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Abstract— This paper concerns the recently introduced no-
tion of introspective classification. We introduce a variant of the
point-biserial correlation coe�cient (PBCC) as a measure to
characterise the introspective capacity of a classifier and apply
it to investigate further the introspective capacity of boosting
– a well established, e�cient machine learning framework
commonly used in robotics. While recent evidence suggests
that boosting is prone to providing overconfident classification
output (i.e. it has a low introspective capacity), we investigate
whether optimising this criterion directly leads to an improved
introspective capacity. We show that with only a slight modifica-
tion in the AdaBoost algorithm the resulting classifier becomes
less confident when making incorrect predictions, rendering
it significantly more useful when it comes to e�cient robot
decision making.

I. Introduction

Machine learning algorithms are changing the face of
mobile robotics. Their reach now extends to a significant
number of robotic tasks including perception, planning,
navigation, and manipulation. As a result, most modern
mobile robotic systems already rely to a significant degree
on machine learning methods. However, for these methods to
be useful in robotics, some very specific requirements have
to be beyond those commonly considered in other research
areas. In particular, these requirements include e�ciency
in terms of memory requirements, computation time and
energy consumption as well as plasticity and robustness in
order to provide true long-term autonomy. Algorithms that
particularly meet this latter criterion are often identified as
online or life-long learning methods.

In this work, we focus on boosting, a machine learning
framework commonly used in robotics both for its e�ciency
and often competitive classification performance. Here we
investigate its usefulness in mission-critical applications,
where a single error in the classification can have desastrous
consequences for the entire mission. As an example, consider
an autonomous car that fails to detect a red tra�c light.
As was shown by Grimmett et al. [1], these applications
require, in addition to a low rate of false detections (espe-
cially false negatives), a classifier that is able to provide a
realistic estimate of its classification confidence along with
the predicted class label. Classifiers with this capability are
denoted as introspective. In this work, we investigate this
further and particularly address two main questions. Firstly,
what could be a good measure of this relationship between
confidence and correctness? And secondly, can we use such

a measure to improve the introspective capabilities of one
of the most prevalent classification algorithms in robotics?
The preliminary findings we present here suggest that while
boosting may not be as intrinsically introspective as, for
example, a Gaussian Process Classifier (GPC) [1], its intro-
spective capacity can be increased significanly by optimising
it explicitly as part of the standard Boosting framework. We
point out that we do not provide any theoretical proofs here,
but instead present empirical results along the lines of those
presented in [1].

Our modification specifically applies to the standard Ad-
aBoost [2] algorithm. However, our findings are also likely
to be replicable for other variants of boosting such as
LogitBoost, GentleBoost [3], or robust variants [4].

A. Related Work

Apart from the seminal work on boosting in general [2]–
[4], most of the references related to this work are already
given in [1]. Boosting has a long and successful track
record in mobile robotics (see, for example, the work of
Martinez Mozos et al. [5], [6]). Introspection has been
recently introduced by Grimmett et al. [1].

This paper further investigates the introspective capabili-
ties of one particular classification framework.

II. Approach
In this section we first describe the standard binary Ad-

aBoost [2] algorithm (see Algorithm 1). Then, we introduce
Confidence Boosting, our new introspective variant of Ad-
aBoost. It uses an empirical measure of “introspectiveness”,
which is a new idea to quantify and assess this property
in classifiers. We propose a variant of the point-biserial
correlation coe�cient (PBCC) for this measure, which we
briefly explain.

A. Standard Boosting

The main principle of boosting is to assign weights to
the n training data points X = {x1, . . . , xn} with xi 2 Rd

and to run a given number m of training rounds through the
data, where at each training round a classifier is obtained that
particularly focusses on the misclassified samples from the
previous rounds. This is done by updating the data weights
according to a classification loss function, which is usually
the 01-loss. In more detail the steps are: first, the weights
are all equally initialized with 1/n. Then, in each round a



weak classifier fi : R! {�1, 1} is learned from the weighted
training data, and its training error ✏i is computed. Here, I()
denotes the identity function, which is 1 if the argument is
true and 0 otherwise. From the training error the coe�cient
↵i is computed and the data weights are updated so that
the misclassified points obtain a higher weight while the
weights of the other points remain unchanged. The obtained
coe�cients ↵i are then used to classify a new test datum x⇤
using the weighted sum

Pm
i=1 ↵i fi(x⇤), which is simply tested

for its sign: if it is positive, the predicted class label is 1,
otherwise it is �1.

