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Summary. In this paper we present an approach to label data points iar8ge scans and to
use these labels to learn prototypical representationbjetts. Our approach uses associative
Markov networks (AMNSs) to calculate the labels and a clusteoperation to determine the
prototypes of homogeneously labeled regions. These ppestare then used to replace the
original regions. In this way, we obtain more accurate medegld additionally are able to
recover the structure of partially occluded objects. Oypragch has been implemented and
evaluated on 3d data of a building acquired with a mobile tobbe experimental results
demonstrate that our algorithm can robustly identify otgedth the same shape and can use
the prototypes of these objects for highly accurate mestptetion in case of occlusions.

1 Introduction

Recently, the problem of acquiring three-dimensional n®dsing mobile robots
has become quite attractive and a variety of robot systewss lbeen developed that
are able to acquire three-dimensional data using laseerscenners [17, 10, 6, 21,
7, 13, 19]. Most of these approaches deal with the problenoaf to improve the
localization of the robot or how to reduce the huge amounttd thy piecewise lin-
ear approximations. In this paper we consider the probleafaskifying data points
in three-dimensional range scans into known classes. Tierglemotivation behind
this is to achieve the ability to learn maps that are anndtatth symbolic labels. In
the past, it has been shown that such information can beedito find compact rep-
resentations of the maps [19], but also to improve the psoE®ining partial maps
into one big map, usually calletiap registrationby only considering associations
between points belonging to corresponding objects [18, H8jvever, a problem
arises when these annotated objects are only seen fromal peaw or are occluded
by other objects. Even if the annotationdalvelsare correct, corresponding objects
can not be found robustly because the entire shape of thetslgenot available.
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In this paper, we present a supervised learning approactato the shape of
objects in data points obtained from 3d range scans. Ouritligoapplies associa-
tive Markov networks (AMNS) [15] to robustly determine segmtations of the data
points into diterent classes. We then perform a clustering operation ontigidual
segments and calculate a prototype for each segment. Inl stiépa we replace the
individual segments by their prototypes. As a result, wainbaccurate models and
even are able to complete partially scanned objects, whedfuently appear in the
case of occlusions.

The problem of extracting features from range data has kedred intensively
in the field of mobile robotics. For example, Buschka andi8@i [4] describe a
virtual sensor that is able to identify rooms from range datiditionally, Simmons
and Koenig [9] use a pre-programmed routine to detect doggiram range data.
Althaus and Christensen [1] use line features to detecidmys and doorways. Also
several authors focused on the problem of extracting plamactures from range
scans using the expectation maximization algorithm (EN) 2, 19]. Furthermore,
there has been work on employing features extracted froeetimensional range
scans to improve the scan alignment process [18, 13]. Theoaplpes described
above either operate on two-dimensional scans, consiagledieatures such as pla-
narity, or apply pre-programmed routines to identify thatéees in range scans.

In the context of learning annotated 3D maps from point cldath several au-
thors use the so-callespin imageg8, 5] to recognize objects. Vandapat al. [20]
extract saliency features and apply EM to learn a Gaussiatukdéi Model classi-
fier. Another popular object description technique sinape distributiong14]. In
contrast to these approaches, our algorithm classifiesdtee iy also taking into
account the potential labels of neighboring data pointss modeled in a mathe-
matical framework known as Markov random fields and imprdfiessegmentation
by eliminating false classifications. The recent work by Aelgvet al. [2] applies
a similar approach to label data points. However, this teplendoes not cluster the
segments and also cannot complete objects which have baenestpartially only.
Frih and Zakhor [6] generate large-scale 3d-models ofrusbanes and apply linear
interpolation to deal with partial occlusions. In contristhis method, our approach
extracts object prototypes from range data and uses thesaypes to more accu-
rately recover the structure of the scene in the case of siceis.

This paper is organized as follows. In Section 2, we intr@doar scan-point
classification technique and afieient approach to the learning problem. Then, Sec-
tion 3 describes our algorithm to handle occlusions in the dets. Finally, Section 4
presents experimental results illustrating the usefslioésur approach.

