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Abstract— In this paper, we present an unsupervised technique
to segment and detect objects in indoor environments. The main
idea of this work is to identify object instances whenever there
is evidence for at least one other occurence of an object of the
same kind. In contrast to former approaches, we do not assume
any given segmentation of the data, but instead estimate the
segmentation and the existence of object instances concurrént
We apply graph-based clustering in feature and in geometric
space to presegmented input data. Each segment is treated
as a potential object part, and the inter-dependence of object
labels assigned to part clusters are modeled using a Conditional
Random Field (CRF) named the “parts graph”. Another CRF is

then applied to the scene graph to smooth the class labels lJSIr]gFig. 1: 3D range scan of an indoor scene. Twfiedent types of chairs are

th dlstgrllgultlons obtaln((ejd from the plarts grapg. First resglts ON " detected by exploiting the fact that particular constita between back rests
Indoor aser range data are evaluated and presented. and seats occur more than once in the scene.

I. INTRODUCTION

The ability for a robot to learn and discover objects withoutxample, the fact that a back rest of a chair and a chair seat
any human guidance enhances its autonomy and makes it mae frequently observed in close vicinity to each othersrise
independent. Such a robot requires no prior training and cde evidence that there is an object class for which more than
more easily adapt to new, unknown environments. It is alsme instance appears in the scene (see Fig. 1). Second, an
able to autonomously draw conclusions about the structurstance of an object part may appear to correspond to some
of its environment. This functionality is useful when robotobject class, but given its physical context it is more Kk
operate fully autonomously without human interaction. Bute part of another class. For example, a segment may appear
also when robots live with humans, a high-level semantio be a chair leg, but if surrounded by table parts it is more
analysis of the environment helps the robot to communicdtkely to be a part of a table. Both ideas are implementedgusin
with a human. As an example, a robot which can deteptobabilistic reasoning based on Conditional Random Bield
similarities of objects encountered in the environment, (&RFs) [1].
longer requires a human to first label all occurences of ebjec
in a previously acquired data set. Instead, it may ask the Il. RELATED WORK
human, “I discovered several instances of something tlekslo  Most work on repetition detection has been in the field of
like an interesting object. What is the name of the object?” image analysis. Detection of regularly repeating pattéras
this paper, we take a first step in this direction. been the focus of many researchers [2, 3] with some recent

We propose an approach to segment and discover objestak by Loy and Eklundh [4] on grouping of features based
of multiple occurrences without supervision, where an abjeon symmetry, and by Wenzet al. [5] on using symmetry
is defined as a constellation of object parts. We segmedaot detect repetitive structures in facade images. Zeng and
input point clouds and treat each segment as an instance ofia Gool [6] employ point-wise repetition to improve seg-
potential object part. In our work, object parts are detagdi mentation results using mutual information. In 3D, disegve
by grouping similar segments together using clustering and utilization of repetition has been adressed in computer
a predefined feature space. In addition, the segments aiged design and other synthetic models [7, 8, 9]. The work
clustered in the geometric space and the number of resultioigBokeloh et al. [10] is more closely related to this work.
connected components is used as an upper bound on The authors proposed an algorithm for detecting structural
number of potential object classes. Then, two major reagsni redundancy by matching symmetric constellations of featur
are used to determine a class label for each segment: Filisgs. In terms of repetition detection, the main challenfe
different object parts that often occur close to each otheur work lies in the lack of a repetition unit as we do not
are more likely to correspond to the same object class. Fssume any regularity or symmetry of the repetition pattern



In this work, we employ clustering to group similar seg
ments in feature and geometric space. Clustering has etei

a considerable amount of attention by machine learning and
pattern recognition communities. Some classic methodl st

as the expectation-maximization algorithm aadheans clus-
tering assume that data can be modeled by a simple distri
tion, while other methods such as agglomerative clusteaieg

sensitive to noise and outliers. To overcome these chakeng

alternative approaches have been proposed. Ng, Jordan,
Weiss [11] presented a spectral clustering algorithm, thi

uses eigenvectors of the data matrix to group points togeth

and demonstrate how well the algorithm clusters even ch
lenging data. Another work of interest ihiaity propogation
proposed by Frey and Dueck [12]fifity propagation clus-
ters data by finding a subset of exemplars, which are clus
centers selected from data. This method avoids the pitdlls
bad initialization and does not require the number of chsste
to be prespecified. In this work, we uséimity propagation
to cluster segments in feature space.

