
Segmentation and Unsupervised Part-based
Discovery of Repetitive Objects

Rudolph Triebel Jiwon Shin Roland Siegwart
Autonomous Systems Lab, ETH Zurich

Tannenstrasse 3, 8092 Zurich, Switzerland
email: {rudolph.triebel,jiwon.shin}@mavt.ethz.ch, rsiegwart@ethz.ch

Abstract— In this paper, we present an unsupervised technique
to segment and detect objects in indoor environments. The main
idea of this work is to identify object instances whenever there
is evidence for at least one other occurence of an object of the
same kind. In contrast to former approaches, we do not assume
any given segmentation of the data, but instead estimate the
segmentation and the existence of object instances concurrently.
We apply graph-based clustering in feature and in geometric
space to presegmented input data. Each segment is treated
as a potential object part, and the inter-dependence of object
labels assigned to part clusters are modeled using a Conditional
Random Field (CRF) named the “parts graph”. Another CRF is
then applied to the scene graph to smooth the class labels using
the distributions obtained from the parts graph. First results on
indoor 3D laser range data are evaluated and presented.

I. INTRODUCTION

The ability for a robot to learn and discover objects without
any human guidance enhances its autonomy and makes it more
independent. Such a robot requires no prior training and can
more easily adapt to new, unknown environments. It is also
able to autonomously draw conclusions about the structure
of its environment. This functionality is useful when robots
operate fully autonomously without human interaction. But
also when robots live with humans, a high-level semantic
analysis of the environment helps the robot to communicate
with a human. As an example, a robot which can detect
similarities of objects encountered in the environment, no
longer requires a human to first label all occurences of objects
in a previously acquired data set. Instead, it may ask the
human, “I discovered several instances of something that looks
like an interesting object. What is the name of the object?” In
this paper, we take a first step in this direction.

We propose an approach to segment and discover objects
of multiple occurrences without supervision, where an object
is defined as a constellation of object parts. We segment
input point clouds and treat each segment as an instance of a
potential object part. In our work, object parts are determined
by grouping similar segments together using clustering in
a predefined feature space. In addition, the segments are
clustered in the geometric space and the number of resulting
connected components is used as an upper bound on the
number of potential object classes. Then, two major reasonings
are used to determine a class label for each segment: First,
different object parts that often occur close to each other
are more likely to correspond to the same object class. For

Fig. 1: 3D range scan of an indoor scene. Two different types of chairs are
detected by exploiting the fact that particular constellations between back rests
and seats occur more than once in the scene.

example, the fact that a back rest of a chair and a chair seat
are frequently observed in close vicinity to each other rises
the evidence that there is an object class for which more than
one instance appears in the scene (see Fig. 1). Second, an
instance of an object part may appear to correspond to some
object class, but given its physical context it is more likely to
be part of another class. For example, a segment may appear
to be a chair leg, but if surrounded by table parts it is more
likely to be a part of a table. Both ideas are implemented using
probabilistic reasoning based on Conditional Random Fields
(CRFs) [1].

II. RELATED WORK

Most work on repetition detection has been in the field of
image analysis. Detection of regularly repeating patternshas
been the focus of many researchers [2, 3] with some recent
work by Loy and Eklundh [4] on grouping of features based
on symmetry, and by Wenzelet al. [5] on using symmetry
to detect repetitive structures in facade images. Zeng and
van Gool [6] employ point-wise repetition to improve seg-
mentation results using mutual information. In 3D, discovery
and utilization of repetition has been adressed in computer
aided design and other synthetic models [7, 8, 9]. The work
of Bokeloh et al. [10] is more closely related to this work.
The authors proposed an algorithm for detecting structural
redundancy by matching symmetric constellations of feature
lines. In terms of repetition detection, the main challengeof
our work lies in the lack of a repetition unit as we do not
assume any regularity or symmetry of the repetition pattern.