2 Point Classification using Markov Networks

The first part of our object recognition algorithm consistaclassification for a
set of given data points based on a parameter set that wasedefnom a hand-
labeled training data set. For this classification we usesanciative Markov network
(AMN) [15] which is an instance of eelational Markov networkRMN). RMNs and
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AMNSs utilize undirected graphical models to represent thiditional probability
P(y | X) wherey is the set of labels anxlthe set of features associated to each data
point. This is done by defining functions that assign a pegsitalue to each clique
in the graph and its associated labeling. These functiansalledclique potentials
and reflect how well a given labeling fits to a specified cliqligg@ph nodes. In
AMNSs, the maximum size of a clique is 2, so that onlyde potentialg(x;, y;) and
edge potentialg/(xi;, i, yj) exist. Here, we introduce the feature veotgof features
extracted from the edge between nodasd|. Likewise,y; denotes the label of node
i. Note that the edge feature vecigrdoes not necessarily have the same size as the
node features;.

Assuming that the network consists bf nodes and a set = {(i, j)li,j €
{1,...,N},i # j} of edges, the overall conditional probability represertigdhe
AMN can then be formulated as

N
Py ) = %]_[so(xi,ya) [ ] woxisvivi). (1)
i=1

(i)

wherezZ = 3, ]‘IiNzl o(Xi, ¥i) [gjee zp(xij,y{,y’j). Usually,Z is denoted as thparti-
tion functionand represents the sum of potentials for all possible lagsji’.

It remains to describe the potentiale@ndy. As mentioned above, the potentials
reflect how well the features fit to the labels. One simple weegefine the potentials
is thelog-linear model [15]. In this model, a weight vectaX is introduced for each
class labek = 1,...,K. The node potentiap is then defined so that lag(x;, yi) =
wk-x; wherek = y;. Accordingly, the edge potentials are defined asiog;, v, yj) =
w&' - x; wherek = yi andl = y;. Here we distinguish betweemeightsw, for the
nodes and weightw, for the edges. Also, we define the weights depending on the
class labelk andl. This means that the potential of nodédepends on the label
k = y; that is assigned to it. Similarly, the edge potentialepends on the labeks
andl that are assigned to the nodes connected by the edge. THeeides that of a
relational modeling where the dependencies of the labels are expressathigher
level, namely the class level. For example, we can modeldtitiat classea and
B are more strongly related to each other than, say, classesiC. As a result, the
weighting of neighboring points with labefsandB is higher than of points labeled
AandC.

To summarize, we define the node and edge potentials as:

(X, i) = exp @l - X)) 2
Wi, Yi. Yj) = exp e - xij) )

2.1 Learning and Inference

The scan point segmentation using AMNSs is formulated as arsiged learning
task. This means that in the learning phase, we are given af $abelsy which

were assigned by hand to the training data. Now we learn & setightsw so that
Pw(¥ | X) is maximized. In the inference phase, these weights ar tosknd a set
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of labelsy for the test data set so thB§,(y | xX) is maximized. As can be seen from
Equation 1, both steps include the computation of the jpamtiftunctionZ. In all
but the simplest cases, the calculatiorZat intractable. For the inference task we
can exploit the fact thaZ does not depend on the particular labgl3 herefore the
maximization ofP,(y | X) is equivalent to maximizing@Py(y | X). This means that
Z can simply be neglected in the inference step.

However, in the learning task we need to maxinfizgy | x) over allw, which
means to calculaté for eachw. To overcome this problem, Tasketral.[16] propose
a different way to learn the weighis Instead o, (¥ | x), they maximize thenargin
between the optimal labelingand any other labeling defined by

log Pu (Y 1 X) — log Pu(y | X). (4)

This way, the tern¥,(x) cancels out and the maximization can be doflieiently.
This method is referred to asaximum margimptimization [16]. The details of this
formulation are omitted here for the sake of brevity. We ambye that the problem
is reduced to a quadratic program (QP) of the form:

min %uwn2 + & (5)

such that

N
WXJ+E- D a2 Ny We20; ai— > ak —wh-x > - ik
i=1 ij,jicE

ar- +a|-(i —Wlé-Xij >0 Vij € E k; ak
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Here, the variables that are solved for in the QP are the wsighk (w,, we), a slack
variable¢ and additional variables;, «i; andaji. We refer to Taskaet al. [15] for
detalils.