Conditional Random Fields (CRFs) [1] are discriminativ
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f1,...,fu « FeatureExtraction(S)
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B « MakePartsGraph({Fi},{Gi},S)
P « SmoothPartsGraph(§, K)

S « MakeSceneGraph(3,{Gi},S)

e G « SmoothSceneGraph(S, K)

models, that have also been applied to object recogniti
problems [13, 14]. Notably, Quattoni, Collins, and Darf&b)]
prgsented a part-based approach for object class reaynitinig. 1: segmentation and smoothed clustering in geometric and i
using a CRF. We also take a parts-based approach for objectsature space (SSCGF). Note that the number of segmdntas well
Ma and Grimson [16] pI’OpOSGd a coupled CRF to allow fords the number€ and K of clusters are computed inside the particular
. . . .. subroutines (see text).

interaction between contour and texture in image data. While

our work does not explicitly use coupled CRFs, the inteoeacti

between part labels and class labels play a critical role in ) _ o
the success. The main idea in our work which has not be€/@Ss- Instead, objects can onlydiscovered by hypothesizing

adressed previously is the use of Conditional Random Fieltf§ €xistence of an object based on some sort of repetition or
without any training set. Instead, we infer from cIusteringattem found in the data. Thus, to discover objects, we teeed
I

results the possible object labels. nd similarities in the data. We do this by extracting featur

In unsupervised object detection, several authors have pfe€ Sec. lll-B) and comparing them by a clustering algorith
posed adaptation of text analysis methods in image analydfsthe feature space, which is described in Sec. lll-C.
For example, Liu and Chen [17] proposed a modified prob- Another problem WhIC'h arises here is that segmentation
ablilistic latent semantic analysis (pLSA) method to detef the data is unknown, i.e. we do not know where the bound-
foreground objects from images. Sivig al. [18] compare &r€s of the objects_ are. The segmentation problem is jaghtl_
PLSA and Latent Dirichlet Allocation (LDA) to discover Pound to the detection problem because a perfect segnmtati
object categories from sets of images. Also, Enates. [19], would make object det_ecthn very easy — a simple comparison
use LDA to discover object classes from range data without f the segmented object instances wouldfise. To tackle
pervision. While this approach can classify objects of mpieti i problem we perform three steps in our algorithm: first,
classes, it assumes that a ground plane and walls are extraf¢ apply a low-level segmentation as described in Sec. lll-A
a priori and the objects are spatially disconnected. In qrkw Then, we ob_taln a coarser data segmentation by clqstenng in
we do not make such assumptions. We consider every segniffit 980metric space as presented in Sec. IlI-C. Finally, we
as a potential object part and test them to determine if th@ptain a further improved segmentation by reasoning orspart
belong to an object. Lastly, this work is similar to our prass  © objects that occur in a S|m|Iar' constel!atmn mffdre.nt .
work [20], which also discovers objects without supervisio INStances of the scene. The details of this are described in

but it does not explicitly label the segments as we do in thieC- IV and Sec. V. An overview of the entire algorithm is
work. shown in Alg. 1.

ondy,...,dy « ReadFromGraphNodes(G)

[ll. SEGMENTATION AND CLUSTERING

Object detection using unsupervised learning is signifigan  The first step in our algorithm is the segmentation of the data
different from using supervised learning. In fact, objects carsing the graph-based segmentation algorithm of Felzealbzw
not be detected; that is, it is not possible to identify someand Huttenlocher [21], adapted to range image data. In the
part of the input data by matching it against an instance ofnaodified algorithm, we create a gragh= {V, &} of vertices
previously known object class as there is no such known bbjel and edges, where each poinp in a given point cloudP

A. Low-level Segmentation



corresponds to a vertex and an edge connects adjacent.poifssswe consider scale as a feature of an object, we do not
Here, adjacency of two points is determined from a triangulperform normalization with respect to the maximum distance
mesh built on the point cloud. Every edgp;,f;) has an encountered in a segment.

associated weight;;, which is equal to the dissimilarits of Lastly, we computeshape factors per segment, i.e. the nor-
the connected poings andp;. In the case of a camera imagemalized eigenvalues of the covariance magixof all points

this can be the dierence of the pixel intensities; in our casein segments;, collected in a vectoh. For each individual

we defineA(p;, p;) as the dot product of the normal vecters descriptor, we compute a PCA to reduce the dimensionality,
andn; computed ap; andp;. This yields for smooth surfaces,and the results are combined into a feature vettor

e.g. a plane or a sphere, being grouped as one segment, We"eCIustering in Feature Space
surfaces with sharp edges, e.g. between two sides of a bo

are grouped into two segments. i the f Th b f existi | : |
The algorithm begins with each vertex in its own segmeHE t € ea_lture space. 1he number o existing c usterlng_ al-
5|thms is large, and they include agglomerative clustgri

