
Multi-Level Surface Maps for Outdoor Terrain

Mapping and Loop Closing

Rudolph Triebel Patrick Pfaff Wolfram Burgard

University of Freiburg

Georges-Koehler-Allee 79, 79110 Freiburg, Germany

{triebel,pfaff,burgard}@informatik.uni-freiburg.de

Abstract— To operate outdoors or on non-flat surfaces, mobile
robots need appropriate data structures that provide a compact
representation of the environment and at the same time support
important tasks such as path planning and localization. One
such representation that has been frequently used in the past
are elevation maps which store in each cell of a discrete grid
the height of the surface in the corresponding area. Whereas
elevation maps provide a compact representation, they lack the
ability to represent vertical structures or even multiple levels.
In this paper, we propose a new representation denoted as
multi-level surface maps (MLS maps). Our approach allows to
store multiple surfaces in each cell of the grid. This enables a
mobile robot to model environments with structures like bridges,
underpasses, buildings or mines. Additionally, they allow to
represent vertical structures. Throughout this paper we present
algorithms for updating these maps based on sensory input, to
match maps calculated from two different scans, and to solve the
loop-closing problem given such maps. Experiments carried out
with a real robot in an outdoor environment demonstrate that
our approach is well-suited for representing large-scale outdoor
environments.

I. I

The problem of learning maps with mobile robots has

been intensively studied in the past. Especially in situations,

in which robots are deployed outdoors or in environments

with non-flat surfaces, the ability to traverse specific areas

of interest needs to be known accurately. In this context,

geometric representations have become popular. However, full

three-dimensional models typically have high computational

demands that prevent them from being directly applicable in

large-scale environment.

One popular approach to overcome this problem are eleva-

tion maps, which apply a 2 1
2
-dimensional representation. An

elevation map consists of a two-dimensional grid in which

each cell stores the height of the territory. Whereas this

approach leads to a substantial reduction of the memory

requirements, it can be problematic when a robot has to utilize

these maps for navigation or when it has to register two

different maps in order to integrate them. Even extensions of

elevation maps that allow to handle vertical or overhanging

objects [20] can only be applied to environments with single

surfaces. For example, a robot that uses extended elevation

maps cannot plan a path under and at the same time over a

bridge.

In this paper, we propose an extension of elevation maps

towards multiple surfaces. These so-called multi-level surface

maps (MLS maps) offer the opportunity to model environ-

ments with more than one traversable level. Whereas the

knowledge about horizontal surfaces is well suited to support

traversability analysis and path planning, it provides only

weak support for localization of the vehicle or registration

of different maps. Modeling only the surfaces means that

vertical structures, which are frequently perceived by ground

based vehicles cannot be used to support localization and

registration. To avoid this problem, our MLS maps additionally

represent intervals corresponding to vertical objects in the

environment. The advantage of this approach is that they can

be compactly stored and at the same time can be used as

features that support the data association problem during the

alignment of maps.

As a motivating example, consider the three-dimensional

data points shown in Figure 1(a). They have been acquired

with a mobile robot standing in front of a bridge. The resulting

elevation map, which is computed from averaging over all scan

points that fall into a cell of a horizontal grid (given a vertical

projection), is depicted in Figure 1(b). As can be seen from

the figure, the underpass has completely disappeared and the

elevation map shows a non-traversable object. Additionally,

when the environment contains vertical structures, we typically

obtain varying average height values depending on how much

of this vertical structure is contained in a scan. When two

such elevation maps need to be aligned, such errors can lead

to imperfect registrations. The corresponding map calculated

with the approach of Pfaff et al. [20], which allows to deal

with vertical and overhanging objects, is shown in Figure 1(c).

Obviously, this approach correctly represents the underpass

and allows the robot to move through the tunnel, but it makes

it impossible to travel over the bridge. The corresponding

MLS map is shown in Figure 1(d). As can be seen, this

representation can correctly represent the individual surfaces.

It also shows that vertical structures are correctly represented.