Algorithm 1: AdaBoost for binary classification
Data: training data (X, y) consisting of n labeled

feature vectors, where y j 2 {�1, 1}
Input: Number m of training rounds
Output: coe�cients (↵1, . . . ,↵m)

1 w(1)  (1/n, . . . , 1/n)
2 for i 1 to m do
3 fi  LearnWeakClassifier (w,X, y)

4 ✏i  
PN

j=1 w(i)
j I( fi(x j) 6=yi)
PN

j=1 w(i)
j

5 ↵i  ln
⇣

1�✏i
✏i

⌘

6 for j 1 to n do
7 w(i+1)

j  w(i)
j exp(↵iI( fi(x j) 6= y j))

8 end
9 end

B. Confidence Boosting

The main benefits of the boosting algorithm are its arbitrar-
ily small training error (it decreases monotonically with the
number of training rounds), and its very e�cient inference
step. However, as was shown in [1], in terms of introspec-
tion the standard boosting algorithm performs much worse
than other classification algorithms such as the Gaussian
Process classifier (GPC), which means that it tends to be
overconfident in its class predictions. This can for example
be seen when the algorithm is first trained on two classes,
and then elements of a third, unseen class are presented in
the classification step. In that case, the algorithm returns
class predictions with a very high certainty, although all
predicted class labels must be incorrect. As a consequence,
standard boosting can not be used in situations where the
class label uncertainty is needed for further processing, e.g.
to detect potential misclassifications or for active learning.
In the experimental section, we will give more evidence for
this.

To address this issue, we first have a closer look at line 3
in Algorithm 1: Here, a weak classifier fi is determined that
assigns class labels to given input data. The only requirement
for fi to be a weak classifier is that the weighted training
error ✏i computed in line 4 is not larger than 0.5. One
simple example for a weak classifier, which is often used
in boosting, is the decision stump, which operates on a
projection of the data onto a single feature dimension k and
determines a threshold ✓ and an orientation s 2 {�1, 1} so

that most of the positively labeled training points are on the
positive side of the resulting decision boundary, i.e.

|{(xk
j , y)8 j = 1, . . . , n | s(xk

j � ✓) � 0}|� n
2
, (1)

where k is a fixed dimension of the feature vector x j, and
|.| denotes the size of a set. To find a weak classifier fi,
one common method is to loop over all feature dimensions
k = 1, . . . , d and to use the decision stump that provides the
smallest weighted training error, i.e. ✏i is then the smallest
over all dimensions. The benefit of this is that the number of
training points that need re-weighting is smallest and that the
overall training error decreases fast. However, for an intro-
spective classifier, one is more interested in a realistic relation
between a correct classification and one with low uncertainty,
rather than in a low training error. In the next section, we
will give more details how this “introspectiveness” relation
can be formulized. For now, we just state that all decision
stumps can be used as a weak classifier, because they all
return a weighted training error less than 0.5. Thus, if we
choose the one that is most introspective in a given sense,
instead of the one with the smallest training error, then the
strong classifier that results from boosting is more likely to
be introspective, too. This is the main idea of confidence
boosting.

Of course, this brings also some drawback: as we don’t
choose the optimal decision stump in terms of classification
performance, the resulting strong classifier will usually also
perform worse. However, this can be adressed by simply
increasing the number of used decision stumps, because the
training error still decreases in each training round, although
at a slower rate. Thus, the aim of obtaining an introspective
classifier is traded o↵ with the need to reduce the training
error. This suggests a weighted sum of classification per-
formance and introspectiveness as an assessment method for
decision stumps, however in this first version of the algorithm
we only consider the introspective part to avoid introducing
a parameter for the algorithm. To measure introspectiveness,
we suggest a function similar to the point-biserial correlation
coe�cient, which is described next.

C. The Point-Biserial Correlation Coe�cient

In many probabilistic reasoning applications the problem
arises how to measure the relation between two random
variables, and there are a number of di↵erent measures in
the literature that can provide such a relation. In principle,
these measures try to answer questions like: “how strong is
the statistical dependence between the variables?”, or “how
much information does one variable give about the other?”,
or “how much are the variables correlated?”. Examples of
these measures are the Kullback-Leibler (KL-) divergence,
the mutual information (MI), or the correlation coe�cient.
However, most of these measures require both random vari-
ables to be continuous, whereas in our case we want to relate
the discrete, binary variable of “classification correctness”
with the continuous variable “classification uncertainty”. The
intuition behind this is that a classifier that is very often
correct when it is certain and only incorrect when it is
uncertain should be denoted as introspective. One way to



determine such a relation is by using the Point-Biserial
Correlation Coe�cient (PBCC), a variant of the standard
correlation coe�cient. The PBCC is defined as follows:

rpb :=
µ1 � µ2

�n

r
n1n2

n2 , (2)

where µ1 and µ2 are the mean values of the continous variable
for those parts of the data, for which the binary variable is
either 0 or 1, respectively. In our case, these are the average
uncertainties for the incorrectly and the correctly classified
data points. Furthermore, �n is the standard deviation of the
continuous variable, i.e. the classification uncertainty, and n1
and n2 are the numbers of incorrectly and correctly classified
samples with n = n1 + n2.

