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Abstract

Variational techniques yield the most accurate results for dense optical flow fields between two images.
They have the nice property of inherent smoothness to cope with untextured image regions: the filling-in of
such regions is driven by neighbouring pixels. Such filling-in is not always the best choice. If the scene is
mostly stationary and the camera is moving, the direction of the optical flow vectors can be restricted using
the fundamental matrix. In this paper we propose an exact solution of the variational optical flow, using
the fundamental matrix geometry as an additional weak prior. Our novel approach currently performs
best on the Middlebury flow evaluation which includes images from stationary and dynamic scenes.

Keywords: Optical flow, fundamental matrix, structure from motion, optimization, total variation

1 Introduction

Understanding the dynamic movement of a scene is
a key component of environment perception. The
process of understanding dynamic movements in-
cludes the visual perception of motion and the abil-
ity to reconstruct the three dimensional scene in a
human brain (visual kinesthesia). The perception
of motion hence is a preliminary step to reconstruct
dynamic scenes. In machine vision, the motion
(here: displacement) of pixels between two succes-
sive images of a sequence is called optical flow.

In the literature local and global approaches are
known to estimate the optical flow field. Local
feature based approaches analyze a local neighbor-
hood of a pixel and try to find the same pixel neigh-
borhood in a successive frame. This is done differ-
entially (e.g. [1]) or directly by comparing pixel
descriptors (e.g. [2]). Feature based approaches
have the ability to match large flow vectors, with
the drawback of noisy results, especially if the local
neighborhood of a pixel is not distinct (low tex-
ture). The over-all accuracy is hence worse than
the accuracy of global approaches, especially if dis-
placement vectors are small and the flow field is
smooth. Global approaches, such as variational
optical flow [3, 4, 5] overcome the problem of low
texture by introducing a smoothness term, favour-
ing (piecewise) smooth flow fields. However, such
smoothing leads to filling-in effects in untextured
regions and is not always the best choice.
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If prior knowledge, such as the movement of the
camera, is known it is favourable to include this
knowledge in the estimation process of the optical
flow. In robotics such a procedure is well-known in
structure from motion based approaches, where the
knowledge of the fundamental matrix is explicitly
used for feature tracking and detection of moving
objects [6, 7]. Variational optical flow techniques
with prior knowledge of the fundamental matrix
geometry were presented using hard constraints
[8] and soft constraints [9], the latter estimating
simultaneously the optical flow and the fundamen-
tal matrix. The algebraic distance to the epipolar
rays was used in both approaches. In this paper we
propose a soft constraint using the geometric dis-
tance to the fundamental lines, yielding less errors
in dynamic scenes.

Our novel approach uses a dual formulation of the
total variation optical flow, introduced by [5]. To-
tal variation has the property of piecewise smooth-
ness of the flow field. We include the fundamen-
tal matrix prior as an additional data term and
present an efficient thresholding scheme for min-
imizing the data deviation terms. This replaces
the commonly used lagged diffusivity approach for
multiple data terms. The presented algorithm out-
performs all known gray value based optical flow
algorithms in all categories on the Middlebury eval-
uation data set [10] at the time of submission. Our
fundamental prior implementation (based on gray
values) also performs best on average when com-
pared to all approaches, including those using color.



2 Background

2.1 Variational Optical Flow

Optical flow in a variational framework was first
proposed by Horn and Schunck in [3]. Since then,
many improvements have been made to incorpo-
rate robust illumination (gray value constancy) terms
and robust smoothness terms. In this context,
robustness denotes a linear instead of a quadratic
penalty for both the smoothness and data terms.
A nice summary is given in [4].

Variational methods are known to be computation-
ally very complex and real-time performance was
first achieved in [11] for small image sizes. Lately
[5] presented a real-time total variation optical flow
approach using the GPU. The main contribution of
[5] is the reformulation of the original variational
energy functional into a convex dual form, allowing
splitting between the data term and the smooth-
ness term in an iterative solving process.