This paper is organized as follows. After discussing of

related work in the following section, we will describe our

approach of MLS maps in Section III. Section IV then

introduce our constraint-based pose estimation procedure for

calculating consistent maps. Finally, we present experimental

results in Section V.

Fig. 1. Scan (point set) of a bridge (a), standard elevation map computed from this data set (b), extended elevation map which correctly represents the
underpass under the bridge (c), and multi level surface map that correctly represents the height of the vertical objects (d)

II. RW

The problem of learning three-dimensional representations

has been studied intensively in the past. Recently, several

techniques for acquiring three-dimensional data with 2d range

scanners installed on a mobile robot have been developed. A

popular approach is to use multiple scanners that point towards

different directions [7], [25], [26]. An alternative is to use

pan/tilt devices that sweep the range scanner in an oscillating

way [15], [22]. More recently, techniques for rotating 2d range

scanners have been developed [10], [30].

Many authors have studied the acquisition of three-

dimensional maps from vehicles that are assumed to operate

on a flat surface. For example, Thrun et al. [25] present an

approach that employs two 2d range scanners for constructing

volumetric maps. Whereas the first is oriented horizontally

and is used for localization, the second points towards the

ceiling and is applied for acquiring 3d point clouds. Früh and

Zakhor [5] apply a similar idea to the problem of learning

large-scale models of outdoor environments. Their approach

combines laser, vision, and aerial images. Furthermore, several

authors have considered the problem of simultaneous mapping

and localization (SLAM) in an outdoor environment [4], [6],

[27]. These techniques extract landmarks from range data and

calculate the map as well as the pose of the vehicles based on

these landmarks. Our approach described in this paper does

not rely on the assumption that the surface is flat. It uses m

MLS maps to capture the three-dimensional structure of the

environment and is able to estimate the pose of the robot in

all six degrees of freedom.

One of the most popular representations are raw data points

or triangle meshes [1], [12], [22], [28]. Whereas these models

are highly accurate and can easily be textured, their disad-

vantage lies in the huge memory requirement, which grows

linearly in the number of scans taken. Accordingly, several

authors have studied techniques for simplifying point clouds

by piecewise linear approximations. For example, Hähnel et

al. [7] use a region growing technique to identify planes.

Liu et al. [13] as well as Martin and Thrun [14] apply the

EM algorithm to cluster range scans into planes. Recently,

Triebel et al. [29] proposed a hierarchical version that takes

into account the parallelism of the planes during the clus-

tering procedure. An alternative is to use three-dimensional

grids [16] or tree-based representations [23], which only grow

linearly in the size of the environment. According to the non-

planar structure of natural outdoor environments and the space

requirements for large-scale environments, the applicability of

these representations and approximations in such environments

is limited.

In order to avoid the complexity of full three-dimensional

maps, several researchers have considered elevation maps as

an attractive alternative. The key idea underlying elevation

maps is to store the 2 1
2
-dimensional height information of

the terrain in a two-dimensional grid. Bares et al. [2] as

well as Hebert et al. [8] use elevation maps to represent the

environment of a legged robot. They extract points with high

surface curvatures and match these features to align maps

constructed from consecutive range scans. Parra et al. [21]

represent the ground floor by elevation maps and use stereo

vision to detect and track objects on the floor. Singh and

Kelly [24] extract elevation maps from laser range data and

use these maps for navigating an all-terrain vehicle. Ye and

Borenstein [31] propose an algorithm to acquire elevation

maps with a moving vehicle carrying a tilted laser range

scanner. They propose special filtering algorithms to eliminate

measurement errors or noise resulting from the scanner and the

motions of the vehicle. Lacroix et al. [11] extract elevation

maps from stereo images. Hygounenc et al. [9] construct

elevation maps with an autonomous blimp using 3d stereo

vision. They propose an algorithm to track landmarks and to

match local elevation maps using these landmarks. Olson [18]

describes a probabilistic localization algorithm for a planetary

rover that uses elevation maps for terrain modeling. In this

paper, we present MLS maps, which can be regarded as an

extension to elevation maps. Our approach allows to compactly

represent multiple surfaces in the environment as well as

vertical structures. This allow a mobile robot to correctly

deal with multiple traversable surfaces in the environment

as they, for example, occur in the context of bridges. Our

approach also represents an extension of the work by Pfaff et

al. [20]. Whereas this approach allows to deal with vertical

and overhanging objects in elevation maps, it lacks the ability

to represent multiple surfaces.