In the inference task we want to find labgighat maximize lodPy(y | X). As
mentioned aboveZ does not depend oy so that the maximization can be done
without considering. This leads to a linear program of the form

N K
argmax Z Z(Wﬁ XY+ Z Z(Wlé XY (6)

K
i=1 k=1 ek k=1

such that
K
a) Y20, Vik b) Yyi=1 Vi o y5<y ¥¥<y vijeEk
k=1

Here, we introduced variabl@rﬁ representing the labels of two points connected by
an edge [15].
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2.2 Hficient Variant of AMN Learning

Unfortunately, the learning task described in the prevemetion is computationally
expensive with respect to run-time and memory requireméuaiseach scan point
there is one variable and one constraintin the QP. Furtherme have two variables
and two constraints per edge. This results in a large cortipngd efort (Anguelov
et al.[2] report one hour run time for about 30,000 scan points)veier, in typi-
cal data sets, a huge part of the data is redundant and theatatze substantially
reduced by down-sampling. In our experiments we never fewidknce that this re-
duces the overall performance. The run time dropped fromtzEidminutes down to
less than a minute while the detection remained at 92%. Hexyi\vs not clear how
many samples are necessary to obtain good detection ratssjse this depends on
the data set. A scene with many small objects should not be-g@ampled as much
as a scene with only few, big objects. Therefore we reducdateadaptively

The idea of our adaptive data reduction technique is to plataimuch informa-
tion as necessary from the training data so that still a geedgnition rate can be
achieved. As this depends on the data set, we need an addatévstructure. One
popular way to adaptively store geometrical data kddrees. This data structure
follows a coarse-to-fine approach: the higher the level énttbe the higher the data
abstraction. Wittkd-trees we can reduce the data set by considering only scatspoi
in the tree that are stored in leaf nodes up to a given maxinepthdax All points
in deeper branches are then merged into a new leaf node dfdigpt The data point
in this new leaf node is calculated as the mean of all pois fthe corresponding
subtree. Apart from the reduction in the data complexitis #pproach makes the
sampling less dependent on the data density. The remaingsgiqn is how to select
dmax As for the uniform down-sampling, this is dependent on thiadet. In our cur-
rent system, we therefore modify the reduction algorithrthsoit is parameter-free.
Instead of pruning at a fixed level, we merge all points in aragwhenever all of
its labels are equal. Accordingly, for large homogeneoeasrwhere all points have
the same label, we obtain a higher level of abstraction thameterogeneous areas.

3 Occlusion Handling

In most visual recognition tasks we encounter the probleotofusion objects are
partially hidden by others and therefore can not be receghiabustly. Our approach
shows a method to overcome this problem using the semardiglkdge acquired in
the learning phase. The idea is to compare objects of the slasweto each other and
to infer the shape of a single object based on the shapes ottiee objects in the
class. Hereby we assume that the objects in a class arersiméach other. Based
on this assumption, we first group all poists= {ps, ..., pn} that were labeled with
the same label in the inference step. Next we cluster allimddagroups according
to features defined over the point clouds. Then we match th plouds for each
cluster to each other to obtain the prototypical object ieshes calculated for the
prototypes are then used to replace the original point doud
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3.1 Clustering

First, we clusterP into contiguous subsets which we calitities The clustering is
done using a region-growing algorithm in 3D space where #ighiboring relations
can be obtainedficiently using akd-tree. Then, we cluster the entities into sub-
classes. The idea here is that usually a class consistdfefatitkinds of objects,
e.g., in a class “window” we can find single- and double-sizedows as well as
windows of diferent shapes. Of course, the distinction of these subslassed be
done when labeling the training data already. In this cas@&MN would automati-
cally yield appropriate labels for the individual subcksdn our current system we
decided to separate the division into sub-classes fronathedihg process, because it
turned out to be diicult to define features for theftiérent entities on the point level.
In our implementation we use three entity features baset@mitiented bounding
box B of the entity and its point clouB. The features are the volume Bf the quo-
tient of the second-longest and the longest eddg@ afid theradiusof P, defined by
the maximal distance of a point Phand the centroid oP. Again, for the clustering
we apply region-growing, in this case in 3D feature space.

3.2 Entity Matching

In the next step, we match the entities that belong to the saifnelass to each other.
This is the step in which information about the shape of oitiéygs used to complete
the shape of another entity in the same subclass. This asshiateall entities in a
subclass have the same shape and that a good matching beint#tess can be
found. The matching is done using the Iterative ClosesttRadgorithm (ICP) [3].
In our current implementation, we select one entity as aeefee frame and match
the other entities to the selected one. One could also tHickmnecting all entities
into a clique and match all entities to each other. Then, ta&hing errors can be
reduced by performing a global optimization of the entitg@® In our experiments,
we obtained good results with the one-reference-frameniquok. After matching
the single entities we obtain a merged point cloud apth&otypeof the subclass.