In this work, we employ clustering to group similar seg-
ments in feature and geometric space. Clustering has received
a considerable amount of attention by machine learning and
pattern recognition communities. Some classic methods such
as the expectation-maximization algorithm andk-means clus-
tering assume that data can be modeled by a simple distribu-
tion, while other methods such as agglomerative clusteringare
sensitive to noise and outliers. To overcome these challenges,
alternative approaches have been proposed. Ng, Jordan, and
Weiss [11] presented a spectral clustering algorithm, which
uses eigenvectors of the data matrix to group points together,
and demonstrate how well the algorithm clusters even chal-
lenging data. Another work of interest is affinity propogation
proposed by Frey and Dueck [12]. Affinity propagation clus-
ters data by finding a subset of exemplars, which are cluster
centers selected from data. This method avoids the pitfallsof
bad initialization and does not require the number of clusters
to be prespecified. In this work, we use affinity propagation
to cluster segments in feature space.

Conditional Random Fields (CRFs) [1] are discriminative
models, that have also been applied to object recognition
problems [13, 14]. Notably, Quattoni, Collins, and Darrell[15]
presented a part-based approach for object class recognition
using a CRF. We also take a parts-based approach for objects.
Ma and Grimson [16] proposed a coupled CRF to allow for
interaction between contour and texture in image data. While
our work does not explicitly use coupled CRFs, the interaction
between part labels and class labels play a critical role in
the success. The main idea in our work which has not been
adressed previously is the use of Conditional Random Fields
without any training set. Instead, we infer from clustering
results the possible object labels.

In unsupervised object detection, several authors have pro-
posed adaptation of text analysis methods in image analysis.
For example, Liu and Chen [17] proposed a modified prob-
ablilistic latent semantic analysis (pLSA) method to detect
foreground objects from images. Sivicet al. [18] compare
pLSA and Latent Dirichlet Allocation (LDA) to discover
object categories from sets of images. Also, Endreset al. [19],
use LDA to discover object classes from range data without su-
pervision. While this approach can classify objects of multiple
classes, it assumes that a ground plane and walls are extracted
a priori and the objects are spatially disconnected. In our work,
we do not make such assumptions. We consider every segment
as a potential object part and test them to determine if they
belong to an object. Lastly, this work is similar to our previous
work [20], which also discovers objects without supervision,
but it does not explicitly label the segments as we do in this
work.

III. SEGMENTATION AND CLUSTERING

Object detection using unsupervised learning is significantly
different from using supervised learning. In fact, objects can
not be detected; that is, it is not possible to identify some
part of the input data by matching it against an instance of a
previously known object class as there is no such known object

Algorithm: SSCGF

data : Point CloudP = {p1, . . . ,pN}

input :

• Segmentation parametersκ andτ
• Cluster parametersϑ f andϑg

output:
• low-level segmentationS = {s1, . . . , sM}, si ⊂ P

• feature-space clusters of segmentsF1, . . . ,FC

• geometric clusters of segmentsG1, . . . ,GK

• class label distributionsd1, . . . ,dM, di ∈ [0,1]K

procedure:
S ← SuperPixelSegmentation(P, κ, τ)
f1, . . . , fM ← FeatureExtraction(S)
F1, . . . ,FC ← ClusterInFeatureSpace(S, ϑ f , {fi})
G1, . . . ,GK ← ClusterInGeometricSpace(S, ϑg)
P← MakePartsGraph({Fi}, {Gi},S)
P← SmoothPartsGraph(P,K)
S← MakeSceneGraph(P, {Gi},S)
S← SmoothSceneGraph(S,K)
d1, . . . ,dM ← ReadFromGraphNodes(S)

Alg. 1: Segmentation and smoothed clustering in geometric and in
feature space (SSCGF). Note that the number of segmentsM, as well
as the numbersC and K of clusters are computed inside the particular
subroutines (see text).

class. Instead, objects can only bediscovered by hypothesizing
the existence of an object based on some sort of repetition or
pattern found in the data. Thus, to discover objects, we needto
find similarities in the data. We do this by extracting features
(see Sec. III-B) and comparing them by a clustering algorithm
in the feature space, which is described in Sec. III-C.