Recently, several authors have studied the problem of si-

multaneous localization and mapping in the context of mobile

robots operating on a non-flat surface. For example, Davison

et al. [3] presented an approach to vision based SLAM with

a single camera moving freely through the environment. This

approach uses an extended Kalman Filter to simultaneously

update the pose of the camera and the 3d feature points

extracted from the camera images. More recently, Nüchter et

al. [17] developed a mobile robot that builds accurate three-

dimensional models with a mobile robot. In this approach, loop

closing is achieved by uniformly distributing the estimated

odometry error over the poses in a loop. In contrast, the work

described here employs MLS maps and globally optimizes the

µ

σ

d

X

Z

Fig. 2. Example of different cells in an MLS Map. Cells can have many
surface patches (cell A), represented by the mean and the variance of the
measured height. Each surface patch can have a depth, like the patch in cell
B. Flat objects are represented by patches with depth 0, as shown by the patch
in cell C.

pose estimates for calculating consistent maps. To achieve this,

we efficiently solve the data association problem that occurs,

when two maps with different estimates about the surface

levels have to be matched or combined.

III. M L S M

Suppose we are given a set of N 3D scan points C =

{p1, . . . , pN } with pi ∈ �
3, and a set of variances {σ2

1
, . . . , σ2

N
}.

Here, the variance σ2
i

expresses the uncertainty in the range

measurement from which point pi was computed. This uncer-

tainty grows with the measured distance. In the following, we

assume that the uncertainty is equal in all three dimensions,

in particular the variance in height is assumed to be identical

to σ2
i
. Although this assumption is often violated in real

environments, this approximation turned out to be viable for

our applications. Regarding this, we define a measurement z

as a pair (p, σ2) of a 3D point and a variance.

A. Map Representation

A multi-level surface map (MLS map) consists of a 2D grid

of variable size where each cell ci j, i, j ∈ � in the grid stores

a list of surface patches P1
i j
, . . . , PK

i j
. A surface patch in this

context is represented as the mean µk
i j

and variance σk
i j

of the

measured heights at the position of the cell ci j in the map. Each

surface patch in a cell reflects the possibility of traversing the

3D environment at the height given by the mean µk
i j

, while the

uncertainty of this height is represented by the variance σk
i j

.

Throughout this paper, we assume that the error in the height

underlies a Gaussian distribution, therefore we will use the

terms surface patch and Gaussian in a cell interchangeably.

In addition to the mean and variance of a surface patch,

we also store a depth value d for each patch. This depth value

reflects the fact that a surface patch can be on top of a vertical

object like a building, bridge or ramp. In these cases, the depth

is defined by the difference of the height hk
i j

of the surface

patch and the height h′
i j

k of the lowest measurement that is

considered to belong to the vertical object. For flat objects

like the floor, the depth is 0. Figure 2 depicts some examples

of the map cells in an MLS map.

a) Map Creation: An MLS map can be generated in two

different ways: either from a set of 3D measurements, i.e. a

point cloud with variances, or by joining two other MLS maps

into one. Both ways are equivalent, i.e. if map m1 is created

from point cloud C1 and map m2 from cloud C2, then the

map m3 that results from joining m1 and m2 is identical to the

map generated by the joined point cloud C3 = C1 ∪ C2. For a

given point cloud C with variances σ1, . . . , σn the MLS map

is created as follows:

• Each map cell with index (i, j) collects all points p =

(x, y, z), s.t. si ≤ x ≤ s(i + 1) and s j ≤ y ≤ s(j + 1) where

s denotes the size (edge length) of a map cell.