3.3 Mesh Generation

For a better visualization, we generate triangulated nmeBben the point cloud re-
sulting from the previous step. To this end, we insert alhf®into a 3D grid. The
size of the grid is defined by the oriented bounding box of thiafxcloud. For each

cell cin the grid we store the expected number of points that f&di @ where the
probability of falling intoc is modeled as an isotropic Gaussian whose mean is the
center ofc. Then we apply the marching cubes contouring algorithm {@ fihd the
contour that separates occupied cells from free cells. Asalt; we obtain a trian-
gular mesh that approximates the volume represented bythegboud. Finally, we
re-project the obtained triangle mesh to all original pos# of the singular entities.
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4 Experiments

We implemented the described algorithm and tested it onledega set. The data
was collected with a mobile outdoor robot that has a SICKrlaaege finder and
a paurttilt unit mounted on top for 3D data acquisition. We scanndmligding with
windows of diferent kinds and sizes (see 1(a)). In a first step, we dividedi#ta
into walls by using a plane extraction algorithm (see Fidw(i®). Then we extracted
all points that had a distance of at mod#r@ from the planes.

The goal was to classify the scan points into the classesdwviri, “wall” and
“gutter”. Accordingly, we labeled the training data set malty as shown in Fig-
ure 1(c). It consists of one wall with only single-size windo The original size of
the training data set was 36191 data points, while aftertagapeduction we ob-
tained a reduced set of 3944 data points. Figure 1(d) shasveesult of the AMN
based classification on one of our test sets. In a quanétatigluation we obtained
93.8% correctly classified labels. As we can see from the figlneretare gaps in
the data caused by the occlusions of a tree in front of thalimgjl This results in
windows that are only partially seen. Figures 1(d)-1(hyslite remaining steps of
our algorithm. After applying the last step, namely the bpofjection into the scene
we obtain the mesh shown in Figure 2. In the scene, all obfents been replaced
by the prototypes of the subclasses in which they fall. Nloé this holds for all ob-
jects in the scene, including the wall and the gutter. Tligidince compared to the
window class is only that for these classes only one objectirscin the data. This
means that the prototype of the class is equal to the objecteriered. However, for
the partially occluded objects, our algorithm was able tover the full structure.

5 Conclusion

In this paper we presented an approach to segment threasional range data and
to use the resulting segments for augmenting the originial. d@ur approach uses
associative Markov networks to robustly extract regiorseldeon an initial labeling
obtained with simple geometric features. Taently carry out the learning phase,
we use an adaptive technique to prunektdree. We then cluster the segments and
calculate a prototype for each segment. These prototygethan used to replace
the original segments. The advantage of this approach iddigo First, it allows
to increase the accuracy of the individual regions, andrsgdcallows to complete
partially seen objects by the prototypes.

Our approach has been implemented and tested on data abgjithien outdoor-
robot equipped with a laser range finder mounted on d#iftamit. In complex data
sets containing outer walls of buildings, our approach hasessfully been applied
to the task of finding a segmentation into walls, windows, gotters even in the
case of partial occlusions.
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(c) data labeled by hand  (d) AMN output (test set) (e) clustering

(f) entity matching (g) mesh generation | (h) mesh generation Il

Fig. 1. The individual steps of our occlusion handling algorithmorf top left to bottom right:
a) original 3D scan (no occlusions) b) plane extractionyanie plane is shown), ¢) hand-
labeling of the training data, d) labeling of a test data $timed with the AMN approach;
note that some windows and the wall are occluded, e) class-siib-clustering, here for the
window class, f) scan matching of all subclusters, here tgeMndows, g) mesh generation
from prototype shown in f), h) mesh for the roof windows pitgpe.
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Fig. 2. Result obtained with our algorithm. Note that two windowshia second column have
been restored. In the original data (see Figure 1(d)) théiséomws were occluded by a tree.
Also note that the wall could not be restored, because ordyveall object was encountered
in the data set so that no prototype containing data in thizded areas was obtained.
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