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Summary. In this paper we present an approach to label data points in 3drange scans and to
use these labels to learn prototypical representations of objects. Our approach uses associative
Markov networks (AMNs) to calculate the labels and a clustering operation to determine the
prototypes of homogeneously labeled regions. These prototypes are then used to replace the
original regions. In this way, we obtain more accurate models and additionally are able to
recover the structure of partially occluded objects. Our approach has been implemented and
evaluated on 3d data of a building acquired with a mobile robot. The experimental results
demonstrate that our algorithm can robustly identify objects with the same shape and can use
the prototypes of these objects for highly accurate mesh completion in case of occlusions.

1 Introduction

Recently, the problem of acquiring three-dimensional models using mobile robots
has become quite attractive and a variety of robot systems have been developed that
are able to acquire three-dimensional data using laser range scanners [17, 10, 6, 21,
7, 13, 19]. Most of these approaches deal with the problem of how to improve the
localization of the robot or how to reduce the huge amount of data by piecewise lin-
ear approximations. In this paper we consider the problem ofclassifying data points
in three-dimensional range scans into known classes. The general motivation behind
this is to achieve the ability to learn maps that are annotated with symbolic labels. In
the past, it has been shown that such information can be utilized to find compact rep-
resentations of the maps [19], but also to improve the process of joining partial maps
into one big map, usually calledmap registrationby only considering associations
between points belonging to corresponding objects [18, 13]. However, a problem
arises when these annotated objects are only seen from a partial view or are occluded
by other objects. Even if the annotations orlabelsare correct, corresponding objects
can not be found robustly because the entire shape of the objects is not available.
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In this paper, we present a supervised learning approach to learn the shape of
objects in data points obtained from 3d range scans. Our algorithm applies associa-
tive Markov networks (AMNs) [15] to robustly determine segmentations of the data
points into different classes. We then perform a clustering operation of theindividual
segments and calculate a prototype for each segment. In a final step, we replace the
individual segments by their prototypes. As a result, we obtain accurate models and
even are able to complete partially scanned objects, which frequently appear in the
case of occlusions.

The problem of extracting features from range data has been studied intensively
in the field of mobile robotics. For example, Buschka and Saffiotti [4] describe a
virtual sensor that is able to identify rooms from range data. Additionally, Simmons
and Koenig [9] use a pre-programmed routine to detect doorways from range data.
Althaus and Christensen [1] use line features to detect corridors and doorways. Also
several authors focused on the problem of extracting planarstructures from range
scans using the expectation maximization algorithm (EM) [10, 12, 19]. Furthermore,
there has been work on employing features extracted from three-dimensional range
scans to improve the scan alignment process [18, 13]. The approaches described
above either operate on two-dimensional scans, consider single features such as pla-
narity, or apply pre-programmed routines to identify the features in range scans.

In the context of learning annotated 3D maps from point clouddata several au-
thors use the so-calledspin images[8, 5] to recognize objects. Vandapelet al. [20]
extract saliency features and apply EM to learn a Gaussian Mixture Model classi-
fier. Another popular object description technique areshape distributions[14]. In
contrast to these approaches, our algorithm classifies the data by also taking into
account the potential labels of neighboring data points. This is modeled in a mathe-
matical framework known as Markov random fields and improvesthe segmentation
by eliminating false classifications. The recent work by Anguelovet al. [2] applies
a similar approach to label data points. However, this technique does not cluster the
segments and also cannot complete objects which have been scanned partially only.
Früh and Zakhor [6] generate large-scale 3d-models of urban scenes and apply linear
interpolation to deal with partial occlusions. In contrastto this method, our approach
extracts object prototypes from range data and uses these prototypes to more accu-
rately recover the structure of the scene in the case of occlusions.

This paper is organized as follows. In Section 2, we introduce our scan-point
classification technique and an efficient approach to the learning problem. Then, Sec-
tion 3 describes our algorithm to handle occlusions in the data sets. Finally, Section 4
presents experimental results illustrating the usefulness of our approach.