• In each cell, we calculate a set of height intervals from

the height values of the stored points. As long as two

consecutive height values are closer than a given gap size

γ, they belong to the same interval. This means that two

intervals are at least γ meters away from each other. The

gap size should be chosen so that a robot that navigates

through the map can still pass the gap, i.e., it should be

higher than the robot height. In our implementation we

choose 1.0m.

• The intervals are classified as a horizontal or a vertical

structure. These structures are distinguished according to

the height of the interval. If it exceeds a thickness value

τ = 10cm, it is considered as vertical, otherwise it is

horizontal.

• For each interval classified as vertical, we store the mean

and variance of the highest measurement in the interval.

The intuition behind this is that for traversability only

the highest measurement is relevant. Additionally, we

store the length of the interval, which is identified with

the depth d mentioned above. This value is used when

matching two MLS maps together.

• For each horizontal object in a cell, we compute a mean

µ and a variance σ from all measurements in the interval.

This is done by applying the Kalman update rule to all

measurements. The depth d of a horizontal object is set

to 0.

After computing the means, variances and depths of the

surface patches, we delete the point cloud data. All further

calculations are performed only on the map data. This substan-

tially reduces the memory required for an MLS map compared

to point clouds and at the same time achieves a highly accurate

representation.

b) Map Update: Whenever a new measurement z =

(p, σ) is inserted into an MLS map, we first need to know

whether the measurement belongs to an object that is already

represented in the map, or if it corresponds to a new object. To

this end, we first determine the cell ci j in which the measured

point falls. Then we find the Gaussian (µk
i j
, σk

i j
) in ci j whose

mean µk
i j

is closest to the height of z. If this Gaussian is close

enough, we update it with the new measurement z, again using

the Kalman update rule. In our implementation, we define a

Gaussian to be close to a measurement z if the height value

of z is within 3σ of the Gaussian.

Fig. 3. Classification result for the MLS map depicted in Figure 1(d). The
three colors/grey levels indicate the classification result for the individual
surface patches into traversable, non-traversable, and vertical ones.

If z is far from the nearest Gaussian, it is still possible

that it corresponds to a vertical object. This can be found out

by checking whether z is inside the occupancy of one of the

Gaussians in the cell. In this case, the measurement z is simply

disregarded, because a vertical object with a Gaussian on top

already exists. Otherwise, z is introduced as a new Gaussian

into the cell.

B. Traversability Analysis and Feature Extraction

In the past, it has often been reported that the data associ-

ation can seriously be improved by extracting features from

the data [17], [20]. In addition to the vertical structures, we

therefore additionally classify the horizontal surface patches

according to their traversability. To determine whether a sur-

face patch is traversable, we find the nearest Gaussian in each

neighboring cell. In our approach, a surface patch can only be

traversable if at least 5 of the 8 neighboring cells exist and if

the distance in height between the patch and all its neighbors is

less than 10cm. Figure 3 shows the classification result for the

MLS map depicted in Figure 1(d). The three colors/grey levels

indicate the classification result. The yellow/light grey parts

of the surfaces represent the traversable surface patches. The

blue/dark areas are the non-traversable parts of the surfaces

and the red/medium grey structures represent the vertical

objects.

C. Map Matching

To calculate the alignments between two local MLS maps

calculated from individual scans, we apply the ICP algorithm.

The goal of this process is to find a rotation matrix R and a

translation vector t that minimize an appropriate error function.

Assuming that the two maps are represented by a set of

Gaussians, the algorithm first computes two sets of feature

points, X = {x1, . . . , xN1
} and Y = {y1, . . . , yN2

}. Then in a

second step the algorithm computes a set of C index pairs or

correspondences (i1, j1), . . . , (iC, jC) such that the point xic in

X corresponds to the point y jc in Y for c = 1, . . . ,C. Then, in

a third step, the error function e defined by

e(R, t) :=
1

C

C∑

c=1

(xic − (Ry jc + t))TΣ−1(xic − (Ry jc + t)), (1)

is minimized. Here, Σ denotes the covariance matrix of the

Gaussian corresponding to each pair (xi, yi). In other words,

the error function e is defined by the sum of squared Maha-

lanobis distances between the points xic and the transformed

point y jc . In the following, we denote this Mahalanobis dis-

tance as d(xic , y jc).

