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Abstract

The accurate estimation of motion in image sequences is
of central importance to numerous computer vision appli-
cations. Most competitive algorithms compute flow fields
by minimizing an energy made of a data and a regularity
term. To date, the best performing methods rely on rather
simple purely geometric regularizers favoring smooth mo-
tion. In this paper, we revisit regularization and show that
appropriate adaptive regularization substantially improves
the accuracy of estimated motion fields. In particular, we
systematically evaluate regularizers which adaptively favor
rigid body motion (if supported by the image data) and mo-
tion field discontinuities that coincide with discontinuities
of the image structure. The proposed algorithm relies on se-
quential convex optimization, is real-time capable and out-
performs all previously published algorithms by more than
one average rank on the Middlebury optic flow benchmark.

1. Introduction
Estimating correspondences between pairs of points in

either of two images remains one of the fundamental com-
putational challenges in Computer Vision. Different vari-
ants of this problem arise in the estimation of motion in
videos [9], the nonrigid registration of medical structures
observed in different modalities [8], and the tracking of de-
formable objects [5]. Computationally the estimation of
correspondences based on matching points of similar inten-
sity is a classical ill-posed problem in the sense that merely
imposing matching of similar intensities will typically not
give rise to a unique solution.

To make the optic flow estimation well-posed re-
searchers have reverted to regularization. In 1981 Horn
and Schunck proposed what is typically considered the first
variational method in Computer Vision. In order to com-
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pute a dense motion field v : Ω → R2 on the image plane
Ω ⊂ R2 for matching a pair of consecutive images from a
gray value sequence I : Ω × [0, T ] → R, they proposed to
minimize the functional

E(v) =
∫

Ω

(
∇I>v+ It

)2
+λ

(
|∇v1|2+ |∇v2|2

)
d2x . (1)

The data term aims at matching points of similar intensity
by imposing the linearized brightness constancy constraint,
while the regularity term (weighted by λ > 0) imposes
spatial smoothness of the velocity field v = [v1, v2]>.

To date the work of Horn and Schunck has attracted 3900
citations, many of these dealing with applications of mo-
tion estimation in different scenarios, many suggesting al-
ternative cost functionals, and many investigating alterna-
tive minimization strategies. A recently established optic
flow benchmark covering a variety of different motion es-
timation problems allows to assess which variants of func-
tionals and algorithms provide the most accurate motion es-
timates [3]. A glance at the current results indicates that the
currently top performing methods typically minimize func-
tionals of the form

E(v) =
∫

Ω

ρ(v, x) + λψ(v,∇v, . . . ) d2x, (2)

with robust L1-penalized data fidelity term

ρ(v, x) = |I1(x)− I2(x+ v(x))|, (3)

and a discontinuity-preserving L1-smoothness term

ψ(∇v) = |∇v1|+ |∇v2|. (4)

This regularity term is surprisingly simple, favoring
flow fields which are spatially smooth. In contrast to the
original L2-regularity suggested by Horn and Schunck, the
L1-regularity is known to better preserve discontinuities
[4, 7, 11, 14, 13]. In recent years, researchers have
suggested far more sophisticated regularization techniques
based on statistical learning [15]. So far these have not been
able to outperform the more naive approaches. Of course it



is hard to say why this is the case, one reason may be that
the challenge of learning “typical” flow patterns may not
be feasible, given that different image structures, unknown
object deformations, and camera motions may give rise
to a multitude of motion patterns with little resemblance
between motion fields from different videos. Nevertheless,
appropriate regularization is of utmost importance for optic
flow estimation, since it stabilizes the otherwise ill-posed
optical flow problem and induces a filling-in in areas of low
contrast or texture.