2 Point Classification using Markov Networks

The first part of our object recognition algorithm consists of a classification for a
set of given data points based on a parameter set that was learned from a hand-
labeled training data set. For this classification we use anassociative Markov network
(AMN) [15] which is an instance of arelational Markov network(RMN). RMNs and
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AMNs utilize undirected graphical models to represent the conditional probability
P(y | x) wherey is the set of labels andx the set of features associated to each data
point. This is done by defining functions that assign a positive value to each clique
in the graph and its associated labeling. These functions are calledclique potentials
and reflect how well a given labeling fits to a specified clique of graph nodes. In
AMNs, the maximum size of a clique is 2, so that onlynode potentialsϕ(xi , yi) and
edge potentialsψ(xi j , yi, y j) exist. Here, we introduce the feature vectorxi j of features
extracted from the edge between nodesi and j. Likewise,yi denotes the label of node
i. Note that the edge feature vectorxi j does not necessarily have the same size as the
node featuresxi .

Assuming that the network consists ofN nodes and a setE = {(i, j)|i, j ∈
{1, . . . ,N}, i , j} of edges, the overall conditional probability representedby the
AMN can then be formulated as

P(y | x) =
1
Z

N∏

i=1

ϕ(xi , yi)
∏

(i j )∈E

ψ(xi j , yi , y j). (1)

whereZ =
∑

y′
∏N

i=1 ϕ(xi , y′i )
∏

(i j )∈E ψ(xi j , y′i , y
′
j). Usually,Z is denoted as theparti-

tion functionand represents the sum of potentials for all possible labelingsy′.
It remains to describe the potentialsϕ andψ. As mentioned above, the potentials

reflect how well the features fit to the labels. One simple way to define the potentials
is thelog-linearmodel [15]. In this model, a weight vectorwk is introduced for each
class labelk = 1, . . . ,K. The node potentialϕ is then defined so that logϕ(xi , yi) =
wk

n ·xi wherek = yi . Accordingly, the edge potentials are defined as logψ(xi j , yi , y j) =
wk,l

e · xi wherek = yi and l = y j . Here we distinguish betweenweightswn for the
nodes and weightswe for the edges. Also, we define the weights depending on the
class labelsk and l. This means that the potential of nodei depends on the label
k = yi that is assigned to it. Similarly, the edge potentialψ depends on the labelsk
andl that are assigned to the nodes connected by the edge. The ideahere is that of a
relational modeling where the dependencies of the labels are expressedon a higher
level, namely the class level. For example, we can model the fact that classesA and
B are more strongly related to each other than, say, classesA andC. As a result, the
weighting of neighboring points with labelsA andB is higher than of points labeled
A andC.

To summarize, we define the node and edge potentials as:

ϕ(xi , yi) = exp (wk
n · xi) (2)

ψ(xi j , yi , y j) = exp (wk,l
e · xi j ) (3)

2.1 Learning and Inference

The scan point segmentation using AMNs is formulated as a supervised learning
task. This means that in the learning phase, we are given a setof labels ŷ which
were assigned by hand to the training data. Now we learn a set of weightsw so that
Pw(ŷ | x) is maximized. In the inference phase, these weights are used to find a set
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of labelsy for the test data set so thatPw(y | x) is maximized. As can be seen from
Equation 1, both steps include the computation of the partition functionZ. In all
but the simplest cases, the calculation ofZ is intractable. For the inference task we
can exploit the fact thatZ does not depend on the particular labelsy. Therefore the
maximization ofPw(y | x) is equivalent to maximizingZPw(y | x). This means that
Z can simply be neglected in the inference step.

However, in the learning task we need to maximizePw(ŷ | x) over allw, which
means to calculateZ for eachw. To overcome this problem, Taskaret al.[16] propose
a different way to learn the weightsw. Instead ofPw(ŷ | x), they maximize themargin
between the optimal labelinĝy and any other labelingy defined by

logPw(ŷ | x) − logPw(y | x). (4)

This way, the termZw(x) cancels out and the maximization can be done efficiently.
This method is referred to asmaximum marginoptimization [16]. The details of this
formulation are omitted here for the sake of brevity. We onlynote that the problem
is reduced to a quadratic program (QP) of the form:

min
1
2
‖w‖2 + cξ (5)

such that

wXŷ + ξ −
N∑

i=1

αi ≥ N; we ≥ 0; αi −
∑

i j, ji∈E

αk
i j − wk

n · xi ≥ −ŷk
i ∀i, k;

αk
i j + α

k
ji − wk

e · xi j ≥ 0 ∀i j ∈ E, k; αk
i j , α

k
ji ≥ 0 ∀i j ∈ E, k

Here, the variables that are solved for in the QP are the weightsw = (wn,we), a slack
variableξ and additional variablesαi , αi j andα ji . We refer to Taskaret al. [15] for
details.