In principle, one could define this function to directly

operate on the Gaussians when aligning two different MLS

maps. One disadvantage of this approach, however, is that

a MLS map of one single scan typically includes a huge

number of Gaussians (15,318 on average in the data sets shown

in this paper). Accordingly, the nearest neighbor search in

the ICP algorithm requires a lot of computational resources.

Additionally, we need to take care of the problem that the

intervals corresponding to vertical structures vary substantially

depending on the view-point. Moreover, the same vertical

structure may lead to varying heights in the surface map when

sensed from different points. In practical experiments, we ob-

served that this introduces serious errors and often prevents the

ICP algorithm from convergence. To overcome this problem,

we separate Equation (1) into three components each mini-

mizing the error over the individual classes of points. These

three terms correspond to the three individual classes, namely

surface patches corresponding to vertical objects, traversable

surface patches, and non-traversable surface patches.

Let us assume that uic and u′
jc

are corresponding points,

extracted from vertical objects. The number of points sam-

pled from every interval classified as vertical depends on

the height of this structure. In our current implementation,

we typically uniformly sample four points per meter. The

corresponding points vic and v′
jc

are extracted from traversable

surface patches, wic and w′
jc

are extracted from not traversable

surfaces. The resulting error function then is

e(R, t) =

C1∑

c=1

dv(uic , u
′
jc

)

︸ ︷︷ ︸

vertical cells

+

C2∑

c=1

d(vic , v
′
jc
)

︸ ︷︷ ︸

traversable

+

C3∑

c=1

d(wic ,w
′
jc

).

︸ ︷︷ ︸

non-traversable

(2)

In this equation, the distance function dv calculates the Ma-

halanobis distance between the lowest points in the particular

cells. To increase the efficiency of the matching process, we

only consider a subset of these features by sub-sampling.

IV. L C

The ICP-based scan matching technique described above

works well for the registration of single robot poses into one

global reference frame. However, the individual scan matching

processes result in small residual errors which quickly accu-

mulate over time and usually result in globally inconsistent

maps. In practice, this typically becomes apparent when the

robot encounters a loop, i.e., when it returns to a previously

visited place. Especially in big loops this error grows so large

that the resulting inconsistencies make the map useless for

navigation. Accordingly, techniques for calculating globally

consistent maps are necessary. In the system described here,

we apply a technique similar to the one presented in [19] to

correct for the accumulated error when closing a loop.

A. Network-based Pose Optimization

Suppose the robot recorded 3D scans at N different poses

P1, . . . , PN . A pose is defined as a 6-tuple (x, y, z, ϕ, ϑ, ψ)

of location (x, y, z) and orientation (ϕ, ϑ, ψ). Whenever two

local MLS maps mi and m j corresponding to the poses Pi

and P j are matched to each other using the map matching

technique described above, a constraint is imposed on the

poses Pi and P j. If we represent all these constraints as

undirected links in a graph, where the nodes are defined

by the robot poses, we obtain a network of robot poses. A

global pose optimization that takes all local constraints into

account can be performed on such a pose network. In the

literature, many different approaches for network-based pose

optimization can be found. Recently, a good overview and

comparison of different approaches has been presented by

Olson et al. [19]. They authors also present a new algorithm

based on a modified stochastic gradient descent (SGD) that

is fast and robust against poor initial pose estimates. For our

application, we implemented both the LU decomposition [19]

and the SGD approach. Both gave good results, although the

LU decomposition appeared to be slightly more robust.

