, showing poor gen-
eralization to unseen conditions. In this paper, we show how knowledge can be
transferred using semantic maps to new weather conditions without the need to
obtain new ground truth data. To this end, we propose to divide the task of vehicle
control into two independent modules: a control module which is only trained on
one weather condition for which labeled steering data is available, and a percep-
tion module which is used as an interface between new weather conditions and
the fixed control module. To generate the semantic data needed to train the per-
ception module, we propose to use a generative adversarial network (GAN)-based
model to retrieve the semantic information for the new conditions in an unsu-
pervised manner. We introduce a master-servant architecture, where the master
model (semantic labels available) trains the servant model (semantic labels not
available). We show that our proposed method trained with ground truth data for
a single weather condition is capable of achieving similar results on the task of
steering angle prediction as an end-to-end model trained with ground truth data of
15 different weather conditions.

Keywords: Imitation learning, transfer learning, modular vehicle control

1 Introduction

One major goal of robotics and artificial intelligence research is to develop self-driving cars which
can accurately perceive the environment and interact with the world. To develop an approach for
addressing these problems, we have to deal with enormous challenges in perception, control, and
localization. In general, the task of building an autonomous driving system can be divided into two
parts: 1) path planning, and 2) vehicle control. Path planning provides a global solution for reaching
a destination from a given starting position. It uses various information from different sensors such
as GPS, IMU, and traffic conditions to infer the most optimized path. Meanwhile, vehicle control
is meant to provide a local solution for predicting the immediate steering commands at the current
instance in time. It utilizes information from sensors such as RGB cameras, lidar or radar. These
sensors allow the self-driving car to sense and understand its current surroundings, such as the status
of traffic lights or the presence of a pedestrian or another vehicle in front of the car.

In this paper, we focus our attention only on vehicle control to explain how transfer learning can
be utilized to improve the robustness and stability of predicting steering commands even for unseen
weather conditions for which no supervised data is available. For this, the task of vehicle control
is segregated into perception and control. Figure 1 represents two modules, with each performing
one of these tasks. The purpose of the perception module is to pre-process the raw input sensor data
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and extract useful features. In our approach, we use images captured by an RGB camera to extract
semantic features of the scene. These extracted features are then fed to the control module which
aims to produce the correct steering command for that particular sensor input.
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Figure 1: The perception module is trained as an encoder-decoder architecture, without any skip
connections. The encoder sub-module first embeds the raw image into a lower dimensional latent
vector. The decoder sub-module reconstructs the semantic scene from this latent vector. If the low
dimensional latent vector contains all the necessary information to reconstruct the semantic scene to
a reasonable degree of accuracy, then we directly feed it as an input to the control module instead of
the semantic labels.

Modular pipeline vs end-to-end learning. In an end-to-end training approach, both the perception
and the control module would be trained together [1]. We propose to split the task into separate
perception and control, so that each module is trained and optimized independently without affect-
ing each other. The main advantage of the separate modules is that without retraining the control
module, we can simply replace the perception module to work on different environmental condi-
tions, whereas in an end-to-end learning system, supervised labels for the new domain would first
be needed to be collected and then the control module would also need to be retrained on this addi-
tional data.

Our main contributions are the following:

• Ability to control the vehicle in unseen weather conditions without having the need to col-
lect additional data for the steering commands and without requiring to retrain the control
module. This is done by simply replacing the perception module additionally trained on
the semantics of the new condition.

• We show how knowledge can be transferred from a weather condition for which semantic
labels are available to other weather conditions for which no labels exist in an unsupervised
manner using GANs.

2 Related Work

Supervised learning for self-driving cars. The use of supervised learning methods to train driving
policies for self-driving cars is a well-known and common approach. The first step towards using
neural networks for the task of road following dates back to ALVINN [2]. This approach uses a very
simple shallow network which maps images and a laser range finder as input and produces action
predictions. Recently, NVIDIA [3] proposed to use deep convolutional neural networks trained end-
to-end for a simple lane following task. This approach was successful in relatively simple real-world
scenarios. One major drawback of end-to-end imitation learning is that it cannot generalize well
across different domains for which no labeled training data is available. However, most end-to-end
learning approaches [4, 5, 6] suffer from this problem.