In the inference task we want to find labelsy that maximize logPw(y | x). As
mentioned above,Z does not depend ony so that the maximization can be done
without consideringZ. This leads to a linear program of the form

argmax
N∑

i=1

K∑

k=1

(wk
n · xi)yk

i +
∑

i j∈E

K∑

k=1

(wk
e · xi j )yk

i j (6)

such that

a) yk
i ≥ 0, ∀i, k; b)

K∑

k=1

yi = 1, ∀i c) yk
i j ≤ yk

i , yk
i j ≤ yk

j , ∀i j ∈ E, k

Here, we introduced variablesyk
i j representing the labels of two points connected by

an edge [15].



Recovering the Shape of Objects in 3D Point Clouds with Partial Occlusions 5

2.2 Efficient Variant of AMN Learning

Unfortunately, the learning task described in the previoussection is computationally
expensive with respect to run-time and memory requirements. For each scan point
there is one variable and one constraint in the QP. Furthermore, we have two variables
and two constraints per edge. This results in a large computational effort (Anguelov
et al. [2] report one hour run time for about 30,000 scan points). However, in typi-
cal data sets, a huge part of the data is redundant and the datacan be substantially
reduced by down-sampling. In our experiments we never foundevidence that this re-
duces the overall performance. The run time dropped from about 20 minutes down to
less than a minute while the detection remained at 92%. However, it is not clear how
many samples are necessary to obtain good detection rates, because this depends on
the data set. A scene with many small objects should not be down-sampled as much
as a scene with only few, big objects. Therefore we reduce thedataadaptively.

The idea of our adaptive data reduction technique is to obtain as much informa-
tion as necessary from the training data so that still a good recognition rate can be
achieved. As this depends on the data set, we need an adaptivedata structure. One
popular way to adaptively store geometrical data arekd-trees. This data structure
follows a coarse-to-fine approach: the higher the level in the tree the higher the data
abstraction. Withkd-trees we can reduce the data set by considering only scan points
in the tree that are stored in leaf nodes up to a given maximum depthdmax. All points
in deeper branches are then merged into a new leaf node of depthdmax. The data point
in this new leaf node is calculated as the mean of all points from the corresponding
subtree. Apart from the reduction in the data complexity, this approach makes the
sampling less dependent on the data density. The remaining question is how to select
dmax. As for the uniform down-sampling, this is dependent on the data set. In our cur-
rent system, we therefore modify the reduction algorithm sothat it is parameter-free.
Instead of pruning at a fixed level, we merge all points in a subtree whenever all of
its labels are equal. Accordingly, for large homogeneous areas, where all points have
the same label, we obtain a higher level of abstraction than in heterogeneous areas.

3 Occlusion Handling

In most visual recognition tasks we encounter the problem ofocclusion: objects are
partially hidden by others and therefore can not be recognized robustly. Our approach
shows a method to overcome this problem using the semantic knowledge acquired in
the learning phase. The idea is to compare objects of the sameclass to each other and
to infer the shape of a single object based on the shapes of theother objects in the
class. Hereby we assume that the objects in a class are similar to each other. Based
on this assumption, we first group all pointsP = {p1, . . . , pn} that were labeled with
the same label in the inference step. Next we cluster all obtained groups according
to features defined over the point clouds. Then we match the point clouds for each
cluster to each other to obtain the prototypical objects. The meshes calculated for the
prototypes are then used to replace the original point clouds.
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3.1 Clustering

First, we clusterP into contiguous subsets which we callentities. The clustering is
done using a region-growing algorithm in 3D space where the neighboring relations
can be obtained efficiently using akd-tree. Then, we cluster the entities into sub-
classes. The idea here is that usually a class consists of differentkindsof objects,
e.g., in a class “window” we can find single- and double-size windows as well as
windows of different shapes. Of course, the distinction of these subclasses could be
done when labeling the training data already. In this case the AMN would automati-
cally yield appropriate labels for the individual subclasses. In our current system we
decided to separate the division into sub-classes from the labeling process, because it
turned out to be difficult to define features for the different entities on the point level.
In our implementation we use three entity features based on the oriented bounding
box B of the entity and its point cloudP. The features are the volume ofB, the quo-
tient of the second-longest and the longest edge ofB and theradiusof P, defined by
the maximal distance of a point inP and the centroid ofP. Again, for the clustering
we apply region-growing, in this case in 3D feature space.

