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Abstract. We propose an algorithm for automatizing the task of ”Tidy-
ing up Art” introduced by the comedian Wehrli [1]. Driven by a strong
sense of order and tidyness, Wehrli systematically dissects famous art-
works into their constituents and rearranges them according to certain
ordering principles. The proposed algorithmic solution to this problem
builds up on a number of recent advances in image segmentation and
grouping. It has two important advantages: Firstly, the computerized tidy-
ing up of art is substantially faster than manual labor requiring only a
few seconds on state-of-the-art GPUs compared to many hours of man-
ual labor. Secondly, the computed part decomposition and reordering is
fully reproducible. In particular, the arrangement of parts is determined
based on mathematically transparent criteria rather than the invariably
subjective and irreproducible human sense of order.
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1 Introduction

1.1 Ursus Wehrli’s Project of ”Tidying up Art”

Starting in 2002, the Swiss comedian Ursus Wehrli developed the project of
”Tidying up Art”. Wehrli argues that while he likes art he is systematically
disturbed by many of history’s most famous artworks being highly unordered
and chaotic. Wehrli tackles this shortcoming in the works of famous artists by
dissecting their works and rearraging respective segments in a well ordered man-
ner – see Figure 1 for an example. His work has become extremely popular and
Wehrli’s books have been best sellers for many years [1–3]. A closer look at
Wehrli’s works reveals that his approach has two important shortcomings:

– Manually dissecting a painting and rearranging all parts is an extremely te-
dious process which can easily take several hours of work. Tidying up the
entire art history would take Wehrli years or even decades.
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(a) Painting by Haring (b) Wehrli’s manual tidying (c) Output of Wehrli 2.0

Fig. 1. Given an original artwork (a) Wehrli 2.0 generates automatically a tidied up
version of it (c). The algorithm reproduces Wehrli’s notion of tidyness (b).

– The result of the above approach is hardly reproducible. The dissection of the
artwork into parts is performed quite heuristically. Moreover, the subsequent
ordering is based on a highly intransparent and irreproducible human notion
of order.

The contribution of this paper is to introduce the algorithm Wehrli 2.0 which
is designed to alleviate the above shortcomings.

1.2 Related Work

Dissecting the image plane into its constituents is a problem of image segmen-
tation and as such one of the most studied problems in image analysis. There
is abundant literature on mathematical models for image segmentation, starting
with the pioneering works of Mumford and Shah [4], Blake and Zisserman [5]
and Kass et al. [6]. While the length regularization imposed in respective cost
functions is desirable for meaningful segmentations, it gives rise to difficult op-
timization problems, the general multiregion segmentation being NP hard (in
its spatially discrete formulation). Nevertheless, over recent years people have
developed efficient algorithms for approximate minimization including the graph
cut based alpha expansions [7] or various forms of convex relaxation [8–10]. In
this work, we will make use of convex relaxation techniques because they do not
exhibit any grid bias and are easily parallelized [11].

For a fully unsupervised partitioning, however, respective algorithms also
need to estimate appropriate color models associated with each region. In prac-
tice, we observed that the commonly suggested alternating estimation of color
models and segmentation is computationally demanding and likely to get stuck
in suboptimal local solutions. For a robust unsupervised performance, it is there-
fore important to optimally estimate multiple color models.

1.3 Contribution

We propose an algorithm called Wehrli 2.0 which aims at fully automatizing
Wehrli’s work in a manner that we can simply insert an artwork and the com-
puter generates a tidied up version of it – see Figure 1 for an example.
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To this end, we developed a fully unsupervised multi-region segmentation
method which combines state-of-the-art convex relaxation techniques with fast
global k-means color model estimation. Subsequently we propose ordering crite-
ria to optimally rearrange all parts. In numerous experiments, we compare the
performance of our algorithm with Wehrli’s manual work. While the results are
never entirely identical, these experiments show that:

– Our algorithm provides results which are qualitatively similar to those ob-
tained by Wehrli and thus captures the essence of his work.

– The proposed computerized solution to Wehrli’s endeavour is substantially
faster with computation times of a few seconds on recents GPUs.