The edges are processed by increasing weights, and the %9
c

X
To find similar segments, we apply a clustering algorithm

segmentss and s; connected by a given edge are merge means clustering [25], mean-shift estimation [26], sgéct
) ustering [27, 11], and, more recentlyfinity propagation

whenever )
(AP) [12]. We explored some of these clustering methods and
Wi < minfd(s) + L,d(Sj)"r X, decided for AP clustering because of its robustness and its
IS Isjl ability to estimate the number of clusters implicitly. Thaskc

whered(s) is the internal difference function defined by the Principle is to determineexemplars out of all given points
maximal edge weight of all edges in the minimum spannirf§gat _arelwell—suned to gxplaln the remaining data pointee T
tree of the segmerg C V, and« is a consistency parameterapp_llcanon_of_th(_a algorithm to our case is sketched asvallo
that influences the granularity of the segmentation: a ldweva _ First @ similarity valueg;; is computed for all pairsf(fj)
of k requires segments to be more consistent and thus produegteature vectors. In our implementation, we use the negati
more but smaller segments. squared Euclidean distance betwefgrand fj. Then, in an

In addition to introducing a 3D extension, we make othdferative manner, two functions, namely thesponsibility
modifications to the original algorithm. First, as the nokmd (- J) and theavailability a(i, j) are computed for each vector

at points with an instlicient number of neighboring points isPa"» Wherer expresses how well-suite is to serve as an
ill-defined, we do not force every point to be in a segmerfgXémplar forfi anda expresses how appropriate it would be

No vertices are generated in the graph for these points, dpy fi if fj were its exemplar. These functions are defined as

thus no segments are created containing them. Second, as ar(j, j) = ;- _max_{a(i, i) +§ij,} (1)

post-processing step, we remove segments that containm fewe Isty#]

points than a given minimal valug which are often caused { ) o }
minq0,r(j, j) + Z max{o,r(i’, )}, (2)

by sensor imperfections or occlusions. In our experimemts, &l J)

good choice of the segmentation parameters turned out to be stigli.j)
k=9 andr = 100. where Eq. (2) is applied only if# j. Initially, a(i, j) is set to
) zero for alli and j. For the special case of “self-availability”
B. Feature Extraction the rule
As shape descriptors, we use spin images [22], shape a(i,i) = Z max{0,r(i’,i)} 3)
distributions [23], and shape factors [24]. ghin image for i’sti’#i

a given pointp with normal vectorn is defined as a 2D is used. In each iteration, responsibilities and availids! are

histogramH oriented along the linethroughp with direction computed and then, for eath anf; is determined so that the

n. Each bin ofH counts the points with a certain distance tgum a(i, j) + r(i, j) is maximized. If the resulting equalsi,

| 'and the plane througp with normal vectom. For the spin thenf; is identified as an exemplar, otherwi$g serves as

image descriptor of a segmegtwe form vectord; of stacked an exemplar forf;. The stopping criterion of the iteration

lines of the histogramsd; for all pointsp; € s and compute is met when the assignments of points to exemplars do not

the averagén® over all h;. change over a fixed number of iterations or a given number
A shape distribution is defined as a histogram of values of @f maximum iterations is reached. The only parametgiof

predefined functiorf : #' — R, wherer is the arity off and the algorithm is theself-similarity, which can be specified

is usually a value between 1 and 4. In our implementation, veéher for each data point individually or commonly for aditd

use two binary functiondq(pi, p;) and fa(pi, p;), namely the points. This value influences the number of resulting chsste

Euclidean distance betwegn and p; and the dissimilarity a high value results in more clusters, a low value in fewer

A(pi,pj) as defined above. The resulting histogram vectoctusters. In our experiments, a good value turned out to be

hd and h? are computed by evaluatindy and f, on all -0.2, specified equally for all data points.

pairs of points in a segmers To make the feature vectors As a result, we obtairC clusters#,...,¥c of similar

invariant with respect to the sample density, we normalizegment instances, where each cluster defines a potential

the histogram#$1® and h? by the total number of bin entries. object part.