Transfer learning. Generative adversarial networks provide a framework to tackle this general-
ization gap [7] by image generation techniques which can be used for domain adaptation. The
authors of [8] proposed a network that can convert non-realistic virtual images into realistic ones
with similar scene structure. Similarly, Hoffman et al. [9] proposed a novel discriminatively-trained
adversarial model which can be used for domain adaptation in unseen environments. They show new
state-of-the-art results across multiple adaptation tasks, including digit classification and semantic
segmentation of road scenes.
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Semantic segmentation. Visual understanding of complex environments is an enabling factor for
self-driving cars. The authors of [10] provide a large-scale dataset with semantic abstractions of real-
world urban scenes focusing on autonomous driving. By using semantic segmentation, it is possible
to decompose the scene into pixel-wise labels we are particularly interested in. This especially helps
self-driving cars to discover driveable areas of the scene. It is therefore possible to segment a scene
into different classes (e. g. road and not road) [11].

Modular pipeline vs end-to-end learning. The authors of [12] trained both an end-to-end and a
modular based model on one set of weather conditions and tested the model on a different set of
weather conditions. Based on their experiments they concluded that the modular approach is more
vulnerable to failures under complex weather conditions than the end-to-end approach.

Our method also uses a modular approach, but additionally introduces an image translation tech-
nique to overcome the generalization gap between the unseen weather conditions. This is done by
only retraining the perception module without having to retrain the control module for each and ev-
ery domain (i. e. weather condition). A useful consequence of this is that we do not have to recollect
additional labeled data for the new conditions.

3 Imitation Learning on the Latent Semantic Vector

Perception module. In this work, we use images captured by an RGB camera placed at the front
of the car as inputs to the perception module. The perception module processes these images and
produces an output map containing the semantics of the scene, which in turn can be used as an
input to the control module. The CARLA [12] simulator yields semantic labels for 13 classes. The
advantage of using semantic labels instead of raw RGB data is described below:

• Figure 2 shows how two weather conditions have different RGB inputs but the same se-
mantic pixel labels. Hence, the control module does not separately need to learn to predict
the correct steering commands for each and every weather condition.

• The semantic labels can precisely localize the pixels of important road landmarks such as
traffic lights and signs. The status/information contained on these can then be read off to
take appropriate planning and control decisions.

• A high proportion of the pixels have the same label as its neighbors. This redundancy
can be utilized to reduce the dimensionality of the semantic scene. Hence, the number of
parameters required to train the control module can then also be reduced.

Sunny  
Weather 

Rainy  
Weather 

Semantic  
Labels 

Figure 2: For the perception module we take in raw image data as obtained from the car’s camera and
output the semantic segmentation of the scene. Notice that irrespective of the weather condition the
semantics of the scene remain the same. Since the perception module bears the burden of producing
the correct semantic labels, the control module would be robust to changes in lighting, weather, and
climate conditions.

The perception module, which is used to produce the semantic labels of a scene from the RGB
camera is trained as an encoder-decoder architecture. The network architecture which is being used
is a modified version of the one proposed by Larsen et al. [13]. The structure and the parameters
of the model are shown in the supplementary material. The encoder first encodes the information
contained in the input data to a lower dimensional latent vector. The decoder, then takes this latent
vector and attempts to reconstruct the semantics of the scene. The output of the decoder is of the
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same size as the image but having 13 channels with each representing the probability of occurrence
of one of the semantic labels. The model is trained by minimizing the weighted sum of the categori-
cal cross-entropy of each pixel in the image. The categorical cross-entropy (negative log-likelihood)
between predictions p and targets t is calculated as follows:

Li = −
∑
j

ti,j log(pi,j)wj ,

where i denotes the pixel and j denotes the class. The weight wj of each semantic label is inversely
proportional to its frequency of occurrence in the dataset.

Control module. Note that we do not use skip connections between the encoder and decoder of the
perception module. Therefore, since the lower dimensional latent vector is capable of reconstructing
the semantic labels of the scene, we can directly use this vector as input to the control module instead
of the complete scene. Figure 1 depicts how the latent semantic embedding vector produced by the
encoder of the perception module can be used as an input to the control module.

The control module aims to predict the correct steering angle, from the latent embedding fed as an
input to the model. The data used for training the control module is collected in a supervised manner
by recording images and their corresponding steering angles. The loss function attempts to minimize
the mean squared error (MSE) between the actual steering angle and the one predicted by the model
across all the samples. The architecture of the control model is depicted in the supplementary
material.