Another problem which arises here is that thesegmentation
of the data is unknown, i.e. we do not know where the bound-
aries of the objects are. The segmentation problem is tightly
bound to the detection problem because a perfect segmentation
would make object detection very easy – a simple comparison
of the segmented object instances would suffice. To tackle
this problem we perform three steps in our algorithm: first,
we apply a low-level segmentation as described in Sec. III-A.
Then, we obtain a coarser data segmentation by clustering in
the geometric space as presented in Sec. III-C. Finally, we
obtain a further improved segmentation by reasoning on parts
of objects that occur in a similar constellation in different
instances of the scene. The details of this are described in
Sec. IV and Sec. V. An overview of the entire algorithm is
shown in Alg. 1.

A. Low-level Segmentation

The first step in our algorithm is the segmentation of the data
using the graph-based segmentation algorithm of Felzenszwalb
and Huttenlocher [21], adapted to range image data. In the
modified algorithm, we create a graphG = {V,E} of vertices
V and edgesE, where each pointp in a given point cloudP



corresponds to a vertex and an edge connects adjacent points.
Here, adjacency of two points is determined from a triangular
mesh built on the point cloud. Every edge (pi,p j) has an
associated weightwi j, which is equal to the dissimilarity∆ of
the connected pointspi andp j. In the case of a camera image,
this can be the difference of the pixel intensities; in our case,
we define∆(pi,p j) as the dot product of the normal vectorsni

andn j computed atpi andp j. This yields for smooth surfaces,
e.g. a plane or a sphere, being grouped as one segment, while
surfaces with sharp edges, e.g. between two sides of a box,
are grouped into two segments.

The algorithm begins with each vertex in its own segment.
The edges are processed by increasing weights, and the two
segmentssi and sj connected by a given edge are merged
whenever

wi j ≤ min

(

d(si) +
κ

|si|
, d(sj) +

κ

|sj|

)

,

whered(s) is the internal difference function defined by the
maximal edge weight of all edges in the minimum spanning
tree of the segments ⊆ V, and κ is a consistency parameter
that influences the granularity of the segmentation: a low value
of κ requires segments to be more consistent and thus produces
more but smaller segments.

In addition to introducing a 3D extension, we make other
modifications to the original algorithm. First, as the normal
at points with an insufficient number of neighboring points is
ill-defined, we do not force every point to be in a segment.
No vertices are generated in the graph for these points, and
thus no segments are created containing them. Second, as a
post-processing step, we remove segments that contain fewer
points than a given minimal valueτ, which are often caused
by sensor imperfections or occlusions. In our experiments,a
good choice of the segmentation parameters turned out to be
κ = 9 andτ = 100.

B. Feature Extraction

As shape descriptors, we use spin images [22], shape
distributions [23], and shape factors [24]. Aspin image for
a given pointp with normal vectorn is defined as a 2D
histogramH oriented along the linel throughp with direction
n. Each bin ofH counts the points with a certain distance to
l and the plane throughp with normal vectorn. For the spin
image descriptor of a segments, we form vectorshi of stacked
lines of the histogramsHi for all points pi ∈ s and compute
the averagehs over all hi.

A shape distribution is defined as a histogram of values of a
predefined functionf : Pr → �, wherer is the arity of f and
is usually a value between 1 and 4. In our implementation, we
use two binary functionsfd(pi,p j) and fa(pi,p j), namely the
Euclidean distance betweenpi and p j and the dissimilarity
∆(pi,p j) as defined above. The resulting histogram vectors
hd and ha are computed by evaluatingfd and fa on all
pairs of points in a segments. To make the feature vectors
invariant with respect to the sample density, we normalize
the histogramshd and ha by the total number of bin entries.

As we consider scale as a feature of an object, we do not
perform normalization with respect to the maximum distance
encountered in a segment.

Lastly, we computeshape factors per segment, i.e. the nor-
malized eigenvalues of the covariance matrixCi of all points
in segmentsi, collected in a vectorh f . For each individual
descriptor, we compute a PCA to reduce the dimensionality,
and the results are combined into a feature vectorf .