D. Clustering in Geometric Space

From the clustering in feature space we obtain a groupil
of segments into object parts. However, we also want to reas

on the object level, where objects are considered to coobist g5 ! \: -
. . . § B13 B3 A0 . il E
several parts. To accomplish this, we also perform a cluger &9 & B EB .. B3 B3
in the geometric space where segments are representedty 1 ci - cs  gB _ E9
center of gravity (COG). Unfortunatelyfaity propagation £ oo CoEE

(AP) is not a good choice to perform the clustering in th
geometric space because it produces “star-like” clusters, o D1 > -

all points in a cluster are connected directly to the clust
exemplar. This restricts the type of objects that can bectisde

as for many objects such an exemplar part can not be foul b3 G2 H30
Also, in AP clustering, the distances between points are r ;‘m %q B3
explicitly bounded, which often results in counter-initgt o3 D1

clustering results.

Therefore, we apply a fferent, much simpler strategy to
cluster the segments. We define a distance thresiland Fig. 2: Example of the scene graph obtained from the range sioann in
connect only those pairs of segmerdsg;) with an edge, for Fig. 1. Notice that segments with the label G are given thesdakels 25
which the COGs are closer to each other tlﬂ@nAs a result and 27, depending on their neig.hbori_ng segments. The figunessthe scene

. ' geraph after smoothing as described in Sec. V-B.

all connected components will be farther away from eachroth
than ¢, which rises the evidence that they correspond to

different object instances. This will be of importance later on. ) )
To analyse the multiple occurence of segments representing

IV. SCENE GRAPH AND PARTS GRAPH the same object part in constellation with segments that

One important aspect of the work presented here is thepresent a dierent part, we define another, simpler graph
reasoning about objeéhstances solely based on the extrac-structure named thgarts graph. The nodes in the parts graph
tion of potential objectparts, represented as segments. Theorrespond to clusters in feature space as described iflBec.
challenge here is to find a proper definition of an object cla§s and the edges represent connections in the scene graph.
as we do not know of how many parts an object consists aRgtails on the parts graph are given in Sec. IV-B.
whether or not all of its parts are visible. In addition, the
number of obs_erved objects is_ un_k_nown — we only know th@ The Scene Graph
number of object parts. Two intuitions and one assumption
help us to reason on parts to discover objects: First, weAfter clustering the segments in the geometric space, we
exploit the fact that segments which occur physically clog@tainK subsets ofS, namelyG, ..., Gk. From our assump-
to each other are more likely to correspond to the sartien, the number of potential object classes is bounded by
object. Second, segments of one type which occur often Ta encode the fact that neighboring segments are more likely
the vicinity to segments of another type give evidence thtt correspond to the same object class, we define the scene
several instances from the same object class exist. Regergraph S, which consists of the node séts = S and the
back to the introductory example, we can say: if we find margdge se€s = {(s,s)) | 3Gi : (S, ;) € Gi}. Thus,&s consists
backrests of a chair that are all close to chair seats, treer th  of all connections between segments that are closer to each
probably an object class which consists of at least these t@iner thandy. Furthermore, to each node in scene graph we
parts. Furthermore, we work under the assumption that thesign aclass label y € {1,...,K}. And finally, as each node
number of possible object classes is bounded by the numbe¥f S corresponds to an instance of an object part, we can
of connected components in the graph which results froagsociate it with gart label x € {1,...,C}. At first sight, x
clustering the geometric space using the distance thréshshould be fixed to the index of the feature space clugter
4. We call this thescene graph and give details in Sec. IV-A. to which s belongs. However, as we formulate our problem
Our assumption implicitly states that two objects are akvayn a probabilistic framework, we say that this index is only
supposed to be farther away from each other thaThis may the most likely part label fors and all others are still possible.
seem very restrictive, but in fact, it limits the applicatyilof ~Details of this are explained in Sec. V.
the algorithm not as much as it appears. The reason is that th&n example of a scene graph is shown in Fig. 2. Here,
number of connected components only bounds the numberpairt labels are represented as capital letters and clasls lab
objectclasses, not the number of actual objeictstances. Thus, numbers. We can see that many of the connected components
even if two diferent objects are closer to each other ti#ign only consist of one segment, as the segments are mostly far
there are usually enough other connected components wittapart from each other. Also observe that there are segments
least two objects of the same class, so that the numbervath the same part labet, but with different class labels.
connected components exceeds the number of object clas3édss stems from the fact that they occur irffdrent contexts.