4 Master-Servant Architecture for Transfer Learning

The control module does not perform well if tested in an environment which is completely differ-
ent from the one on which the perception module was trained on. A naive and yet computational
demanding solution could be to retrain the perception module under every other weather condition.
However, this is not a viable solution for the following reasons:

• We would need semantic labels for every other weather condition. Obtaining semantic
labels of a scene is a painstakingly slow process and prone to errors, since it requires human
effort.

• Even if we have access to the semantic labels and retrain the perception module under the
new environmental conditions, we would still have to also retrain the control module. This
is due to the fact that the semantic latent vector produced by the new perception module
might be different from the one produced by the old perception module, despite the same
semantics of the scene. Figure 3 describes how for the same image, two independently
trained segmentation models could yield different semantic vectors, despite being trained
on the same data.

Proposed master-servant architecture. Suppose that the perception module P0 and the control
module C0 are trained under a certain environmental condition. When tested on a very different
weather condition P0 may fail to produce the relevant semantic latent vector for the control module
C0 to take the correct steering decision. We would therefore like to replace P0 with a different per-
ception module P1 such that it produces the correct latent vector to allow the same control module
C0 to execute the appropriate steering command even on this very different condition. For this, we
propose a master-servant architecture model for training the perception module functioning on im-
ages from a domain for which no semantic labels are available. Figure 4 demonstrates the necessary
steps of the master-servant architecture.

Suppose we have images (from domain X) and their corresponding semantic labels. With this, we
can train a segmentation model using the encoder-decoder architecture described previously. We
refer to the trained encoder of this model as the master perception module P0. We would also like
to obtain the correct semantic embedding of images (from domain Y ) for new conditions for which
no semantic labels are available. We refer to the perception module for which we would like to
furnish the correct semantic embedding for images in domain Y as the servant perception module
P1. We use the master module, P0, to train the servant module, P1, in the steps described as follows:
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Image X0 S11 S22 S12 

E1, D1 E2, D2 E1, D2 

Figure 3: This figure shows the segmentation reconstructions S11 and S22 when image X0 is passed
through two segmentation models M1 (with Encoder E1, Decoder D1) and M2 (with Encoder E2,
Decoder D2). Both models are trained independently on the same data. Note that the reconstructions
reflect the true semantics of the scene reasonably well. S12 shows the reconstruction when the
embedding from encoder E1 is fed to through decoder of D2. The ambiguity in S12 implies that for
the same image the two models yield different semantic vectors.

1. An image X0 is arbitrarily selected from domain X . X0 is fed to through P0 to obtain the
semantic embedding of the scene denoted by z0. Meanwhile, the generator G translates the
image X0 to generate an image Y0 from domain Y , such that the semantics of the scene are
preserved. If semantics are being preserved, then z0 should be equal to z1 (the semantic
embedding obtained by feeding Y0 through P1).

2. Y0 is fed through P1 to get the predicted latent embedding z1.

3. The mean squared error (MSE) between z0 and z1 is used as the loss function to update the
weights of P1 in order to minimize the difference between the two latent embeddings.

Some examples of the images produced by the generator G, segmentation reconstruction when z0
(semantic embedding of the master) and z1 (semantic embedding of the servant) is fed through the
decoder of the master perception module P0 are shown in the supplementary material.

Unsupervised transfer of semantics. We observe that with this master-servant architecture we
are able to train the servant perception module for obtaining the correct semantic embeddings for
images from domain Y for which semantic labels were never available. We can thus replace P0 with
P1 which would also work on these unseen weather conditions without having to retrain the control
module. Moreover, no additional human effort is required for the labeling of semantics.

The most critical component which made the functioning of this approach possible is the generator
G, which is able to translate images between two different domains, while preserving the semantics.
The generator G is pre-trained using the CycleGAN [14] approach. Unlike other image-to-image
translation methods such as pix2pix [15], an important feature of CycleGANs is the fact that this ap-
proach does not require paired data between two domains. Therefore, the task of collecting (if even
possible) images with a one-to-one correspondence between two domains can be eliminated. The
procedure for training the generator G using the CycleGAN approach is shown in the supplemen-
tary. The architecture used was taken from [14]. The supplementary material shows some examples
of paired and unpaired data from two different domains produced by the CARLA simulator.