C. Clustering in Feature Space

To find similar segments, we apply a clustering algorithm
in the feature space. The number of existing clustering al-
gorithms is large, and they include agglomerative clustering,
k-means clustering [25], mean-shift estimation [26], spectral
clustering [27, 11], and, more recently, affinity propagation
(AP) [12]. We explored some of these clustering methods and
decided for AP clustering because of its robustness and its
ability to estimate the number of clusters implicitly. The basic
principle is to determineexemplars out of all given points
that are well-suited to explain the remaining data points. The
application of the algorithm to our case is sketched as follows:

First a similarity valueςi j is computed for all pairs (fi, f j)
of feature vectors. In our implementation, we use the negative
squared Euclidean distance betweenfi and f j. Then, in an
iterative manner, two functions, namely theresponsibility
r(i, j) and theavailability a(i, j) are computed for each vector
pair, wherer expresses how well-suitedf j is to serve as an
exemplar forfi and a expresses how appropriate it would be
for fi if f j were its exemplar. These functions are defined as

r(i, j) = ςi j − max
j′ s.t. j′, j

{

a(i, j′) + ςi j′
}

(1)

a(i, j) = min



















0, r( j, j) +
∑

i′ s.t.i′<{i, j}

max
{

0, r(i′, j)
}



















, (2)

where Eq. (2) is applied only ifi , j. Initially, a(i, j) is set to
zero for all i and j. For the special case of “self-availability”
the rule

a(i, i) =
∑

i′ s.t.i′,i

max
{

0, r(i′, i)
}

(3)

is used. In each iteration, responsibilities and availabilities are
computed and then, for eachfi, an f j is determined so that the
sum a(i, j) + r(i, j) is maximized. If the resultingj equalsi,
then fi is identified as an exemplar, otherwisef j serves as
an exemplar forfi. The stopping criterion of the iteration
is met when the assignments of points to exemplars do not
change over a fixed number of iterations or a given number
of maximum iterations is reached. The only parameterϑ f of
the algorithm is theself-similarity, which can be specified
either for each data point individually or commonly for all data
points. This value influences the number of resulting clusters:
a high value results in more clusters, a low value in fewer
clusters. In our experiments, a good value turned out to be
−0.2, specified equally for all data points.

As a result, we obtainC clustersF1, . . . ,FC of similar
segment instances, where each cluster defines a potential
object part.



D. Clustering in Geometric Space

From the clustering in feature space we obtain a grouping
of segments into object parts. However, we also want to reason
on the object level, where objects are considered to consistof
several parts. To accomplish this, we also perform a clustering
in the geometric space where segments are represented by their
center of gravity (COG). Unfortunately, affinity propagation
(AP) is not a good choice to perform the clustering in the
geometric space because it produces “star-like” clusters,i.e.
all points in a cluster are connected directly to the cluster
exemplar. This restricts the type of objects that can be detected,
as for many objects such an exemplar part can not be found.
Also, in AP clustering, the distances between points are not
explicitly bounded, which often results in counter-intuitive
clustering results.

Therefore, we apply a different, much simpler strategy to
cluster the segments. We define a distance thresholdϑg and
connect only those pairs of segments (si, sj) with an edge, for
which the COGs are closer to each other thanϑg. As a result,
all connected components will be farther away from each other
than ϑg, which rises the evidence that they correspond to
different object instances. This will be of importance later on.

IV. SCENE GRAPH AND PARTS GRAPH

One important aspect of the work presented here is the
reasoning about objectinstances solely based on the extrac-
tion of potential objectparts, represented as segments. The
challenge here is to find a proper definition of an object class
as we do not know of how many parts an object consists and
whether or not all of its parts are visible. In addition, the
number of observed objects is unknown – we only know the
number of object parts. Two intuitions and one assumption
help us to reason on parts to discover objects: First, we
exploit the fact that segments which occur physically close
to each other are more likely to correspond to the same
object. Second, segments of one type which occur often in
the vicinity to segments of another type give evidence that
several instances from the same object class exist. Referring
back to the introductory example, we can say: if we find many
backrests of a chair that are all close to chair seats, then there is
probably an object class which consists of at least these two
parts. Furthermore, we work under the assumption that the
number of possible object classes is bounded by the number
of connected components in the graph which results from
clustering the geometric space using the distance threshold
ϑg. We call this thescene graph and give details in Sec. IV-A.
Our assumption implicitly states that two objects are always
supposed to be farther away from each other thanϑg. This may
seem very restrictive, but in fact, it limits the applicability of
the algorithm not as much as it appears. The reason is that the
number of connected components only bounds the number of
objectclasses, not the number of actual objectinstances. Thus,
even if two different objects are closer to each other thanϑg,
there are usually enough other connected components with at
least two objects of the same class, so that the number of
connected components exceeds the number of object classes.