We take this convex dual formulation of the vari-
ational energy functional for optical flow and add
a second penalty term. With the primal and dual
optical flow vectors u(x) = (u1(x), u2(x))> and
v(x) = (v1(x), v2(x))>, for a pixel x in the image
region Ω, the variational energy to be minimized
reads Eθ(u,v) =∫

Ω

|∇u1|+|∇u2|+
‖u− v‖2

2θ
+

2∑
i=1

λi|pi(v)|dx. (1)

The (small) constant θ penalizes deviations be-
tween primal and dual flow vectors and the λi

weight the influence of the penalty terms p1 and
p2, respectively. In the above energy functional, p1

and p2 encode the common gray value constancy
term (see for example [5, 4])

p1(v) = I(t)− I(t− 1) + v>∇I(t) (2)

and the fundamental matrix deviation term

p2(v) = γ(x̃ + ṽ)>F x̃ = γx̃>F x̃ + γṽ>F x̃ . (3)

In the fundamental matrix deviation term, tilted
variables are homogeneous extensions of the vari-
able, i.e. x̃> = [x>, 1] and ṽ> = [v>, 0]. F repre-
sents the 3×3 fundamental matrix. The factor γ is
used to approximate the geometric distance to the
epipolar rays computed from F (using the Samp-
son error, a first order approximation). According
to [12] it is computed as

γ−1 =
√

(x̃>v F )21 + (x̃>v F )22 + (F x̃)21 + (F x̃)22 (4)

where sub-indexes indicate first and second entries
of the vectors respectively and x̃v = x̃ + ṽ. The
factor γ is calculated using flow vectors of the last
iteration (hence we use lagged feedback for com-
puting the scale factor γ).

2.2 Minimizing the Energy

For fixed θ and λi, the energy (Equation (1)) is
minimized by alternating the two steps of updating
u and v until convergence.

(1) Smoothness: For every vd being fixed, solve

min
ud

∫
Ω

{
|∇ud|+

1
2θ

(ud − vd)2
}

dx . (5)

This is the image denoising model introduced in
[13]. An efficient algorithm is based on gradient de-
scent and subsequent re-projection using the dual-
ROF model [14]. The solution computes as

ud = vd + θ div p, (6)

where p = [p1, p2] is defined iteratively by

p̃n+1 = p +
τ

θ
(∇ (f + λ div pn)) (7)

pn+1 =
p̃n+1

max {1, |p̃n+1|}
. (8)

(2) Data: In a second step, for u being fixed, solve

min
v

{
1
2θ
‖u− v‖2 + λ1|p1(v)|+ λ2|p2(v)|

}
. (9)

Note, that we have dropped the integral sign. The
solution only depends on the variable v(x) and no
spatial terms contribute. This simplifies the solu-
tion scheme: a local (pixel wise) solution for every
image pixel yields the global optimal minimum for
this second step.

2.3 Quadratic Optimization

Equation (9) is a combination of convex functions,
and hence is convex itself. The minimum is unique,
unless both data terms and the flow vector u are
equal to zero. If (9) would be differentiable, the
minimum could be found by setting its derivative,
with respect to v, equal to zero.

However, the absolute function |pi| is degenerate at
|pi| = 0 and not differentiable. More sophisticated
quadratic optimization techniques have to be used
to find the minimum of (9). In this subsection, we
rewrite the optimization problem with the abso-
lute function into a quadratic optimization prob-
lem with inequality constraints. Also, the basics
for optimization techniques based on quadratic op-
timization are presented. Section 3 then presents
a fast and optimal thresholding scheme for solving
the resulting quadratic optimization problem in
the data terms.

First, we rewrite (9) to get a simpler notation.
Because θ and λi are both positive, we can multiply
(9) with θ and place λi into the data penalty terms
pi yielding



4− x ≤ y

−4 + x ≤ y

Figure 1: Example for finding minx {2 + |4 − x|} (min-

imum x∗ = 4). The | · | function is replaced by a dual

variable y and inequality constraints (equations to right

of graph), yielding minx,y {2 + y}. The new minimum

is (x∗, y∗) = (4, 2). Note that both problems yield the

same minimum for the primal variable x∗.

min
v

{
1
2
‖u− v‖2 + |θλ1p1(v)|+ |θλ2p2(v)|

}
.