5 Experimental Results

Experimental setup. For evaluating our method, we used the CARLA simulator. The CARLA
simulator provides 15 different weather conditions (labeled from 0 to 14). We focus our attention
on the car turning around corner scenarios since it is a more complicated maneuver to perform than
lane following and it would thus give a better understanding of possible failure conditions. We train
5 different models to predict the steering angle whilst assuming that the car throttle is fixed. For a
fair comparison, the approach is evaluated on multiple different turns and we do not consider the
presence of pedestrians and cars in the ego vehicle’s driving lane. The starting position of the agent
is just before the curve and the duration of the turn is fixed to 120 frames since it covers the entire
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Figure 4: We propose a master-servant architecture to train a servant perception module P1 for
images which do not have semantic labels in an unsupervised manner. Images in domain X have
semantic labels and are used to train the perception module P0, which we refer to as the master
perception module. P0 is pre-trained using the complete encoder-decoder architecture. Images in
domain Y do not have semantic labels. The process works as follows. Step 1: The generator G is
used to convert an image X0 from domain X to an image Y0 in domain Y such that the semantic
information is preserved. Meanwhile X0 is also fed to the master perception module P0 to get the
latent embedding z0. Step 2: The image Y0 is fed to the servant perception module P1 to get the
predicted latent embedding z1. Step 3: Since the semantic labels of X0 and Y0 are the same, their
latent embeddings should also be the same. We use the mean squared error (MSE) to minimize this
difference, wherein the embedding z0 is used as the true label for training P1. Update Weights:
We back-propagate the MSE loss to update the weights of only P1 so that its embedding matches
with that of P0. The green arrows indicate forward propagation and the red arrow shows back-
propagation.

turning maneuver. The turn is considered successful if the car did not crash whilst executing the
turn. Furthermore, in order to make a quantitative evaluation of the performance of each of the 5
models, new test data containing the images and the corresponding true steering commands for each
of the 15 weather conditions was collected. Figure 5 shows a plot of the mean squared error (MSE)
between the actual and the predicted steering commands by the 5 different models across all the
weather conditions on samples of the test data. Meanwhile, Table 1 enumerates the percentage of
turns each of the 5 models are successfully able to execute across all the 15 weather conditions.

The supplementary material contains the description and some samples of the 15 weather conditions
along with video samples demonstrating the performance of the models on certain weather condi-
tions. The dataset can be downloaded at: https://git.io/fApfH. The details of the 5 models are
given below:

End-to-end, all weathers. An end-to-end model is trained on all weather conditions. Here we
have assumed that we have access to the steering commands across all the conditions. As can be
seen from Figure 5, this model gives the lowest error particularly for weathers 1 to 14. Moreover, we
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Figure 5: Plot of the mean squared error (MSE) between the actual and the predicted steering com-
mands by 5 different models across the weather conditions 0 to 14. The blue line is the error plot
for a model trained end-to-end, from images and corresponding steering commands for all the 15
weather conditions. The cyan error curve corresponds to the end-to-end model trained on images
and steering commands for weathers 5-9. The red line is for the model trained end-to-end from
images and corresponding steering commands for only the default weather condition 0. The black
line represents the model referred to as the master whose perception and control modules are trained
separately. The perception module is trained using the actual semantic labels available for the de-
fault weather condition, whereas the control model is trained from the actual steering commands of
the same condition. The green curve is the model whose control model is the same as the one for the
master, but the perception module is trained as a servant from the master perception module from
images generated by the CycleGANs for weather conditions 2, 3, 4, 6, 8, 9, 10, 11, 12, and 13, in
addition to the default condition 0.

observe in Table 1 that this model is able to successfully execute a high proportion of the turns across
all the weather conditions, since it was trained on all of them. All subsequent models are trained
with the steering commands available for a subset of the weather conditions and their performance
is compared with this model.

End-to-end, weather 5-9. This model is trained end-to-end on weathers 5, 6, 7, 8, and 9 which were
arbitrarily selected just to see how it would perform on unseen weather conditions. As shown in
Figure 5 it has a relatively low error on these conditions and a higher error elsewhere. Furthermore,
the plot shows that this end-to-end approach only seems to work well on the trained conditions
for which we have labeled data. Moreover, as can be seen in Table 1, the model is capable of
maneuvering well on the trained weather conditions and on those which are similar or have good
visibility. However, on weather conditions 11-14 the model fails to execute the majority of the turns.
This is mainly due to the fact that these weather conditions (11-14) are relatively disparate in terms
of appearance and visibility as compared to the trained ones (5-9).