Fig. 2: Example of the scene graph obtained from the range scanshown in
Fig. 1. Notice that segments with the label G are given the class labels 25
and 27, depending on their neighboring segments. The figure shows the scene
graph after smoothing as described in Sec. V-B.

To analyse the multiple occurence of segments representing
the same object part in constellation with segments that
represent a different part, we define another, simpler graph
structure named theparts graph. The nodes in the parts graph
correspond to clusters in feature space as described in Sec.III-
C and the edges represent connections in the scene graph.
Details on the parts graph are given in Sec. IV-B.

A. The Scene Graph

After clustering the segments in the geometric space, we
obtainK subsets ofS, namelyG1, . . . ,GK . From our assump-
tion, the number of potential object classes is bounded byK.
To encode the fact that neighboring segments are more likely
to correspond to the same object class, we define the scene
graphS, which consists of the node setVs = S and the
edge setEs = {(si, sj) | ∃Gi : (si, sj) ⊂ Gi}. Thus,Es consists
of all connections between segments that are closer to each
other thanϑg. Furthermore, to each node in scene graph we
assign aclass label y ∈ {1, . . . ,K}. And finally, as each node
s of S corresponds to an instance of an object part, we can
associate it with apart label x ∈ {1, . . . ,C}. At first sight, x
should be fixed to the index of the feature space clusterF

to which s belongs. However, as we formulate our problem
in a probabilistic framework, we say that this index is only
the most likely part label fors and all others are still possible.
Details of this are explained in Sec. V.

An example of a scene graph is shown in Fig. 2. Here,
part labels are represented as capital letters and class labels as
numbers. We can see that many of the connected components
only consist of one segment, as the segments are mostly far
apart from each other. Also observe that there are segments
with the same part labelx, but with different class labelsy.
This stems from the fact that they occur in different contexts.



Fig. 3: Example of the parts graph obtained from the scan shownin Fig. 1.
The positions of the nodes are determined at random, as only thetopology
of the graph is important. Again, part labels are representedas capital letters
and class labels as numbers.

B. The Parts Graph

As mentioned before, apart from the class labels of specific
segment instances, we also want to reason on the interaction
among different object parts in general. We do this using the
parts graphP. The node setVp of P corresponds to all
clustersF1, . . . ,FC of the feature space, and the set of edges
Ep is defined as

Ep =
{

(Fi,F j) | i , j,∃(sk, sl) ∈ Es : sk ∈ Fi ∧ sl ∈ F j
}

.

This means, whenever there are two segments connected in the
scene graph, there is a connection between the corresponding
segment types in the parts graph. As in the scene graph, each
node of the parts graph has an assigned part labelx and a
class labely, although with a slightly different interpretation:
An assignment of a class labely to a nodes in S means
that the particular segment instances is most probably part of
an object of classy, whereas the same assignment to a node
F in P means that in general segments that are elements of
the clusterF are primarily more likely to be of classy. In
contrast to the scene graph, each node ofP has a unique
most-likely part labelx, because these are directly determined
by the feature space clustering.

In Fig. 3, we see an example of a parts graph. The positions
of the nodes have been defined randomly as only the topology
of the graph is important. Note that this concrete example of
a parts graph is non-planar, although there is an equivalent
planar representation. In general however, parts graphs may
not be representable as planar graphs, for example in the case
of a full connectivity.