While the PBCC provides a good measure of introspec-
tiveness in cases where there are enough correctly and
incorrectly classified samples, it has the drawback that its
range decreases when theses numbers are very unbalanced,
for example when there are no incorrectly classified samples.
In that case, the PBCC is 0, although the correctly classified
samples can all be very certain, in which case the classi-
fier would be more introspective than the PBCC suggests.
Therefore, in our experiments, we use a simpler version of
the PBCC, which only considers the first term, i.e.:

r⇤pb :=
µ1 � µ2

�n
. (3)

In the following, we will refer to this measure as the
simplified PBCC (sPBCC).

To summarize, the modified version of the function
LearnWeakClassifier trains a decision stump for a pro-
jection of the training data onto each dimension k = 1, . . . , d
and chooses the one that maximises either rpb or r⇤pb. This re-
quires a measure of uncertainty from a class label prediction
returned from a decision stump, but these only return either
0 or 1, depending on whether the feature is on the positive
or the negative side of the decision boundary. To obtain a
probability value, we apply a sigmoid function to the distance
of the feature value from the decision boundary of the stump,
specifically we use the cumulative Gaussian function. As a
result, we obtain a probability of a given test point x j to
have label 1. From this probability we then compute the
normalized entropy to obtain an uncertainty estimate for the
predicted class label, as was already done in [1].

III. Experimental Results
The aim of our experiments is two-fold: first we see

whether our simplified PBCC measure is consistent with
our intuitive notion of introspection. Secondly, we show that
ConfidenceBoost, our modified version of AdaBoost, leads
to a more introspective classifier. Our feature selection is
the same as presented in [1], namely a dictionary-based
correlation of randomly chosen image patches (originally
introduced by Torralba et al. [7]). We also use the GTSRB
data set, which comprises images of road signs in urban
environments.

In our first experiment, we compute the sPBCC value for
the classifiers that were already used in [1]: the GPC and
SVM, both with linear and squared-exponential (SE) kernels,

Classifier Precision Recall Accuracy sPBCC
SE GPC 1.000 1.000 1.000 -0.720

RBF SVM 1.000 1.000 1.000 -0.959
Linear GPC 1.000 1.000 1.000 -0.863
Linear SVM 1.000 1.000 1.000 -1.270
LogitBoost 1.000 1.000 1.000 -196189.581
ConfBoost 1.000 0.995 0.997 9.113

TABLE I: Classification performance when separating stop sign from the
lorries prohibited signs. In addition to precision, recall, and accuracy, we
also report the sPBCC value, which quantifies the introspective capabilities
of a classifier. We can see that the GP classifiers are more introspective
than the SVMs according to that measure, which underlines our findings
from [1]
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Fig. 1: Histogram of normalised entropies for the probabilities of the
predicted class labels, where an unknown class was shown to the AdaBoost
and the ConfidenceBoost classifier. Both classifiers are unconfident about
the given class labels, but ConfidenceBoosting shows this to a larger extent.
Note that the histograms are normalized so that the sum of all bins is 1.

LogitBoost, and our new ConfidenceBoost algorithm. We
train each on 200 instances of stop and lorry prohibited
sign, and test on an equally-sized set of the same classes.
The results are shown in Table I.

We can see that both GPCs have a higher correlation
between false classification and uncertainty than their SVM
equivalents, as we would expect given their already estab-
lished introspective capacity. We also see that the ConfBoost
algorithm also performs very highly in this regard.

In the second experiment, we train both the standard
AdaBoost and ConfidenceBoost on the same two classes
of road sign, and test on a novel third class – we use
the roadworks ahead sign – computing the histogram of
normalised entropies for both. These histograms compare the
distribution over the uncertainties in the class predictions of
the classifiers, and can be seen in Fig. 1. They show that
both classifiers are fairly uncertain about the predicted class
labels, which is reasonable given that the presented data are
from a class unseen during training. However, the labels
returned from ConfidenceBoost are even more uncertain,
leading to a more realistic assessment of the classification
result. Hence, we can conclude that the ConfidenceBoost
algorithm leads to a more introspective classifier.



IV. Conclusions and FutureWork
The two contributions of this work are a way to quantify

the introspectiveness of a classifier – a notion that only
recently has been introduced, and a simple method to im-
prove the introspective capabilities of the standard AdaBoost
algorithm. However, many new questions arise from that,
where one is that of a more theoretical foundation for the
experimental results shown here. Another one addresses the
implications of our findings in a more general way, such as:
can this method be applied to other classification algorithms?
For example, one could think of using other established
methods for weak classification, thereby optimizing them in
the introspective sense. Our preliminary results at least justify
some further research along these lines.
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