A closer look at the penalty functions p1 and p2

reveals that both are linear in v. Therefore, there
exist constants ai and bi, such that:

θλ1p1(v) = a0 + a1v1 + a2v2 = a0 + a>v,

θλ2p2(v) = b0 + b1v1 + b2v2 = b0 + b>v .
(10)

In a next step, the absolute functions are replaced
by a dual variables ya, yb and inequality constraints
(see figure 1 for an example). The remaining min-
imization problem is to find the minimum of

1
2
(u1 − v1)2 + (u2 − v2)2 + ya + yb (11)

with the four inequality constraints

(a) a0 + a>v − ya ≤ 0 ,
(b) −a0 − a>v − ya ≤ 0 ,
(c) b0 + b>v − yb ≤ 0 , and
(d) −b0 − b>v − yb ≤ 0 .

(12)

(11) under the side condition (12) yields the same
minimum as (9). We replaced the absolute func-
tion and have a differentiable objective function.
This however is at the cost of two additional vari-
ables and four inequality constraints. We present
a simple solution by looking at all possible restric-
tions of the pi, namely pi ≤ 0, pi ≥ 0, and pi = 0
in Section 3. The fulfillment of the sufficient and
necessary conditions of a global minimum will be
proved using the above derived dual formulation of
the problem:

For a quadratic minimization problem minx {f(x)},
under linear inequality constraints gi(x) ≤ 0, a
global optimum of a solution x∗ holds true if there
exist constants µi such that the Karush-Kuhn-Tucker
(KKT) conditions [15] are fulfilled:

Stationarity: ∇f(x∗) +
∑

i µi∇gi(x∗) = 0.

Primal feasibility: gi(x∗) ≤ 0.

Dual feasibility: µi ≥ 0.

Complementary slackness: µigi(x) = 0 ∀ i.

2.4 Warping and Fundamental Matrix

We employ a pyramid and warping scheme for the
optical flow, as proposed in [4, 5] to estimate large
flow vectors. In every warping iteration, the func-
tional (1) is minimized iteratively subject to the
variables u and v for a certain number of iterations
(10 iterations in our experiments). Solving for u,
an inner iteration loop is required. In the exper-
iments we set the number of warps per pyramid
level to 15 and the number of inner loops to 1.
For real-time applications these settings should be
reversed.

The fundamental matrix parameters, denoted as
F , are either given to the algorithm or computed
online. For many applications, such as driver assis-
tance, the movement of the camera is either known
or an accurate initial guess is available. In the
Middlebury data set neither the camera motion nor
the camera intrinsic are known and the fundamen-
tal matrix has to be estimated online. We start
with the zero (empty) matrix and solve for the
matrix parameters by minimizing the geometric
distance in each image warp on both uppermost
image pyramid levels (highest resolution). We use
an iteratively re-weighted least squares method, as
proposed in [12].

3 Data Term Thresholding

In this section we propose and verify an efficient
solution scheme to minimize the objective function
(9) or, equivalently, its dual quadratic optimization
problem (11) with inequality constraints (12).

Looking at all possible combinations of the data
terms |pi|, namely pi ≤ 0, pi ≥ 0, and pi = 0, di-
rectly yields a thresholding scheme to minimize the
objective function. If both p1 and p2 are strictly
positive or negative (pi 6= 0), the optimal solution
v∗ is found iff the following checks apply:

Assume Thresholding Solution
p1,2(v∗) Checks v∗ =
p1 ≥ 0
p2 ≥ 0

a0 + a>(u− a− b) ≥ 0
b0 + b>(u− a− b) ≥ 0

u− a− b

p1 ≥ 0
p2 ≤ 0

a0 + a>(u− a + b) ≥ 0
b0 + b>(u− a + b) ≤ 0

u− a + b

p1 ≤ 0
p2 ≥ 0

a0 + a>(u + a− b) ≤ 0
b0 + b>(u + a− b) ≥ 0

u + a− b

p1 ≤ 0
p2 ≤ 0

a0 + a>(u + a + b) ≤ 0
b0 + b>(u + a + b) ≤ 0

u + a + b

Table 1: Minimum v∗ if p1(v
∗) 6= 0 and p2(v

∗) 6= 0

Proof: For p1 6= 0 and p2 6= 0 the solution can
be found by setting the derivative of the uncon-
strained objective function equal to zero. We will



prove using the KKT conditions, that this yields
a global minimum iff the above thresholding steps
succeed. Due to construction, exactly two inequal-
ity constraints for the yi are binding (the left side
is 0). We set the µi for these constraints to 1 and
the µi for the other two constraints to 0. This
implies that the point is stationary because the
solution is constructed to yield a derivative of zero.
It directly follows, that complementary slackness
and dual feasibility hold. The thresholding check
ensures primal feasibility of the solution and hence,
iff the thresholding check succeeds, a global mini-
mal solution is found.