V. SMOOTHING

So far, we described the construction of the two graph
structures “scene graph” and “parts graph”, but we did not
specify how these are used to determine class labels for the
segments. We do this using probabilistic reasoning: the nodes
in both graphs are interpreted as random variables and the
edges are used to model conditional dependencies between
adjacent nodes. For the scene graph, this means that the class
label yi of a given segmentsi not only depends on the local
evidence of the nodei, i.e. the featuresfi extracted fromsi, but
also on the class labelsy j of all neighborssj in the scene graph.
Intuitively, a strong evidence forsi to belong to a certain class
may “outvote” the weaker evidence forsj being of a different
class. Similarly, a class labelyi for a given nodeFi in the parts
graph may be so strong that itpropagates to the class labels
of the neighbors ofFi. The reasoning here is that if a certain
type of segmentFi is very likely to be of a given class, then
all segment types that occur frequently in the vicinity ofFi

are also more likely to be of the same class. Applying this
strategy to a graph leads to asmoothed graph because it tends
to remove sudden changes of class labels between adjacent
graph nodes.

In our implementation, we use Conditional Random Fields
(CRFs) [1] to perform the smoothing. Our CRF models the
conditional distribution

p(y | f ) =
1

Z(f )

∏

V

ϕ(fi, yi)
∏

(i, j)∈E

ψ(fi, f j, yi, y j), (4)

where Z(f ) =
∑

y′
∏N

i=1 ϕ(fi, y′i)
∏

(i j)∈E ψ(fi, f j, y′i , y
′
j) is the

partition function, V is eitherVs or Vp andE is Es or Ep.
The dinstinction between the scene graph and the parts graph
is made using different definitions for thenode potential ϕ and
the edge potential ψ. This will be described next.

However, before we proceed with the definition of the
potentials, we mention some aspects in our formulation of
the CRFs that are slightly different from others found in the
literature. First, we recall that node and edge potentials are
usually defined using the log-linear model so that, for the case
of the node potential

logϕ(fi, yi) = wn · fn(fi, yi), (5)

wherewn is a weight vector andfn a feature function, which
is high if fi andyi in some sense match well. For example, it
can be defined as the outcome of a local classification. For our
case of an unsupervised setting, we letfn be the conditional
probability p(yi | fi), i.e. a scalar value that is high ifyi matches
well to fi. The same is also done for the edge potentials. As
a result, the feature functions range between 0 and 1. This
simplifies the weighting between node and edge potentials and
turns the weight vectorswn and we into scalars as well. In
contrast to supervised learning with CRFs, we can not learn the
node and edge weightswn andwe, as there is no training data
available. Instead, we have to determine them manually. We do
this using an appropriate evaluation measure on a validation
set. This is described in Sec. VI.



A. Smoothing the Parts Graph

After creating the parts graph, the next step in our algorithm
is to run the inference step using the CRF that corresponds
to P. First, we note that the node features of this CRF are
not equal to the feature vectorsf1, . . . , fM extracted from the
segments, because a node inP actually represents a cluster
in feature space and not a single segment. Instead, we define
the node features inP to be the mean̄f of all feature vectors
inside the corresponding cluster.

Furthermore, we observe that the dependence between fea-
ture vectorsf and labelsy is only implicit as we cannot model
it directly. We can, however, model conditional probabilities
between segment labelsx and class labelsy, as well as between
feature vectorsf and segment labelsx. Following the definition
of the node feature ofP as a conditional probability, we have

p(yi | f̄i) =
C

∑

x=1

p(yi | x)p(x | f̄i), (6)

where we assume a conditional independence of the labels and
the features given the segment types. To obtain the two terms
in the sum, we proceed as follows.

The class label posteriorp(yi | x) is computed using Bayes’
rule with the assumption of a uniform prior of the labels:

p(yi | x) =
p(x | yi)p(yi)

∑

y′ p(x | y′i)p(y′i)
=

p(x | yi)
∑

y′ p(x | y′i)
(7)

The class likelihoodsp(x | yi) are determined by counting the
occurence of segments of typex inside the geometric cluster
yi and dividing by the number of all segments inyi. The
posteriorsp(yi | x) can be computed at creation time ofP
and collected in aK ×C matrix, as they do not depend on the
node features.