In practice, we do not have the steering commands available for all the possible or even a diverse
subset of the weather conditions. Rather, the labeled data would correspond to only the condition of
the day/period on which it was collected. Therefore, the 3 successive models that we now consider
assume that the steering commands and the corresponding images/semantics are only available for
the default weather condition (labeled as 0). From this, we evaluate how end-to-end training would
compare to the proposed modular approach across all the remaining weather conditions for which
no labeled data is available.
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End-to-end, weather 0. This model is trained end-to-end from images and steering commands for
the default weather condition. Figure 5, shows that this model outperforms all the other models only
on weather condition 0 on which it was trained. For all other conditions, it gives high errors.

Modular master. This model is trained on the default weather condition (0) but the task is divided
into 2 separate perception and control modules. The perception module P0 is trained on the seman-
tic labels. We refer to this perception module as the master, since it will later be used to train the
servant module for retrieving the semantic information of the unseen weather conditions. The con-
trol module is in turn trained with imitation learning to predict the steering angle of the car from the
latent embedding generated by the encoder of P0. The forth row of Table 1 depicts the percentage of
turns the model was successfully able to maneuver for each of the 15 conditions. As observed in the
table, the model is successful only on the default weather conditions (on which it was trained) and
the sunny weather condition (which closely resembles the default condition). Similar to the previous
model (trained end-to-end on the default condition), this model also fails on a large proportion when
tested on weather conditions that are far off from the default condition in terms of visual appearance.
From this, there seems to be no apparent advantage of using a modular approach over the end-to-
end training when we have access to the labels for only one weather condition. Nevertheless, the
master perception module P0 obtained through this method will serve as a baseline for training a
servant perception module that additionally works for unseen weather conditions. This approach is
described in the following.

Our approach (Modular servant). We train one servant perception module to cater for weather
conditions on which P0 failed to perform. We selected a subset of weather conditions (i. e. 2, 3, 4,
6, 8, 9, 10, 11, 12, and 13) to train the servant module. Using CycleGANs, separate generators were
trained between each of these conditions and the default weather condition. The images produced
by the CycleGAN generators for each of these conditions were fed as an input in equal proportion
along with the default images to train only a single servant perception module P1. Despite having
no access to the steering commands and the semantic labels for weather conditions 1 to 14, Figure 5
shows that the error for this model across these 14 weather conditions is significantly lower than the
previous 2 models which were also trained only from labels of weather condition 0. Moreover, we
see from the last row of Table 1, that this model is successfully able to execute a good proportion
of the turns for most of the weather conditions. Only on condition 13 (HardRainSunset), the model
fails to perform well. The visibility under this condition is low and the images generated by the
CycleGAN do not seem to preserve the semantics, hence resulting in the model to perform relatively
poorly. Nevertheless, on all the other remaining weather conditions its performance is comparable
to the first end-to-end model trained on steering labels for all the weather conditions.

Table 1: The table reports the percentage of successfully completed turns by the 5 models for each
weather condition. Higher is better.

Weather condition
Model 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 average

End-to-end, all weathers 100 100 88 88 100 100 100 100 100 100 100 88 88 88 100 96
End-to-end, weather 5-9 88 88 100 88 100 100 100 100 100 100 100 50 50 25 88 85
End-to-end, weather 0 100 63 38 38 13 13 0 0 0 50 13 0 0 0 0 22
Modular master 100 100 88 50 50 63 50 50 50 63 75 50 0 0 50 56
Our approach (Modular servant) 100 100 100 100 88 100 100 100 100 100 100 88 100 63 100 96

6 Conclusion

In this paper, we have shown that in order to generalize vehicle control across unseen weather condi-
tions it is worthwhile to divide the task into separate perception and control modules. This separation
eliminates the tedious task of recollecting labeled steering command data for each and every new
environment the vehicle might come across. Moreover, retraining of the control module for new en-
vironments can be avoided by a simple replacement of the perception module. The initial perception
module was trained from the semantic labels available only for one of the weather conditions. For
environments for which semantic labels are missing, the proposed master-servant architecture can
be deployed for transferring semantic knowledge from one domain to another (i. e. between different
weather conditions) in an unsupervised manner using CycleGANs which do not require paired data.
We believe that the presented approach to making driving policies more robust by training under
different weather conditions will prove useful in future research.
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Supplementary Material