V. SMOOTHING

(w3
@
i

25 . .
D] = So far, we described the construction of the two graph
structures “scene graph” and “parts graph”, but we did not
~ specify how these are used to determine class labels for the

1 4 segments. We do this using probabilistic reasoning: theesiod
in both graphs are interpreted as random variables and the
edges are used to model conditional dependencies between
adjacent nodes. For the scene graph, this means that tise clas
labely; of a given segmeng; not only depends on the local
evidence of the node i.e. the feature§ extracted frons, but
also on the class labeys of all neighborss; in the scene graph.
Intuitively, a strong evidence fag to belong to a certain class
may “outvote” the weaker evidence fey being of a diferent
class. Similarly, a class labgl for a given nodef; in the parts
graph may be so strong thatptopagates to the class labels
of the neighbors off;. The reasoning here is that if a certain
type of segmenf; is very likely to be of a given class, then
all segment types that occur frequently in the vicinity Bf

Fio. 3 E e of the part  obtained from th Howic, 1 are also more likely to be of the same class. Applying this
ig. 3: Example of the parts graph obtained from the scan stinwig. 1. :
The positions of the nodes are determined at random, as onliofirdogy strategy to a graph leads tosmoothed graph because it te”qs
of the graph is important. Again, part labels are represeasedapital letters t0 remove sudden changes of class labels between adjacent
and class labels as numbers. graph nodes.
In our implementation, we use Conditional Random Fields

(CRFs) [1] to perform the smoothing. Our CRF models the

B. The Parts Graph conditional distribution

[

]
!

B3

. . 1
As menponed before, apart from the class labels o_f specn‘_|c p(y | f) = 70 nsﬂ(fi,)ﬁ) 1—[ RIBE)E 4)
segment instances, we also want to reason on the interaction v (.j)ee

among diferent object parts in general. We do this using the 3 N .
parts graph®3. The node setV, of P corresponds to all where Z(f) = %y [Ticy ¢(fi. ¥0) jpes ¢(Fi- 1. ¥ ¥)) i the

clustersfy, ..., Fc of the feature space, and the set of edg tition f_unct_lon, V is eitherVs or V, and& is &s or &,
&, is defined as e dinstinction between the scene graph and the parts graph

is made using diierent definitions for the@ode potential ¢ and
o the edge potential . This will be described next.
Ep={(Fi.F) i # |, As.9) €Es - € Fi NS € F}. However, before we proceed with the definition of the
potentials, we mention some aspects in our formulation of
This means, whenever there are two segments connected inthee CRFs that are slightly fierent from others found in the
scene graph, there is a connection between the corresgpnditerature. First, we recall that node and edge potentiads a
segment types in the parts graph. As in the scene graph, easbally defined using the log-linear model so that, for theeca
node of the parts graph has an assigned part labtehd a of the node potential
class labely, although with a slightly dferent interpretation:
An assignment of a class labglto a nodes in S means l0g(fi. vi) = W - Ta(fi. ¥i). ®)
that the particular segment instarees most probably part of wherew, is a weight vector and, a feature function, which
an object of clasy, whereas the same assignment to a nog@e¢ high if f; andy; in some sense match well. For example, it
# in B means that in general segments that are elementscgh be defined as the outcome of a local classification. For our
the clusters are primarily more likely to be of clasg In  case of an unsupervised setting, we fgtbe the conditional
contrast to the scene graph, each nodefohas a unique probability p(y; | f;), i.e. a scalar value that is highyif matches
most-likely part labek, because these are directly determinegell to f;. The same is also done for the edge potentials. As
by the feature space clustering. a result, the feature functions range between 0 and 1. This
In Fig. 3, we see an example of a parts graph. The positiosisplifies the weighting between node and edge potentials an
of the nodes have been defined randomly as only the topoldgyns the weight vectorsy, and we into scalars as well. In
of the graph is important. Note that this concrete example obntrast to supervised learning with CRFs, we can not ldwen t
a parts graph is non-planar, although there is an equivaleide and edge weightg, andw,, as there is no training data
planar representation. In general however, parts graphs naailable. Instead, we have to determine them manually. &Ve d
not be representable as planar graphs, for example in tlee clés using an appropriate evaluation measure on a validatio
of a full connectivity. set. This is described in Sec. VI.