For the segment type posteriorp(x | f̄i), we perform a
nearest-neighbor search in feature space inside a sphere of
radiusρ aroundf̄i. Denoting the number of feature vectors in
the sphere with typex as νx and the number of all elements
in the sphere asν, we approximatep(x | f̄i) with νx/ν.

Similar to Eqn. (6), we define the edge feature ofP as

p(yi, y j | f̄i, f̄ j) =
C

∑

xi=1

C
∑

x j=1

p(yi, y j | xi, x j)p(xi, x j | f̄i, f̄ j). (8)

As is common in literature related to CRFs, the edge features
are designed to be zero whenever the labelsyi and y j of
the adjacent nodes are different (“generalized Potts model”,
see [28, 29]). The rationale of this is that only edges between
equally labeled nodes should propagate the belief between the
nodes. Thus, the first term in the sum of Eqn. (8) can be
simplified to p(yi j | xi, x j), where yi j is the common label
of the nodes. We can compute this expression by counting
the occurences of edges betweenxi and x j in clusteryi j and
applying Bayes rule as in Eq. (7).

For the second term in the sum of Eqn. (8), we apply the
formulation

p(xi, x j | f̄i, f̄ j) = p(xi | f̄i, f̄ j)p(x j | f̄i, f̄ j)

= p(xi | f̄i)p(x j | f̄ j), (9)

which results from the conditional independence assumptions
on xi andx j, and from those forxi andf j, as well asx j andfi.
The resulting termsp(xi | f̄i) and p(x j | f̄ j) are again computed
using nearest-neighbor.

Once the edge and node potentials are defined, we can do
inference on the parts graph. We do this using max-product
loopy belief propagation. This is an approximate algorithm
that returns labelsy that maximize the conditional probability
given in Eqn. (4). However, it also returns distributions over
the class labels at each node. These will be used later.

B. Smoothing the Scene Graph

From the output of the inference step run onP, we obtain
at each node ofP a distribution over class labelsy. As the
nodes ofP uniquely represent the segment typesx, we can
use that information to read the probabilityp(y | x) directly
from the parts graph. Thus, when creating the scene graph, we
can again determine values forp(y | x), as we did this for the
parts graph, with the difference that nowp(y | x) also reveals
the conditional dependencies between labels of segment types
x, that have been observed in a close distance. This means,
that we again compute a matrix forp(y | x), but now we
simply read the class label distributions off the nodes ofP,
as they result from belief propagation. In accordance to the
node feature ofP, we define the node feature ofS as the
conditional probability

p(yi | fi) =
C

∑

x=1

p(yi | x)p(x | fi). (10)

Note that now the feature vectorsfi correspond to those that
are actually extracted for each segment, i.e. at each node of
S. As before, the termp(x | fi) is computed with a nearest-
neighbor search in feature space.

Finally, we define the edge feature ofS as

p(yi, y j | fi, f j) =
C

∑

xi=1

C
∑

x j=1

p(yi j | xi, x j)p(xi, x j | fi, f j), (11)

where we denote the common class label withyi j as above
and the right term in the sum is computed according to
Eqn. (9). Unfortunately, the computation ofp(yi j | xi, x j) is
not straightfoward, as we can not simply read this value from
the edges ofP. Instead, we use the following strategy: The
only interesting case is when the class labels ofxi and x j are
equal. Thus, we can interpret the common labelyi j as anedge
label that is determined by one of the adjacent node labels.
In a sense, this expresses which of the nodes was responsible
for the common edge labelyi j. We can formulate that using a
binary variablec that is true if nodexi is responsible foryi j

and false otherwise. Using this, we can estimatep(yi j | xi, x j)
by marginalizing out overc:

p(yi j | xi, x j) =

∑

c

p(yi j | xi, x j, c)p(c, | xi, x j)

= p(yi j | xi, x j, c)p(c) + p(yi j | xi, x j,¬c)p(¬c)

= 0.5 ∗ p(yi j | xi) + 0.5 ∗ p(yi j | x j) (12)



Here, we assumed thatc is independent onxi and x j and that
its prior probability is 0.5. Using Eqn. (12), we can compute
p(yi j | xi, x j) by reading the values forp(yi j | xi) and p(yi j | x j)
from the parts graph. As for the parts graph, we use max-
product loopy belief propagation for the inference in the scene
graph.