– Our algorithm is fully reproducible in terms of the part decomposition and
the systematic ordering according to transparent criteria such as color, size
or aspect ratio of respective parts.

We believe that the proposed algorithm may help the comedian Ursus Wehrli
in his endeavour to systematically tidy up the entire history of art.

2 Image Segmentation

2.1 A Minimal Partition Model

Given the color image I : Ω → R3 defined over the image plane Ω ⊂ R2 we
propose to segment it into an unknown number n of pairwise disjoint regions Ωi
by minimizing the Mumford-Shah like energy [4, 12]:

Eλ(n,Ω1, . . . , Ωn, p1, . . . , pn) =

n∑
i=1

λ|∂Ωi| −
∫
Ωi

log pi(I(x)) dx + ν neff . (1)

The first term penalizes the boundary length |∂Ωi| of each region Ωi, weighted
with λ ≥ 0. The second term is the negative log likelihood for observing a color
I given that the respective point is part of region Ωi. The last term is a penalizer
of the number neff of non-empty regions weighted by positive parameter ν ≥ 0.
It corresponds to a minimum description length prior [13, 12]. In this paper, we
will simply consider isotropic Gaussian color models pi(I):

pi(I) =
1

(2πσ2
i )3/2

exp

(
−‖I − µi‖

2
2

2σ2
i

)
, (2)

with mean µi and standard deviation σi, because these best reproduce Wehrli’s
implicit notion of part decomposition. Of course, more sophisticated color models
are conceivable.



4 Wehrli 2.0 :An Algorithm for ”Tidying up Art”

2.2 Optimization by Fast Global K-Means and Convex Relaxation

The joint optimization of (1) with respect to color analysis reveals that this
difficulty arises for two reasons:

– Even for fixed color models, the corresponding discrete labeling problem is
given by the Potts model [14] which is known to be NP hard. Without the
length regularity, however, it would be a trivial problem to solve, namely a
direct maximum likelihood assignment of respective pixels to their favorite
color model.

– In addition, the alternating estimation of color models and region grouping
is in practice prone to local minima. Moreover, the iteration of color esti-
mation and multi-region segmentation is typically very slow and therefore
impractical for interactive methods. In the absence of length regularity it is
typically tackled by k-means clustering. Yet, the latter approach is known
to converge to suboptimal local solutions.

We cannot expect to efficiently and optimally solve an NP hard problem.
Yet, we observe that a key computational difficulty enters through the length
regularity which couples the optimal decision for each pixel to respective deci-
sions for neighboring pixels. On the other hand, in the application considered in
this paper, the length regularity is generally associated with a very small weight
λ because the artworks that need tidying up typically do not exhibit high levels
of noise. We therefore propose to compute an initial solution by solving (1) for
λ = 0:

Eλ({Ωi, µi, σi}) =

n∑
i=1

∫
Ωi

‖I(x)− µi‖22
2σ2

i

+ 3 log(σi) dx . (3)

where n is chosen sufficiently large. To solve this problem, we revert to the
fast global k-means algorithm [15] which is less prone to local minima than the
traditional k-means algorithm. Alternatively, one can also retain the number n
of regions in the optimization and solve the joint problem. This corresponds to
the uncapacitated facility location problem which is known to be NP hard since
it can be reduced from the set-cover problem – see [16] for details.

Once the initial color models (without length regularity) are estimated, we
set λ to its non-zero value and solve the problem

Eλ(n,Ω1, . . . , Ωn) =

n∑
i=1

λ|∂Ωi| +
∫
Ωi

‖I(x)− µi‖22
2σ2

i

+ 3 log(σi) dx + ν neff . (4)

2.3 Convex Formulation

The optimization problem (4) is a non-convex problem. Building up on a se-
quence of recent advances in variational multi-label optimization [10, 17, 9, 18]
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we can equivalently write it as the minimization of the convex energy

min
u∈Ub

n∑
i=1

∫
Ω

ui(x)fi(x) dx+ λ

∫
Ω

|Dui|+ νmax
x∈Ω

ui(x) (5)

over the non-convex set of binary indicator functions:

Ub =

{(
u1, ..., un

)
∈ BV (Ω; {0, 1})n

∣∣∣∣ n∑
i=1

ui(x) = 1, ∀x ∈ Ω

}
. (6)

Here Du denotes the distributional derivative (generalizing the gradient to non-
differentiable indicator functions). The term fi is given by:

fi(x) =
‖I(x)− µi‖22

2σ2
i

+ 3 log(σi) . (7)

It is the nonnegative (local) cost associated with assigning a pixel x ∈ Ω the
label of region i.