B. Constraints between Robot Poses

As described above, the scan matching between two local

MLS maps mi and m j is done by minimizing the error

function e(R, t) from Equation 2. After convergence of the

ICP algorithm we have a set of correspondences between the

feature sets Fi = (Ui,Vi,Wi) and F j = (U j,V j,W j) where

Ui = {ui1 , . . . , uiC1
} and U j = {u j1 , . . . , u jC1

}. The other fea-

ture subsets Vi,Wi,V j,W j are defined analogously. Given

these correspondences we define a local constraint between

two robot poses Pi and P j as the rigid-body transformation

between features in the local reference frame at Pi and the

corresponding features in the local reference frame at P j. This

means, if the scan matcher returns a rotation matrix Ri j and

a translation vector ti j between the global coordinates of the

features, our local constraint Ti j is defined by

Ti j := P−1
i (Ri jP j(fic) + ti j) (3)

Here we use the notation P j(fic) for the function that trans-

forms a feature fic from the local reference frame at the

robot position P j to the global reference frame. Accordingly,

P−1 transforms a feature in global coordinates into the local

reference frame at position P j.

C. LU decomposition

Using the above notation we can now formulate the pose

optimization problem. For a given set of initial robot poses

P1, . . . , PN the scan matcher returns a set of local constraints

Ti j for i, j = 1, . . . ,N, i , j according to Equation 3. These

constraints are then encoded in a goal vector g of length 6M

where M is the number of constraints Ti j.

g := (. . . , xi j, yi j, zi j, ϕi j, ϑi j, ψi j, . . .) (4)

In other words, g contains all local constraints expressed as 3D

translation and rotation. Next we define the constraint function

f : �6N → �6M that maps robot poses to local constraints.

f (x1, . . . , ψ1, . . . , xN , . . . , ψN) :=





...

α(P−1
i

P j)
...





(5)

Here we introduced the function α which converts a pose trans-

form P into its 6 parameters (x, y, z, ϕ, ϑ, ψ). This constraint

function f is non-linear due to the rotations. We therefore

linearize it according to f (p) ≈ F |p + J|p∆p where p is

the vector of all robot poses and J|p is the Jacobian of the

constraint function f at p. At each iteration of the pose

optimization F |p and J|p are recomputed for the new poses and

we will write simply F and J for better readability. The global

pose optimization can then be formulated as the minimization

of the squared error:

argmind ‖ Jd − r ‖2 (6)

Here we substituted ∆p by d and (F − g) by r.

By deriving with respect to d and setting to zero we obtain

JT Jd = JT r (7)

This is a standard linear algebra problem which can be solved

by LU decomposition or by multiplication with the pseudo-

inverse of JT J. The overall algorithm can then be described

by iterating the following steps:

• Compute F and J from the poses p.

• Minimize (6) according to Equation (7).

• Compute new poses: p← p + d.

This is repeated as long as the residual r exceeds a threshold

or a maximum number of iterations is reached.

D. Implementation Details

In our experiments it turned out that the described pose

optimization technique works well in cases where the number

of robot poses was around 70. However, the larger the loops

are the higher is the initial pose estimation error from odom-

etry, and it is not enough overlap left for the scan matching

algorithm to find correspondences between the first and the

last robot poses. Therefore we proceed as follows: Considering

that the local scan matches between consecutive robot poses

is highly accurate, we match local maps corresponding to 5

consecutive poses into new and bigger local maps. This means

that maps m1, . . . ,m5 are matched into the new map m̄1, maps

m6, . . . ,m10 into m̄2 and so on. This way we obtain a set

of N
5

new local maps, which reduces the pose optimization

problem. A further improvement can be achieved by increasing

the overlap between consecutive local maps m̄i and m̄i+1. This

can be done by adding the last partial map from m̄i to m̄i+1.

For example, the local map m5 is then also a part of the new

local map m̄2. In this way, the scan matching error between

the joined local maps m̄i and m̄ j can be reduced and the

global pose optimization is more likely to converge to a global

optimum.

Fig. 4. Two views of the resulting MLS map of the first experiment with a cell size of 10cm x 10cm. The area scanned by the robot spans approximately
195 by 146 meters. During the data acquisition, where the robot collected 77 scans consisting of 20,207,000 data points, the robot traversed a loop with a
length of 312m.

Fig. 5. Resulting MLS map of the second experiment with a cell size of 10cm x 10cm. The area scanned by the robot spans approximately 299 by 147
meters. During the data acquisition, where the robot collected 172 scans consisting of 45,139,000 data points, the robot traversed a loop with a length of
560m.