In this paper, we revisit regularization of optical flow
fields and suggest adaptive regularization strategies which
are not motivated by the paradigm of learning from exam-
ples but rather by a closer analysis of the inherent structure
of motion in videos:

• Adaptive rigid-body motion regularization A large
number of observed motions correspond to 3D rigid
body motion. This is true for static scenes filmed by
a moving camera. And it is also true for rigid objects
moving in a scene. While such regularizers have re-
cently been suggested in [16, 17], these techniques fail
to improve the overall performance because they de-
grade motion estimates in areas which are not consis-
tent with the rigid body motion. In this paper, we will
therefore introduce adaptive regularization techniques
which favor rigid body motion only if this is supported
by the image data.

• Structure-dependent Regularization In many real-
world image sequences, motion fields and intensity in-
formation are not independent. Commonly discontinu-
ities in the motion fields arise at boundaries of objects
where the brightness function is also likely to change.
Although this is certainly not always true, making mo-
tion regularizers depend on local brightness variations
can energetically favor motion discontinuities to co-
incide with brightness discontinuities and is likely to
improve optic flow estimation. While such adaptive
regularizers have been proposed before [1, 12, 19], the
contribution of this paper is to quantitatively evaluate
the improvement in performance that this adaptation
brings about.

In the following we will introduce a novel optical flow
functional which combines a robust data term with two reg-
ularity terms adaptively favoring rigid body motion and
structure-dependent smoothness. Subsequently we will
show how the proposed functional can be efficiently mini-
mized by sequential convex optimization. In subsequent ex-
periments we carefully assess the contribution of each regu-
larizer and show the improvement in accuracy. The overall
functional is fairly transparent, can be minimized quite ef-

ficiently and is the currently best performing algorithm for
optic flow estimation.

2. Adaptive Optic Flow Regularization
Given a pair of consecutive input images I ≡ (I1, I2)

with Ii : (Ω ⊂ R2)→ R, we propose to compute a motion
field v : Ω→ R2 by minimizing the energy:

E(v) := Edata(v) + Erigid(F, v) + Estruct(v) . (5)

Here, Edata(v) =
∫

Ω
|I1(x) − I2(x + v)| d2x is the well-

known brightness constancy constraint. In order to allow
for illumination changes between the images, we use the
structure-texture decomposition approach presented in [18]
which essentially removes low-frequency components. The
two adaptive regularizers Erigid and Estruct will be de-
tailed in the following.

2.1. Adaptive Rigid Motion Regularization

Within the spectrum of conceivable optic flow patterns in
Computer Vision, flow patterns that correspond to 3D rigid
body motion play a central role. This is not surprising, since
they invariably arise for static scenes filmed by a moving
camera or for objects moving rigidly. It is well known that
in the case of rigid body motion the two-dimensional optic
flow estimation problem is reduced to a one-dimensional
search along the epipolar lines which can actually be solved
quite efficiently. The challenge is, that the epipolar lines
are usually unknown and need to be estimated from estab-
lished point correspondences themselves. This bootstrap-
ping problem is usually solved iteratively and has one ma-
jor drawback: If the scene is not stationary, both the epipo-
lar lines and the optical flow suffer from the negative prior
inflicted by the other.

In the following, we will therefore propose an adaptive
regularization which favors rigid body motion only if this
is supported by the image data. In particular we propose to
adaptively favor rigid body motion using the regularizer

Erigid(F, v) = γ(v)
∫

Ω

ρF(v, x) d2x (6)

where ρF(v, x) is the symmetric distance of the flow vector
to the epipolar lines (see below). The adaptive weighting
γ(v) aims at engaging the rigid body energy based on the
amount of independent motion found within the scene. For
the computation of γ(v), the motion field v is fixed and γ is
a single global value. It is given by

γ(v) =
{
λF if

∫
Ω
ρF(v, x)/‖v‖ d2x < δF

0 otherwise . (7)

With the 3×3 fundamental matrix F the symmetric distance
of the flow vector to the epipolar lines,

x̃ = F>
[
x
1

]
and ṽ = F

[
x+ v

1

]
,



is defined as

ρF(v, x) =
1

x̃2
1 + x̃2

2 + ṽ2
1 + ṽ2

2

∣∣∣ c+ x̃1v1 + x̃2v2

∣∣∣ , (8)

where a sub-index i of a vector denotes its i-th component
and the constant c is computed as

c =
[
x
1

]>
F
[
x
1

]
. (9)

This formulation is symmetric w. r. t. the two input images
and normalized in the sense that it does not depend on the
scale factor used to compute F [10].