We can relax the problem (5) to a fully convex optimization problem by
allowing the functions ui to take on real values in the interval [0, 1]. This amounts
to replacing the constraint set Ub by its convex hull:

U =

{(
u1, ..., un

)
∈ BV (Ω; [0, 1])n

∣∣∣∣ n∑
i=1

ui(x) = 1, ∀x ∈ Ω

}
. (8)

Albeit convex, the arising problem (5) is highly non-smooth because of the
non-differentiability of the Total Variation and the max function. By using
Fenchel’s duality, we can introduce two auxiliary variables p and v in order
to obtain a differentiable formulation for the Total Variation and respectively
for the max function. Thus the optimization problem (5) over the constraint set
(8) is equivalent to the saddle-point formulation:

min
u∈U

max
p∈P

max
v∈V

n∑
i=1

∫
Ω

ui(x)
(
fi(x)− div pi(x) + vi(x)

)
dx . (9)

with respective convex sets for the dual variables:

V =

{
v ∈

(
L2(Ω,R+

0 )
)n ∣∣∣ ∫

Ω

vi(x) dx = ν; ∀i = 1, . . . , n

}
, (10)

P =
{
p ∈

(
C1c (Ω,R2)

)n ∣∣∣ ‖pi(x)‖2 ≤ λ, ∀x ∈ Ω, ∀i = 1, . . . , n
}
. (11)

This particular choice of the constraint set P was introduced in the work of
Zach et al. [10]. While a tighter relaxations was suggested in [8, 17], we chose the
former representation because the back-projections on P are faster to compute
and because the differences in segmentation were not noticeable in the applica-
tion considered here.
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3 Numerical Optimization

We solve the saddle-point problem (9) by means of a recently proposed algorithm
[19] and extensions of it [20]. It consists of a gradient descent in the primal and
a gradient ascent in the dual variable. While the constraint on the set P can
be handeled by simple pointwise truncation, we handeled the constraints V and
U by means of lagrange mulipliers. Since all updates can be done pointwise,
the method is straight-forwardly parallelized on a GPU allowing speedups of an
order of magnitude and runtimes in the range of a few seconds.

4 Reordering of Parts

A major aspect of ”Tidying up Art” is to rearrange the individual parts of the
dissected painting according to some ordering principle. Our reordering formal-
ism imitates an ordering criterion which seems to be most frequent in Wehrli’s
work, namely the grouping of parts based on color and size. To this end, we
proceed as follows:

– For each color label k = 1, . . . , n, select the region Ωk = {x ∈ Ω | uk(x) = 1}.
– For each region Ωk, determine its connected components by means of the

flood-fill algorithm and perform a postprocessing morphological closing (ero-
sion followed by dilatation) for seperating slight connections of one or two
pixels width.

– Arrange all parts horizontally according to their color label.
– In each column, arrange all parts of a given color according to their largest

principal component, aligned according to their centroid and rotated such
that the dominant principal axis is horizontal.

The parts are sorted in descending order with respect to their largest principal
component. Thus, larger and elongated segments tend to be at the bottom of
the vertical arrangement. The horizontal ordering with respect to color values is
done by the hue values of the HSV color space.

5 Experiments

We ran the algorithm Wehrli 2.0 on several artworks peforming the following
steps:

– Run fast global k-means in order to determine the color labels of our color
model for a certain artwork.

– Perform image segmentation algorithm introduced in Section 2 using the
convex optimization approach presented in Section 3.

– Determine all segments and order them as described in Section 4.