V. E

Our approach has been implemented and evaluated using

our mobile outdoor platform Herbert which is a Pioneer II AT

robot equipped with a SICK LMS 291 range sensor mounted

on an AMTEC wrist PW70. To acquire the data, we steered

the robot over the university campus. On its path, the robot

encountered two loops. Additionally, it traversed over a bridge

and through the corresponding underpass. The goal of these

experiments is to demonstrate that our representation yields

a significant reduction of the memory requirements compared

to a point cloud representation, while still providing sufficient

accuracy. Additionally, they show that our representation is

well-suited for global pose estimation and loop closure.

In the first experiment we acquired 77 scans consisting of

20,207,000 data points. The area scanned by the robot spans

approximately 195 by 146 meters. During the data acquisition,

the robot traversed a loop with a length of 312m. Figure 4

shows two views of the resulting MLS map with a cell size

of 10cm x 10cm. The yellow/light grey surface patches are

classified as traversable. It requires 57.96 MBytes to store the

computed map, where 24% of 2,847,300 cells are occupied.

In the second experiment we acquired 172 scans consisting

of 45,139,000 data points. The area scanned by the robot spans

approximately 299 by 147 meters. During the data acquisition,

the robot traversed a loop, which has a length of 560m.

Figure 5 shows the resulting MLS map with a cell size of 10cm

x 10cm. The yellow/light grey surface patches are classified as

traversable. It requires 73.33 MBytes to store the whole map,

where 20% of 4,395,300 cells are occupied.

VI. C

In this paper, we presented multi-level surface maps as a

novel representation for outdoor environments. Compared to

elevation maps, multi-level surface maps (MLS maps) store

in each cell of a discrete grid a list of surfaces. Additionally,

they use intervals to represent vertical structures. We presented

algorithms for updating multi-level surface maps based on

sensory input, for matching such maps and for solving the

loop-closing problem using this representation.

We also described an implementation of multi-level surface

maps on a Pioneer II AT platform equipped with a laser

range scanner mounted on a pan/tilt unit. We presented large-

scale maps learned from the data acquired with this robot.

The resulting maps show a high accuracy and at the same

time require one order of magnitude less space than the

original point data. Additionally, the results demonstrate that

multi-level surface maps allow mobile robots to operate in

environments with multiple levels. In one of our experiments

the robot successfully traveled over a bridge and through the

corresponding underpass.

A

This work has partly been supported by the German Re-

search Foundation (DFG) within the Research Training Group

1103 and under contract number SFB/TR-8.

R

[1] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, and P. Blaer. Avenue:
Automated site modeling in urban environments. In Proc. of the 3rd

Conference on Digital Imaging and Modeling, pages 357–364, 2001.
[2] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons,

and W. R. L. Whittaker. Ambler: An autonomous rover for planetary
exploration. IEEE Computer Society Press, 22(6):18–22, 1989.

[3] A.J. Davison, Y. Gonzalez Cid, and N. Kita. Real-time 3d SLAM with
wide-angle vision. In Proc. of the 5th IFAC Symposium on Intelligent

Autonomous Vehicles (IAV), 2004.
[4] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and

M. Csorba. A solution to the simultaneous localisation and map building
(SLAM) problem. IEEE Transactions on Robotics and Automation,
17(3):229–241, 2001.

[5] C. Früh and A. Zakhor. An automated method for large-scale, ground-
based city model acquisition. International Journal of Computer Vision,
60:5–24, 2004.

[6] J. Guivant and E. Nebot. Optimization of the simultaneous localization
and map building algorithm for real time implementation. IEEE

Transactions on Robotics and Automation, 17(3):242–257, May 2001.
In press.

[7] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3d models
of indoor and outdoor environments with a mobile robot. Robotics and

Autonomous Systems, 44(1):15–27, 2003.
[8] M. Hebert, C. Caillas, E. Krotkov, I.S. Kweon, and T. Kanade. Terrain

mapping for a roving planetary explorer. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 997–1002, 1989.