A. Smoothing the Parts Graph which results from the conditional independence assumstio

After creating the parts graph, the next step in our algorithon X andx;, and from those fox; andf;, as well asx; andf;.
is to run the inference step using the CRF that correspontide resulting termg(x; | fi) andp(x; | f;) are again computed
to . First, we note that the node features of this CRF ak$ing nearest-neighbor.
not equal to the feature vectofs ..., fy extracted from the ~Once the edge and node potentials are defined, we can do
segments, because a nodeinactually represents a clusterinference on the parts graph. We do this using max-product
in feature space and not a single segment. Instead, we deffRPy belief propagation. This is an approximate algorithm
the node features i to be the mear of all feature vectors that returns labely that maximize the conditional probability
inside the corresponding cluster. given in Eqn. (4). However, it also returns distributionseov
Furthermore, we observe that the dependence between {88-class labels at each node. These will be used later.
ture vectord and labelsy is only implicit as we cannot model g gqyoothi ng the Scene Graph
it directly. We can, however, model conditional probalsbt
between segment labetsand class labelg as well as between
feature vector$ and segment labels Following the definition
of the node feature off as a conditional probability, we have
C

From the output of the inference step run Pnwe obtain
at each node off a distribution over class labels As the
nodes of uniquely represent the segment typeswe can
use that information to read the probabilipfy | X) directly
- - from the parts graph. Thus, when creating the scene graph, we
PO I1i) = Z PO 1X)p(x | i), ®6) can again determine values fpfy | X), as we did this for the
X_:? ) parts graph, with the dierence that now(y | X) also reveals
where we assume a conditional independence .of the labels gnd -onditional dependencies between labels of segmees typ
the features given the segment types. To obtain the two terfSpat have been observed in a close distance. This means,
in the sum, we proceed as follows. _ that we again compute a matrix fgy | x), but now we
The class label posteriguy; | X) is computed using Bayes’ gjm |y read the class label distribution§ the nodes ofp,
rule with the assumption of a uniform prior of the labels: 54 they result from belief propagation. In accordance to the
pxIy)ply)  p(x|v) @ node feature of}, we define the node feature & as the
Sy PXIY)RY) Xy p(XTY) conditional probability
The class likelihoodp(x | y;) are determined by counting the C
occurence of segments of typeinside the geometric cluster p(y: | fi) = Z pyi I X)p(x | fi). (10)
y; and dividing by the number of all segments yn The x=1
posteriorsp(y; | X) can be computed at creation time $f Note that now the feature vectofscorrespond to those that
and collected in & x C matrix, as they do not depend on theare actually extracted for each segment, i.e. at each node of
node features. _ S. As before, the ternp(x | fj) is computed with a nearest-
For the segment type posteriqa(x | f;), we perform a neighbor search in feature space.
nearest-neighbor search in feature space inside a sphere dfinally, we define the edge feature &fas
radiusp aroundf;. Denoting the number of feature vectors in c ¢
the sphere with typex asvy and the number of all elements p(yi,yj | fi, ) = Z Z pVij | %, X)) p(xi, X | fi, ;),  (11)
in the sphere as, we approximatep(x | fj) with vy/v. =1 %=1
Similar to Eqn. (6), we define the edge featurefohs

plyi | X) =

where we denote the common class label withas above
__ & ¢ — and the right term in the sum is computed according to
(i, yi | fi. fj) = ZZ PO, i 1% X)) P0G, Xj [T, f5)- - (8)  Egn. (9). Unfortunately, the computation olyi; | %, %) is
x=1x=1 not straightfoward, as we can not simply read this value from
As is common in literature related to CRFs, the edge featurg® edges ofp. Instead, we use the following strategy: The
are designed to be zero whenever the labglsand y; of only interesting case is when the class labels;aind x; are
the adjacent nodes arefidirent (“generalized Potts model”,equal. Thus, we can interpret the common lapehs anedge
see [28, 29]). The rationale of this is that only edges betwegibel that is determined by one of the adjacent node labels.
equally labeled nodes should propagate the belief between In a sense, this expresses which of the nodes was responsible
nodes. Thus, the first term in the sum of Eqn. (8) can ler the common edge labgl;. We can formulate that using a
simplified to p(yij | %, X;), wherey;j is the common label binary variablec that is true if node; is responsible fow;;
of the nodes. We can compute this expression by countiagd false otherwise. Using this, we can estima(g; | X, X;)
the occurences of edges betwegrand x; in clustery;; and by marginalizing out ovec:
applying Bayes rule as in Eq. (7).
For the second term in the sum of Egn. (8), we apply the

formulation p(ylj | Xi, XJ) = Z p(ylj | X, Xj,C)p(C,l Xi, XJ)
o _ o C
POGXj I T) = PO 115, 15)p0X I, 1) = P I %, %}, ©)p(C) + P(Yij | X, X}, =€) p(=C)
= p(x | fi)p(x; | fj), 9 = 0.5 p(yij | )+ 0.5+ p(yij | Xj) (12)