C. Obtaining the Class Label Distributions

Once the inference step on the scene graph is performed,
we read the class label distributionsd1, . . . ,dM from all nodes
of S. This is possible, as mentioned before, because belief
propagation stores these distributions for each node. For the
final discovery result, we report the most likely class labelat
each node, but it is important to note that the distributions
may be useful for later reference, for example in an online
application, where several data sets are acquired subsequently
and the discovery of similar objects is done across the data
sets.

VI. EXPERIMENTAL RESULTS

We tested the algorithm on data acquired from real-world
scenes using a nodding SICK laser scanner with a horizontal
opening angle of 100 degrees and a nodding range of 90
degrees. Each set was captured at a horizontal resolution of
0.25 degrees and a vertical resolution of 0.2 degrees. We
evaluated 50 data sets from four different rooms, each room
containing some number of chairs, trash cans, flip charts,
plants, etc. Objects were placed up to 90 degrees of rotation
from each other. Most scenes contained two or three objects
of the same type, but some scenes contained up to four objects
of three different kinds.

A. Qualitative Evaluation

In addition to the result shown in Fig. 1, Fig. 4 shows some
more results of our object dicovery algorithm. All points that
belong to the same object are depicted with the same color, and
the numbers represent the class label to which each segment
belongs. For instance, the scene in Fig. 1 contains four chairs
of two different kinds, and they are correctly labeled as 25
(blue) and 27 (violet). Furthermore, we see that also most of
the background segments, e.g. on the floor, ceiling and walls,
have plausible labels. For many of them, only the local class
label evidence was relevant, as they are not connected in the
scene graph.

B. Quantitative Evaluation

In contrast to supervised learning algorithms, the perfor-
mance of an unsupervised object discovery method is difficult
to evaluate, as there is no real ground truth. The major
problem here is that humans tend to be focused and might miss
similarities in the data that are irrelevant for them. However,
a good way to still evaluate unsupervised object discovery
methods has been recently proposed by Tuytelaarset al. [30].
This method uses theconditional entropy of the “ground truth”
class labelsy∗ given the class labelsy that resulted from

the discovery algorithm. Applied to our case, the conditional
entropy is computed as

H(Y∗ | Y) =
K∗
∑

σ(y)=1

p(σ(y))
K∗
∑

y∗=1

p(y∗ | σ(y)) log
1

p(y∗ | σ(y))
,

whereK∗ is the number of ground truth classes andσ is an
oracle mapping from the set of discovered classes to the set
of ground truth classes, which is determined from atuning
set (for details see [30]). Intuitively,H(Y∗ | Y) determines the
number of ground truth labels a segment can have once its
discovered object label is known. The smaller this number is,
the better is the result of the discovery algorithm. In the best
case it is zero, which means that each discovered class label
directly implies a ground truth label.

We created hand labeled ground truth data consisting of the
five classes “ceiling”, “floor”, “wall”, “chair”, and “other”,
and evaluated the performance of our algorithm for different
values of the parametersϑg, ρ, and the node and edge weights
(wn,we). The results are shown in Fig. 5. Two conclusions
can be drawn from these graphs: First, with values around 1,
the results are very good compared to the results of similar
algorithms described in [30]. And second, our algorithm is
relatvely robust against small changes in the choice of the
parameters, especially for the distance thresholdϑg, which is
responsible for the clustering in geometric space.

VII. CONCLUSION AND OUTLOOK

We presented a fully unsupervised approach to segment 3D
range scan data and to discover objects of a similar type that
occur more than once in the scene. Our approach uses the only
assumption that the number of actually existing object classes
is not higher than the number of connected components in
the scene, which holds in most cases. We applied probablistic
reasoning based on Conditional Random Fields to model
conditional dependencies of object part labels that are close
to each other. In experiments on real data we showed that our
algorithm is able to discover objects such as chairs in an indoor
environment. In the future, we plan to use this technique in an
online framework where the evidence of existing object classes
is accumulated over time and across different data sets.
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