[9] E. Hygounenc, I.-K. Jung, P. Souères, and S. Lacroix. The autonomous
blimp project of laas-cnrs: Achievements in flight control and terrain
mapping. International Journal of Robotics Research, 23(4-5):473–511,
2004.

[10] P. Kohlhepp, M. Walther, and P. Steinhaus. Schritthaltende 3D-
Kartierung und Lokalisierung für mobile inspektionsroboter. In
18. Fachgespräche AMS, 2003. In German.

[11] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury and; M. Herrb,
and R. Chatila. Autonomous rover navigation on unknown terrains:
Functions and integration. International Journal of Robotics Research,
21(10-11):917–942, 2002.

[12] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital michelangelo project: 3D scanning of large statues. In
Proc. SIGGRAPH, pages 131–144, 2000.

[13] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. Using
EM to learn 3D models with mobile robots. In Proceedings of the

International Conference on Machine Learning (ICML), 2001.
[14] C. Martin and S. Thrun. Online acquisition of compact volumetric maps

with mobile robots. In IEEE International Conference on Robotics and

Automation (ICRA), Washington, DC, 2002. ICRA.
[15] M. Montemerlo and S. Thrun. A multi-resolution pyramid for outdoor

robot terrain perception. In Proc. of the National Conference on Artificial

Intelligence (AAAI), 2004.
[16] H.P. Moravec. Robot spatial perception by stereoscopic vision and 3d

evidence grids. Technical Report CMU-RI-TR-96-34, Carnegie Mellon
University, Robotics Institute, 1996.

[17] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM
with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.
[18] C.F. Olson. Probabilistic self-localization for mobile robots. IEEE

Transactions on Robotics and Automation, 16(1):55–66, 2000.
[19] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose

graphs with poor estimates. In ICRA, 2006. to appear.
[20] Pfaff P. and Burgard W. An efficient extension of elevation maps for

outdoor terrain mapping. In Proc. of the International Conference on

Field and Service Robotics (FSR), pages 165–176, 2005.
[21] C. Parra, R. Murrieta-Cid, M. Devy, and M. Briot. 3-d modelling and

robot localization from visual and range data in natural scenes. In 1st

International Conference on Computer Vision Systems (ICVS), number
1542 in LNCS, pages 450–468, 1999.

[22] K. Pervölz, A. Nüchter, H. Surmann, and J. Hertzberg. Automatic
reconstruction of colored 3d models. In Proc. Robotik 2004, 2004.

[23] H. Samet. Applications of Spatial Data Structures. Addison-Wesley
Publishing Inc., 1989.

[24] S. Singh and A. Kelly. Robot planning in the space of feasible actions:
Two examples. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 1996.
[25] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile

robot mapping with applications to multi-robot and 3D mapping. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2000.

[26] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Bur-
gard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker. A system
for volumetric robotic mapping of abandoned mines. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2003.
[27] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durant-

Whyte. Simultaneous localization and mapping with sparse extended
information filters. International Journal of Robotics Research, 23(7-
8):693–704, 2004.

[28] S. Thrun, C. Martin, Y. Liu, D. Hähnel, R. Emery Montemerlo, C. Deep-
ayan, and W. Burgard. A real-time expectation maximization algorithm
for acquiring multi-planar maps of indoor environments with mobile
robots. IEEE Transactions on Robotics and Automation, 20(3):433–442,
2003.

[29] R. Triebel, F. Dellaert, and W. Burgard. Using hierarchical EM to extract
planes from 3d range scans. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2005.
[30] O. Wulf, K-A. Arras, H.I. Christensen, and B. Wagner. 2d mapping of

cluttered indoor environments by means of 3d perception. In ICRA-04,
pages 4204–4209, New Orleans, apr 2004. IEEE.

[31] C. Ye and J. Borenstein. A new terrain mapping method for mobile
robot obstacle negotiation. In Proc. of the UGV Technology Conference

at the 2002 SPIE AeroSense Symposium, 1994.