To this end, we start with computing an optic flow field
and subsequently estimate the fundamental matrix by mini-
mizing the non-linear criterion

min
F

∑
Ω

1
x̃2

1 + x̃2
2 + ṽ2

1 + ṽ2
2

([
x
1

]>
ṽ

)2
 . (10)

Then, the estimated fundamental matrix itself is used to
drive the optical flow toward the epipolar lines.

The crucial part is how to weight this data term in order
to maintain robustness in dynamic scenes and increase ac-
curacy in static scenes. This is where the adaptive weighting
γ(v), which analyzes the amount of independent motion,
becomes important. Essentially, a violation of the epipolar
constraint denotes other moving objects in the scene while
the counter-hypothesis does not generally hold (e. g. the mo-
tion of objects might coincide with the epipolar lines, see
Figure 2). However, simply computing the average sym-
metric distance to the epipolar lines,

∫
Ω
ρF(v, x) d2x, does

not yield useful results as flow vectors in a dynamic scene
might be relatively small in magnitude, yielding only small
errors although the complete scene is dynamic. There-
fore we propose to evaluate the relative symmetric distance,
weighted by the inverse length of the computed optical flow.
Such measure yields a rather robust estimate of the relative
motion contained in the scene depicted by the two images.

In summary, the adaptive rigid body regularization has
the following effect:

• If the average relative deviation
∫

Ω
ρF(v, x)/‖v‖ d2x

is above a predefined threshold δF, the fundamental
matrix regularization will be switched off so it does
not bias the estimation of motion in dynamic scenes.

• If on the other hand the relative deviation is smaller
than δF, then the fundamental matrix regularization is
imposed so as to favor the estimation of optic flow
fields that are consistent with rigid body motion. Note
that even in this case we do not enforce the fundamen-
tal matrix constraint to be exactly fulfilled. Instead, we
allow for deviations of the optic flow from rigid body
motion wherever this is supported by the image data.

2.2. Structure-Adaptive Regularization

For many real-world videos, discontinuities of the mo-
tion field tend to coincide with object boundaries and dis-
continuities of the brightness function. Although this is cer-
tainly not always true, our experiments on the optic flow
benchmark [3] will demonstrate quantitatively that the in-
troduction of brightness-adaptive smoothness constraints –
which are not considered in the currently top-performing al-
gorithms – leads to substantial improvements of optic flow
estimates.

An elegant theoretical treatise of image-adaptive regu-
larization of flow fields was presented in [19]. There, the
authors introduce regularizers of the form

Ψ
(
∇v>1 D(∇I)∇v1

)
+ Ψ

(
∇v>2 D(∇I)∇v2

)
, (11)

corresponding to an inhomogeneous and potentially
anisotropic regularization induced by a structure-dependent
tensor D(∇I). The central idea is that the smoothness
of v along the two eigenvectors of D is weighted by the
corresponding eigenvalues. In fact, anisotropic structure-
dependent regularization was already proposed by Nagel in
1983 [12]. This is achieved by setting

D(∇I) =
1

|∇I|2 + 2λ
(
∇I⊥∇I>⊥ + λ2 Id

)
where Id denotes the unit matrix and∇I⊥ is the vector per-
pendicular to∇I . This leads to an anisotropic smoothing of
v along the level lines of the image intensity while preserv-
ing discontinuities across level lines.