Table S.1: Encoder-decoder architecture used to train the segmentation perception module for the
master and all servant models. The convolution layers numbered 15 and 16 have a kernel size of 4,
stride of 1 and no padding. All other convolution layers have kernel size 4, stride of 2 and padding
of 1. All the Leaky ReLU activation functions have a negative slope of 0.2. The output of the model
has 13 channels with each corresponding to one of the semantic labels. The output of the last layer
of the encoder (Layer 15) is fed to the control module to predict the correct steering direction. The
same layer is also used to train the encoders of all servant modules. The code and model of the
architecture is a modified version of https://github.com/seangal/dcgan_vae_pytorch.

ENCODER DECODER

Layer Number Layer Type Layer Input Layer Output Layer Number Layer Type Layer Input Layer Output
1 Convolution 3× 128× 128 32× 64× 64 16 Convolution (Transpose) 64× 1× 1 512× 4× 4
2 Leaky ReLU activation 32× 64× 64 32× 64× 64 17 Batch normalization 512× 4× 4 512× 4× 4
3 Convolution 32× 64× 64 64× 32× 32 18 Leaky ReLU activation 512× 4× 4 512× 4× 4
4 Batch normalization 64× 32× 32 64× 32× 32 19 Convolution (Transpose) 512× 4× 4 256× 8× 8
5 Leaky ReLU activation 64× 32× 32 64× 32× 32 20 Batch normalization 256× 8× 8 256× 8× 8
6 Convolution 64× 32× 32 128× 16× 16 21 Leaky ReLU activation 256× 8× 8 256× 8× 8
7 Batch normalization 128× 16× 16 128× 16× 16 22 Convolution (Transpose) 256× 8× 8 128× 16× 16
8 Leaky ReLU activation 128× 16× 16 128× 16× 16 23 Batch normalization 128× 16× 16 128× 16× 16
9 Convolution 128× 16× 16 256× 8× 8 24 Leaky ReLU activation 128× 16× 16 128× 16× 16

10 Batch normalization 256× 8× 8 256× 8× 8 25 Convolution (Transpose) 128× 16× 16 64× 32× 32
11 Leaky ReLU activation 256× 8× 8 256× 8× 8 26 Batch normalization 64× 32× 32 64× 32× 32
12 Convolution 256× 8× 8 512× 4× 4 27 Leaky ReLU activation 64× 32× 32 64× 32× 32
13 Batch normalization 512× 4× 4 512× 4× 4 28 Convolution (Transpose) 64× 32× 32 32× 64× 64
14 Leaky ReLU activation 512× 4× 4 512× 4× 4 29 Batch normalization 32× 64× 64 32× 64× 64
15 Convolution 512× 4× 4 64× 1× 1 30 Leaky ReLU activation 32× 64× 64 32× 64× 64

31 Convolution (Transpose) 32× 64× 64 13× 128× 128
32 Sigmoid activation 13× 128× 128 13× 128× 128

Table S.2: Architecture of the control model. Note that the input to the control module is a vector of
size 64, corresponding to the size of the latent embedding produced by the encoder of the perception
module.

Layer Number Layer Type Layer Input Layer Output
1 Fully connected 64 100
2 ReLU activation 100 100
3 Fully connected 100 50
4 ReLU activation 50 50
5 Fully connected 50 25
6 ReLU activation 25 25
7 Fully connected 25 15
8 ReLU activation 15 15
9 Fully connected 15 8
10 ReLU activation 8 8
11 Fully connected 8 1
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PERCEPTION 
MODULE 

(P0) 