3.1 Vanishing data terms

If (at least) one of the data terms is binding, the so-
lution space is restricted to yield either p1(v∗) = 0
or p2(v∗) = 0. In this subsection we derive thresh-
olding checks to verify the necessary and sufficient
conditions of a global minimum for the local so-
lution in these restricted cases. For the following
analysis, we assume that the first data term at the
global minimum vanishes, i.e. p1(v∗) = 0. The case
p2(v∗) is equivalent (simply exchange the two data
terms) and not handled explicitly.

For a vanishing p1, three cases need to be exam-
ined: p2(v∗) < 0, p2(v∗) = 0, and p2(v∗) > 0.
The case p2(v∗) = 0 is left out in the analysis. If
all other cases do not yield a global minimum, it
directly follows that both data terms must vanish;
the unknown parameter vector v can then be cal-
culated from the two data term equations.

For now we stick with p1(v∗) = 0 and assume
either p2(v∗) > 0 or p2(v∗) < 0. The (possible)
global minimum v∗ is computed by setting the
derivative of the objective function (9) equal to
zero using the assumptions made on the pi:

Assume Solution
p1(v∗) = 0 (checks follow)

p2(v∗) ≥ 0 v∗ = u− b− a
a>a

(
a0 + a>u− a>b

)
p2(v∗) ≤ 0 v∗ = u + b− a

a>a

(
a0 + a>u + a>b

)
Table 2: Minimum v∗ if p1(v

∗) = 0 and p2(v
∗) 6= 0.

Again, we have to check the KKT conditions to
verify a global optimum. Due to construction we
have ya = 0, and the first two inequality con-
straints are binding (hence primal feasible). Out
of the remaining two inequality constraints, one is
primal feasible due to construction as p2(v∗) ≤ 0 or
p2(v∗) ≥ 0 directly yields that one inequality con-
straint is binding. The last constraint is checked
by the thresholding step in table 3.

The complementary slackness condition states that
the µi corresponding to the only non-binding in-

First thresholding check if p1(v∗) = 0

for p2(v∗) ≥ 0 check

b0 + b>(u− b− a
a>a

(
a0 + a>u− a>b

)
) ≥ 0,

for p2(v∗) ≤ 0 check

b0 + b>(u + b− a
a>a

(
a0 + a>u + a>b

)
) ≤ 0 .

Table 3: Check for primal feasibility.

equality constraint has to be zero. This leaves us
with three more µi, which have to be positive to
fulfill the dual feasibility condition.

Example: Let us assume, p2(v∗) ≥ 0. It follows
that the inequality constraint (12.c) is binding and
the inequality constraint (12.d) is fulfilled. This
directly implies that µd has to be zero (as stated
above).

Using the KKT stationarity condition, we derive
an equation system to solve for the remaining µi:

a1 −a1 b1

a2 −a2 b2

−1 −1 0
0 0 −1


 µa

µb

µc

 =


u1 − v1

u2 − v2

−1
−1


From this it follows that µc = 1 and the remaining
system of equations yields a unique solution for µa

and µb. This can be seen when plugging back in
the possible solutions for v∗, yielding:

a1(µa − µb) = a1
a>a

(
a0 + a>u− a>b

)
a2(µa − µb) = a2

a>a

(
a0 + a>u− a>b

)
µa + µb = 1

The solution is given by

µa =
1

2a>a

(
a0 + a>u− a>b

)
+

1
2

(13)

µb =
−1

2a>a

(
a0 + a>u− a>b

)
+

1
2

. (14)

The KKT dual feasibility constraint states that
both, µa and µb have to be positive. This can
be checked very efficiently:

Second thresholding check if p1(v∗) = 0

check
∣∣∣∣ 1
a>a

(
a0 + a>u− a>b

)∣∣∣∣ ≤ 1 if p2(v∗) ≥ 0

check
∣∣∣∣ 1
a>a

(
a0 + a>u + a>b

)∣∣∣∣ ≤ 1 if p2(v∗) ≤ 0

Table 4: Check for dual feasibility.