For the sake of simplicity and in order to facilitate fast
implementations, we will in the following only consider
inhomogeneous isotropic regularization. Following [1] we
set D(∇I) = g(|∇I|) Id with a strictly decreasing positive
function

g(|∇I|) = exp
(
−α|∇I|β

)
(12)

favoring discontinuities of the motion field to arise at loca-
tions of strong image gradient. Nevertheless, our frame-
work can easily incorporate anisotropic regularity terms
such as those discussed above. The structure-dependent
regularizer in (5) is therefore given by

Estruct(v)=λ

∫
Ω

exp
(
−α|∇I|β

)
(|∇v1|+ |∇v2|) d2x .

(13)

3. Minimization by Quadratic Relaxation
The functional (5) introduced in the previous section is

non-convex – as all state-of-the-art optic flow functionals.
Moreover, its dependency on v is rather involved: the ve-
locity v appears inside the arguments of the input images in
the data term and in the regularity terms. In particular, the



weight γ(v) of the rigid motion regularizer in (7). As a con-
sequence, the quality of computed solutions will invariably
depend on a careful choice of the minimization scheme.

Rather than reverting to the traditional scheme of lin-
earization and fixed-point iteration, we follow a series of
papers on quadratic relaxation [6, 2, 20] which leads to a de-
composition of the original non-convex optimization prob-
lem into a sequence of convex optimization problems. More
specifically, we reformulate the optimization of (5) with re-
spect to v as a minimization of the functional

E(v, u) =Edata(u) + Erigid(F, u)

+
∫

Ω

1
2θ

(u− v)2 d2x+ Estruct(v) .
(14)

with respect to both the velocity field v and an auxiliary
field u : Ω → R2. The central idea is that for θ → 0,
the two functionals become identical. Yet, the optimization
with respect to v and u can each be solved optimally.

Specifically, we initialize with u = 0, v = 0, ṽ = 0,
γ(v)=0, F =0, and iterate until convergence:

(A) Use the thresholding scheme for convex quadratic pro-
gramming presented in [17] to solve

min
u

Edata(u, I) + Erigid(F, u) +
∫
Ω

1
2θ

(u− v)2 d2x

 .

(B) Solve the convex optimization problem

min
v

{∫
Ω

1
2θ

(u− v)2 d2x+ Estruct(v, I)
}

by means of a primal-dual algorithm as in [17, 20].
Essentially this step of the algorithm amounts the well-
known weighted total variation noise removal.

(C) Estimate the fundamental matrix parameters, F , using
the non-linear criterion as done in [10]. Recompute ṽ
and γ(v) and start again with (A).

The next section carefully investigates the accuracy
improvement when using additional prior knowledge in
terms of the adaptive rigid motion prior and the structure-
dependent regularization for optic flow estimation.

4. Experiments
In this section, we will quantitatively evaluate the con-

tribution of each of the two regularizers on the accuracy of
estimated flow fields based on the Middlebury optic flow
benchmark [3]. The benchmark provides a training data set
where the ground truth optic flow is known and an evalua-
tion set used to compare algorithms with each other.

4.1. Contribution of Each Regularizer
Table 1 demonstrates the increase in accuracy on the

training data set. The table shows the average end-point
error between the ground truth flow vectors and the esti-
mated flow vectors for all data sets in the training set and
for different choices of regularizers, the traditional smooth-
ness constraint corresponding to the first line. Evidently
the non-adaptive rigid motion prior increases accuracy in
static scenes but worsens the results if the scene is dynamic.
The structure-aware regularization does improve the optic
flow accuracy on most test examples but only the combined
adaptive approach yields top performing results.

4.2. Overall Performance
Figure 3 shows screen shots of the Middlebury evalua-

tion homepage (taken on March 10th 2009). It demonstrates
that the proposed combination of structure- and motion-
adaptive regularizers gives rise to an optic flow algorithm
outperforming all existing algorithms, both with respect to
the angle error and with respect to the end-point error.