CONTROL  
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(C0) 
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CONTROL  
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Figure S.1: To obtain a good segmentation based perception module, semantic labels for a diverse
range of environmental conditions are required. This may not always be the case since semantic
labeling is a tedious and error-prone process. Hence, we may have only access to a limited subset
of the labeled data. Top: This figure shows a perception module P0 trained only on sunny weather
conditions. Hence, when a similar data is fed to P0 at test time the control model C0 performs as
per expectation. Center: This figure demonstrates that if data from a different weather condition
is fed to P0, the control module C0 may not necessarily perform as desired. Bottom: This figure
shows that we would like to replace P0 with P1, such that P1 is capable of handling this unseen
environment in a manner to retain the same semantic embedding. Hence, we can use the same
control module C0 with P1.
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https://www.youtube.com/playlist?list=PLbT2smuiIncsR_s9YA6KFpsa8gMwus5u7


Figure S.2: This figure is with reference to the master-servant architecture. 1st column: The first
column shows five sample images from domain X . 2nd column: The second column shows corre-
sponding images from domain Y , produced by the generator G, maintaining the semantics of the
scene. 3rd column: The segmentation reconstruction produced by feeding z1 through the the mas-
ter decoder. z1 in turn is generated by feeding the images in the 2nd column through the servant
perception module P1. 4th column: Segmentation reconstruction produced by feeding z0 through
the master decoder. z0 is generated by feeding the images in the 1st column through the master
perception module P0. Note that the semantic reconstructions in the 3rd column and 4th column are
almost indistinguishable.
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ONE TO ONE
CORRESPONDENCE

 

DOMAIN X DOMAIN Y

PAIRED DATA

DOMAIN X DOMAIN Y

UNPAIRED DATA

NO 
CORRESPONDENCE

Figure S.3: Examples of paired and unpaired dataset. Note that it is practically not possible to
obtain an exact one-to-one correspondence between two differing road conditions. Hence, we use
CycleGANs for image-to-image translation between unpaired images. The domains correspond to
weather conditions of a sunny day and a rainy afternoon, respectively.

14



Generator, G 
  X        Y  

Generator, F 
Y         X 

DISCRIMINATOR 
DX 

DISCRIMINATOR 
DY 

RECONSTRUCTION 
LOSS 
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Generator, F 
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RECONSTRUCTION 
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Reconstructed Image,
 X0*

Reconstructed Image,
 Y0*Generated Image, X0*

Image Y0,
∈ Domain Y 

Figure S.4: The critical component in the master-servant architecture in achieving unsupervised
training of the servant perception module is the generator G, which transformed images from domain
X to domain Y , while maintaining the semantics of the scene. The generator G is trained using
CycleGANs. Unpaired images from domain X and Y produced by CARLA are used for training of
the model. The top figure shows an arbitrary image X0 from domain X and is passed through the
generator G, which generates an image Y ∗

0 . The generated image Y ∗
0 is then fed to another generator

F , which generates an image X∗
0 . The network is optimized by minimizing the L1 loss between the

real image X0 and the generated image X∗
0 . To make the images appear realistic, each domain has

its own discriminator network i. e. Dx and Dy . The bottom figure is analogous to the top one except
that here, we fed a realistic image from domain Y and try to minimize the L1 loss between Y0 and
Y ∗
0 .
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WEATHER 
CONDITION

SAMPLES

0: DEFAULT 

1: CLEAR NOON 

2: CLOUDY NOON 

3: WET NOON 

4: WET CLOUDY NOON 

5: MID RAINY NOON  

6: HARD RAIN NOON 

7: SOFT RAIN NOON 

8: CLEAR SUNSET 

9: CLOUDY SUNSET 

10: WET SUNSET 

11: WET CLOUDY SUNSET 

12: MID RAIN SUNSET 

13: HARD RAIN SUNSET 

14: SOFT RAIN SUNSET 

Figure S.5: Some sample images of the 15 different weather conditions along with their description
generated by the CARLA simulator. Note that some of the weather conditions are very similar
and therefore, a perception module trained for one of the conditions may also work for a similar
condition also.
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8: CLEAR SUNSET

9: CLOUDY SUNSET
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BETWEEN SAMPLES
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Figure S.6: The figure shows 6 sample images generated from the original default condition for
weather conditions 2, 3, 4, 6, 8, 9, 10, 11, 12, and 13 using the CycleGAN approach. The CyleGAN
was trained with 3500 images from the default and each of the other weather conditions. Most of
the generated images resemble the actual to a reasonable degree. For weather conditions with low
visibility, i. e. 12 and 13 some of the generated images (for e. g. sample 3, 5, and 6) give a poor
reconstruction.
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