3.2 Entity Matching

In the next step, we match the entities that belong to the samesubclass to each other.
This is the step in which information about the shape of one entity is used to complete
the shape of another entity in the same subclass. This assumes that all entities in a
subclass have the same shape and that a good matching betweenentities can be
found. The matching is done using the Iterative Closest Point algorithm (ICP) [3].
In our current implementation, we select one entity as a reference frame and match
the other entities to the selected one. One could also think of connecting all entities
into a clique and match all entities to each other. Then, the matching errors can be
reduced by performing a global optimization of the entity poses. In our experiments,
we obtained good results with the one-reference-frame technique. After matching
the single entities we obtain a merged point cloud as theprototypeof the subclass.

3.3 Mesh Generation

For a better visualization, we generate triangulated meshes from the point cloud re-
sulting from the previous step. To this end, we insert all points into a 3D grid. The
size of the grid is defined by the oriented bounding box of the point cloud. For each
cell c in the grid we store the expected number of points that fall into c, where the
probability of falling intoc is modeled as an isotropic Gaussian whose mean is the
center ofc. Then we apply the marching cubes contouring algorithm [11]to find the
contour that separates occupied cells from free cells. As a result, we obtain a trian-
gular mesh that approximates the volume represented by the point cloud. Finally, we
re-project the obtained triangle mesh to all original positions of the singular entities.
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4 Experiments

We implemented the described algorithm and tested it on a real data set. The data
was collected with a mobile outdoor robot that has a SICK laser range finder and
a pan/tilt unit mounted on top for 3D data acquisition. We scanned abuilding with
windows of different kinds and sizes (see 1(a)). In a first step, we divided the data
into walls by using a plane extraction algorithm (see Figure1(b)). Then we extracted
all points that had a distance of at most 0.5m from the planes.

The goal was to classify the scan points into the classes “window”, “wall” and
“gutter”. Accordingly, we labeled the training data set manually as shown in Fig-
ure 1(c). It consists of one wall with only single-size windows. The original size of
the training data set was 36191 data points, while after adaptive reduction we ob-
tained a reduced set of 3944 data points. Figure 1(d) shows the result of the AMN
based classification on one of our test sets. In a quantitative evaluation we obtained
93.8% correctly classified labels. As we can see from the figure, there are gaps in
the data caused by the occlusions of a tree in front of the building. This results in
windows that are only partially seen. Figures 1(d)-1(h) show the remaining steps of
our algorithm. After applying the last step, namely the back-projection into the scene
we obtain the mesh shown in Figure 2. In the scene, all objectshave been replaced
by the prototypes of the subclasses in which they fall. Note that this holds for all ob-
jects in the scene, including the wall and the gutter. The difference compared to the
window class is only that for these classes only one object occurs in the data. This
means that the prototype of the class is equal to the object encountered. However, for
the partially occluded objects, our algorithm was able to recover the full structure.

5 Conclusion

In this paper we presented an approach to segment three-dimensional range data and
to use the resulting segments for augmenting the original data. Our approach uses
associative Markov networks to robustly extract regions based on an initial labeling
obtained with simple geometric features. To efficiently carry out the learning phase,
we use an adaptive technique to prune thekd-tree. We then cluster the segments and
calculate a prototype for each segment. These prototypes are then used to replace
the original segments. The advantage of this approach is two-fold. First, it allows
to increase the accuracy of the individual regions, and second it allows to complete
partially seen objects by the prototypes.

Our approach has been implemented and tested on data acquired with an outdoor-
robot equipped with a laser range finder mounted on a pan/tilt unit. In complex data
sets containing outer walls of buildings, our approach has successfully been applied
to the task of finding a segmentation into walls, windows, andgutters even in the
case of partial occlusions.
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(a) original scan (b) plane extraction

(c) data labeled by hand (d) AMN output (test set) (e) clustering

(f) entity matching (g) mesh generation I (h) mesh generation II

Fig. 1.The individual steps of our occlusion handling algorithm. From top left to bottom right:
a) original 3D scan (no occlusions) b) plane extraction (only one plane is shown), c) hand-
labeling of the training data, d) labeling of a test data set obtained with the AMN approach;
note that some windows and the wall are occluded, e) class-wise sub-clustering, here for the
window class, f) scan matching of all subclusters, here the big windows, g) mesh generation
from prototype shown in f), h) mesh for the roof windows prototype.
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Fig. 2. Result obtained with our algorithm. Note that two windows inthe second column have
been restored. In the original data (see Figure 1(d)) these windows were occluded by a tree.
Also note that the wall could not be restored, because only one wall object was encountered
in the data set so that no prototype containing data in the occluded areas was obtained.
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