Table 2 shows the increase in computation time induced
by each of the two regularizers. It indicates that using
the proposed adaptive regularizer increases the computa-
tion time by about a factor of 2. Although currently only
the baseline algorithm is implemented on the GPU, we be-
lieve that extending the proposed regularizers to the GPU
will give rise to a similar speed-up factor of about 80.

For all experiments we use fix parameter values of λ=
30, λF = 0.75, and θ= 0.25. We employ a multi-resolution
pyramid with a factor of 0.5, initializing at each level with
the solutions obtained on the lower resolution. The thresh-
old for the relative fundamental matrix deviation is set to
δF = 0.05. The same parameter settings are applied for the
experiments on 12-bit image data.

4.3. Real-World Experiments
We applied the proposed optic flow algorithm to chal-

lenging real-world videos captured from a driving car. Fig-
ure 1 shows the first scene with an approaching car and a
moving pedestrian. Although the scene is dynamic, the fun-
damental matrix data term is used for optic flow estimation.
This is due to the fact that the approaching car moves along
the epipolar lines, only slightly violating the fundamental
matrix constraint. The optic flow for the approaching car
is accurately estimated with flow discontinuities at image
edges. Note that the walking person in the distance is de-
tected as violating the epipolar constraint. Such violations
are allowed because we do not require the fundamental ma-
trix constraint to be exactly fulfilled.

Figure 2 depicts an example of a person running across
the street. The fundamental matrix regularity is automati-
cally deactivated due to the increased presence of indepen-
dent motion in the scene. The optical flow result is quite



Measure ρF g(|∇I|) Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

EPE − − 0.19 0.15 0.67 0.15 0.09 0.32 0.63 0.26
EPE × − 0.28 0.15 0.65 0.15 0.09 0.29 0.49 0.26
EPE − × 0.19 0.15 0.58 0.15 0.08 0.32 0.60 0.26
EPE × × 0.19 0.14 0.56 0.15 0.08 0.29 0.45 0.25

rel-ρF × × 0.11 0.01 0.02 0.21 0.29 0.01 0.01 0.01

Table 1. Evaluation results on the Middlebury training data. The proposed regularizers, ρF and g(|∇I|), systematically improve the optic
flow estimates. In the table, EPE denotes the average end-point error of the obtained optic flow field and rel-ρF =

R
Ω
ρF(v, x)/‖v‖ d2x is

the average relative epipolar line distance. See Table 2 for execution times on the training data set.

Figure 1. Optical flow estimation in a dynamic scene. The lower
images show the ρF constraint deviation and the edge image |∇I|.
Note the accurate flow estimation for the approaching car and the
detection of independent motion for the distant pedestrian.

convincing, preserving discontinuities along object bound-
aries. Though the proposed adaptive regularizers give rise
to highly convincing flow fields, there is certainly still room
for improvements: While the algorithm does capture the
large motion of the right foot, it incorrectly estimates a false
match to the right of this foot which is due to occlusions that
are not explicitly modeled in our approach.

5. Conclusion
In this work, we revisited the aspect of regularization in

optic flow estimation. Specifically, we presented motion-
and structure-adaptive regularizers: The first one favors op-
tic flow fields which are consistent with rigid body motion
in scenes wherever this is supported by the data. The second
one favors motion discontinuities to coincide with disconti-
nuities in the intensity function. We experimentally evalu-
ated the proposed algorithm in a three-fold manner: Firstly,
we quantify the improvement in performance induced by
each regularizer on a training set of Middlebury benchmark
sequences. Secondly, we demonstrate on the Middlebury

Figure 2. Optical flow estimation for a scene with a running per-
son. Even the large displacement of the right foot is correctly
matched. The lower images show the ρF constraint deviations
which clearly identify the person and the edge image |∇I|.

test set, that the proposed method outperforms all existing
algorithms, both in angle error and in end-point error. And
thirdly, we demonstrate that the algorithm provides robust
performance on various real-world sequences filmed from a
moving vehicle.
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