The three steps of our algorithm are illustrated in Figure 2. We use constant
deviations for the color model distribution, i.e. σk = 1 for each label, set n = 15,
and choose the parameters λ = 0.075 and ν = 25 for the segmentation.
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(a) Painting by (b) Fast Global K-Means (c) Segmentation
Jawlensky

(c) Reordering

Fig. 2. The three steps of the Wehrli 2.0 algorithm applied on the artwork ”Mystischer
Kopf: Galka” by Alexej Jawlensky (a). The color labels (b) are determined using fast
global k-means. Image (c) shows the result of the MDL segmentation. The resulting
regions are rearranged as in Section 4.

5.1 Fast Global K-Means vs K-Means

A comparison of the output of our algorithm using k-means and the fast global
k-means algorithm (Figure 3) shows that the global k-means algorithm gives a
more differentiated color model for the subsequent segmentation algorithm which
in turn results in more accurate regions. The comparison shows that using fast
global k-means assures that more labels are preserved in the tidied-up result.

5.2 Artworks tidied and cleaned

Many classical artworks are already decades old and with time have invariably
accumulated dirt and dust. This degradation process can be a major problem
for the preservation of art.3 To account for these unfortunate effects of time, it
is therefore of utmost importance that one not only tidies art but also cleans
it properly. Figure 4 illustrates that Wehrli 2.0 can handle even dirty images.
A proper cleaning is obtained by simply arranging the pieces computed by our
segmentation algorithm (rather than the dirty input segments). We did observe
that this drastic cleaning results in a loss of small scale details. On the other
hand, small scale details are substantially overrated in the art world.

3 Rembrandt’s famous painting of the Militia Company, for example, was so dimmed
and defaced over the years, that later generations are now referring to it as Night
Watch.
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(a) Painting by Haring (b) K-Means (c) Fast Global K-Means

Fig. 3. The fast global k-means algorithm reproduces improved color labels compared
to the k-means algorithm. As can be seen (b) we obtain a mixed color stack including
yellow and amber segments since the k-means algorithm doesn’t identify the amber
cluster.

(a) Painting Tidied (b) Painting Tidied and Cleaned

Fig. 4. This figure illustrates the result of our algorithm applied to a high quality copy
of ”Farbtafel” by Paul Klee on the left side and the results of a noisy version of the
same painting on the right side. The results are fairly similar since the segments of the
noisy version are filled with the color of the corresponding color label.

5.3 Qualitative Results

Figure 5 shows three examples of artwork which the artist Wehrli has worked
on. The direct comparison demonstrates that Wehrli 2.0 produces very similar
result to the manual labor of Wehrli. There is an important difference, though:
While Wehrli’s heuristic order of parts does not follow any recognizable logic,
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(a) Painting by Matisse (b) Wehrli’s Work (c) Wehrli 2.0 Output

(d) Painting by Macke (e) Wehrli’s Work (f) Wehrli 2.0 Output

Fig. 5. A comparison of our results using the Wehrli 2.0 algorithm (c,f) with Wehrli’s
manual tidying up (b,e) of the following artworks: ”Nu bleu IV” by Henri Matisse (a)
and ”Modefenster” by August Macke (d).

the output of Wehrli 2.0 strictly follows simple ordering criteria and is fully
deterministic and reproducible.

5.4 Runtime

All experiments were performed on a desktop PC with a NVIDIA Geforce GTX
480 GPU and a 2.40GHz quadcore CPU. For the image (a) in Figure 1 with
350x229 pixels and 15 labels, for example, the color model estimation using a
Matlab implementation of the fast global k-means, took 23 seconds, while the
multi-region segmentation, using a GPU implementation of the convex optimiza-
tion required only 4 seconds.

6 Conclusion

We introduced the algorithm Wehrli 2.0 to automatize the task of ”Tidying up
Art” introduced by the Swiss comedian Ursus Wehrli. The algorithm is based
on a multi-region segmentation method which combines recent convex relax-
ation techniques with fast global k-means color model estimation. In contrast
to Wehrli’s manual work, which is tedious and time consuming, we showed that
our algorithm Wehrli 2.0 produces qualitatively similar results in a matter of
seconds on a home computer.
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