Here, we assumed thatis independent ox; andx; and that the discovery algorithm. Applied to our case, the condiion
its prior probability is 056. Using Egn. (12), we can computeentropy is computed as

pyij | . xj) by reading the values fan(yi; | x) and p(y | x;) « «

from the parts graph. As for the parts graph, we use max-H(y* | Y) = Z p(c(y)) Z p(y* | o(y)) log
product loopy belief propagation for the inference in therse sO)=1 yo1

graph.

1
ply* | o(y))’

whereK* is the number of ground truth classes ands an

C. Obtaining the Class Label Distributions oracle mapping from the set pf d_iscovered_ classes to _the set

] ) of ground truth classes, which is determined frontuaing

Once the inference step on the scene graph is performgg, tor details see [30]). IntuitivelyH(Y* | Y) determines the

we read 'Fhe_ class I_abel dlstr|but|qd§,...,dM from all nodes number of ground truth labels a segment can have once its
of S. This is possible, as mentioned before, because belig oyvered object label is known. The smaller this number is
propagation stores these distributions for each node. Wr {he petter is the result of the discovery algorithm. In thetbe
final discovery result, we report the most likely class la#iel c5qe it is zero, which means that each discovered class label
each node, but it is important to note that the dlstrlbutlorhqrecﬂy implies a ground truth label.
may be useful for later reference, for example in an online \y created hand labeled ground truth data consisting of the
application, where several data sets are acquired suh&tdgquq:ive classes “ceiling’, “floor”, “wall”, “chair’, and “othe,

and the discovery of similar objects is done across the da{ay evaluated the performance of our algorithm fdfedent

sets. values of the parametet, p, and the node and edge weights
(Wn, We). The results are shown in Fig. 5. Two conclusions
VI. EXPERIMENTAL RESULTS can be drawn from these graphs: First, with values around 1,
We tested the algorithm on data acquired from real-worttie results are very good compared to the results of similar
scenes using a nodding SICK laser scanner with a horizongdgorithms described in [30]. And second, our algorithm is
opening angle of 100 degrees and a nodding range of @atvely robust against small changes in the choice of the
degrees. Each set was captured at a horizontal resolutionpafameters, especially for the distance thresldgldwhich is
0.25 degrees and a vertical resolution o egrees. We responsible for the clustering in geometric space.
evaluated 50 data sets from fouirtfdrent rooms, each room
containing some number of chairs, trash cans, flip charts, VIl. CONCLUSION AND OUTLOOK
plants, etc. Objects were placed up to 90 degrees of rotatioVe presented a fully unsupervised approach to segment 3D
from each other. Most scenes contained two or three objet§ge scan data and to discover objects of a similar type that
of the same type, but some scenes contained up to four obje&§ur more than once in the scene. Our approach uses the only

of three diferent kinds. assumption that the number of actually existing objectsaas
is not higher than the number of connected components in
A. Qualitative Evaluation the scene, which holds in most cases. We applied probablisti

In addition to the result shown in Fig. 1, Fig. 4 shows soml&asoning based on Qondmongl Random Fields to model
more results of our object dicovery algorithm. All pointsath conditional dependenc'les of object part labels that arseclo
belong to the same object are depicted with the same coldr, 48 ea_i;' ot_her.blln texg_erlmentsb(_)n ;eal dz;\]ta wehs_hov_ved tha(; our
the numbers represent the class label to which each segrﬁ”éﬂ?” M IS able fo JISCOVer OJECLS Such as chairs in anan
belongs. For instance, the scene in Fig. 1 contains foumha?m{'ronmem' In the future, we .plan to use Fh'.s techruquenm a
of two different kinds, and they are correctly labeled as gnllne framework where the evidence of.eX|st|ng objectsgas
(blue) and 27 (violet). Furthermore, we see that also most |8faccumulated over time and acrosffefient data sets.
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