Iff all KKT conditions hold, v∗ yields a global mini-
mum of the objective function. Following the argu-
ments above, the check for p2(v∗) = 0 is straight-
forward. The presented thresholding scheme yields
a very efficient and exact total variation scheme for
the optical flow with two (linear) data terms.



Figure 2: Evaluation results on the Middlebury data set [10]. The method proposed in this paper (F-TL-L1)

outperforms other approaches by more than one rank on average. Results on stationary scenes, such as Grove

and Urban demonstrate accurate flow estimation and recovery of the fundamental matrix (λ1 = 45, λ2 = 0.22).

Figure 3: Optical flow for a scene with a running person and a moving camera, installed in a vehicle. Flow above

15px is color-saturated. The distance to the epipolar rays encodes independently moving objects. Clearly, the

running person becomes visible (λ1,2 as in figure 2).

Figure 4: Optical flow results for the Hydrangea, Rub-

ber Whale, and Urban3 scene of the Middlebury flow

evaluation (color cone shown on the right). Compare

with the quantitative results in table 5.

λ2 = 0 λ2 = 0.22 λ2 = 2.25
Dimetrodon 0.205 0.216 0.356

Grove2 0.154 0.149 0.157
Grove3 0.641 0.626 0.646

Hydrangea 0.158 0.175 0.861
RubberWhale 0.100 0.127 0.371

Urban2 0.346 0.323 0.313
Urban3 0.775 0.725 0.536
Venus 0.262 0.261 0.257

Table 5: Average end point error for the Middlebury

scenes with available ground truth (λ1 = 45). Optical

flow is computed on structure-texture (4 : 1) images

(generated using the ROF model with λ = 10 [16]).

Results are median-filtered to discard outliers.

4 Experiments and Results

We evaluated the optical flow algorithm with the
fundamental prior on the Middlebury database for
optical flow [10]. The evaluation results are shown
in figure 2. Out of 16 statistical measurements we
perform best in 13 categories. A closer look reveals,
that our performance benefits from the fact that 4
out of the 8 test sequences show stationary scenes.
Our method is ranked second-place and third-place
in the two standard deviation categories. This is
mainly due to outliers which are more efficiently
removed using other approaches.

Figure 4 shows three exemplary flow fields for the
Middlebury data set where the ground truth op-
tical flow is known (these are not used for eval-
uation). The first two examples, Hydrangea and
Rubber Whale, show dynamic scenes while the Ur-
ban3 scene is static. Quantitative results are shown
in table 5. While using the fundamental prior
slightly worsens the result in dynamic scene, it
improves the result in static scenes, as one would
expect. However, giving too much influence to the
fundamental prior worsens the results in the Grove
scenes due to the online estimation of the funda-
mental matrix. If the ground truth fundamental
matrix is used, we could not see these effects (al-
though a large λ2 slows down the convergence).

Figure 3 shows a real world scene with a moving
camera. Most of the image, except for the running
person, is static and the expanding flow field should
follow the epipolar rays. The results show that, ex-
cept for the Mercedes star and the running person,
this assumption holds. While it is not scope of this
paper to segment moving objects, the results are
well suited to detect independently moving regions



of the image. There are however more constraints
than only the distance to epipolar rays constraint
to detect moving objects (see [7]).

5 Summary and Future Work

In this paper we presented a novel approach to
exact variational flow with two data terms. For the
first data term we used the commonly known gray
value constancy assumption. We used a fundamen-
tal matrix prior within the second data term. A
direct thresholding scheme was introduced which
enables an efficient and exact minimization of the
data deviation terms.

The optical flow with the fundamental matrix prior
was evaluated on the Middlebury data set for flow
evaluation. If compared to gray value based algo-
rithms, it performs best in all 16 statistical evalua-
tion category. Algorithms based on color informa-
tion perform better in 3 categories, where we are
placed second and third at the time of submission.
We expect some minor performance boost when
integrating color information in our approach.

An interesting research goal is the integration of
local and global features in an optical flow frame-
work. This may imply that the data terms are no
longer convex and the optimization scheme may
need to be altered.

We are currently investigating three-dimensional
scene flow. In the three-dimensional case, priors
are even more important to bound the influence of
outliers. A very interesting challenge is to use the
trifocal tensor within a variational framework for
scene-flow estimation from stereo sequences.
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