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Abstract. We explore the 3D reconstruction of objects from a single
view within an interactive framework by using silhouette information.
In order to deal with the highly ill-posed nature of the problem we pro-
pose two different reconstruction priors: a shape and a volume prior and
cast them into a variational problem formulation. For both priors we
show that the corresponding relaxed optimization problem is convex.
This leads to unique solutions which are independent of initialization
and which are either globally optimal (shape prior) or can be shown to
lie within bounds from the optimal solution (volume prior). We analyze
properties of the proposed priors with regard to the reconstruction re-
sults as well as their impact on the minimization problem. By employing
an implicit volumetric representation our reconstructions enjoy complete
topological freedom. Being parameter-based, our interactive reconstruc-
tion tool allows for intuitive and easy to use modeling of the reconstruc-
tion result.

Keywords: Single View Reconstruction, Image-Based Modeling,
Convex Optimization.

1 Introduction

1.1 Single View Reconstruction

The general problem of 3D reconstruction has been considered in a plethora of
works in computer vision - at least in the case of given multiple views and in
stereo vision. With the help of multi-view concepts like point correspondences
and photo-consistency it has been shown that high-quality reconstructions can be
inferred from a set of photographs of a single object. However, there are relatively
few works on single view reconstruction, although its underlying problem may
be considered one of the most fundamental in vision. This may to a great extent
be due to the high ill-posedness of the corresponding mathematical problem, but
is nevertheless astonishing, as humans excel in solving the task in every-day life.

The main difficulty in inferring 3D geometry from a single image lies in the fact
that it is inherently ill-posed. The process of image formation is not invertible
and it is impossible to retrieve exact depth values from a single image. Thus,
we have to make use of a strong prior. Such priors can either be obtained by
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statistical learning of shape or by restraining the solution space, e.g. by making
the assumption of smoothness and compactness. Additionally to a prior, user
input can be incorporated into the reconstruction process which can be realized
as a modeling tool.

While the growing amount of image data on the Internet increases the avail-
ability of multiple views for certain scenes, this does only apply to few places
of strong public interest, like e.g. touristic hot spots. Single view reconstruction
becomes particularly important in situations where a rough estimate of object
geometry is desired rather than an exact reconstruction. This is the case when
generating an alternate view of a single photograph or changing the illumination
of the depicted scene.

In this work we follow the idea of modeling an object from a single view grad-
ually by user input, but with the ultimate goal of keeping the process simple for
the user. Instead of an involved modeling stage that amounts to the specifica-
tion of absolute vertex positions and normal directions, we rather rely on user
provided global and local constraints that, together with a strong prior, lead to
a reconstruction estimate.

This work recapitulates two different priors for single view reconstruction
which were proposed in papers [1] and [2]. One is based on a shape prior for-
mulation, the other one amounts to a global constraint on the volume of the
reconstruction. We evaluate both approaches and compare them to each other.

1.2 Issues and Related Work

Existing work on single view reconstruction and on interactive 3D modeling can
be roughly classified into the categories planar versus curved and implicit versus
parametric approaches.

Many approaches such as that of Horry et al. [3] aim to reconstruct planar
surfaces by evaluating user defined vanishing points and lines. This has been
extended by Liebowitz [4] and Criminisi [5]. This process has been completely
automated by Hoiem et al. [6], yielding appealing results on a limited number
of input images. Sturm et al. [7] make use of user-specified constraints such as
coplanarity, parallelism and perpendicularity in order to reconstruct piecewise
planar surfaces.

An early work for the reconstruction of curved objects is Terzopoulos et al.
[8] in which symmetry seeking models are reconstructed from a user defined sil-
houette and symmetry axis using snakes. However, this approach is restricted
to the class of tube-like shapes. Moreover, reconstructions are merely locally
optimal. The work of Zhang et al. [9] addresses this problem and proposes a
model which globally optimizes a smoothness criterion. However, it concentrates
on estimating height fields rather than reconstructing real 3D representations.
Moreover, it requires a huge amount of user interaction in order to obtain ap-
pealing reconstructions. Also related to the field are easy-to-use tools like Teddy
[10] and FiberMesh [11] that have pioneered sketch based modeling but are not
image-based.
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All of the cited works are using explicit surface representation – while sur-
face manipulation is often straightforward and a variety of cues are easily in-
tegrated leading to respective forces or constraints on the surface, there are
two major limitations: Firstly numerical solutions are generally not indepen-
dent of the choice of parameterization. And secondly, parametric representa-
tions are not easily extended to objects of varying topology. While Prasad et
al. [12] were able to extend their approach to surfaces with one or two holes,
the generalization to objects of arbitrary topology is by no means straightfor-
ward and quite involved for the user. Similarly, topology-changing interaction
in the FiberMesh system requires a complex remeshing of the modeled ob-
ject leading to computationally challenging numerical optimization schemes.
For the given reasons in this work we pursue an implicit representation of
the reconstructed object. Joshi et al. [13] also suggest a silhouette-based sur-
face inflation method and minimize a similar energy as [9] or [12] in order to
obtain a smooth surface. However, like Zhang et al. [9], Joshi et al. aim to
reconstruct depth maps rather than full 3D objects.

Another problem of all existing works is the fact that they revert to inflation
heuristics in order to avoid surface collapsing. These techniques boil down to
fixing absolute depth values which undesirably restrict the solution space. We
show that a prior on the volume of the reconstruction solves this problem. A
precursor to volume constraints are the volume inflation terms pioneered for
deformable models by Cohen and Cohen [14]. However, no constant volume
constraints were considered and no implicit representations were used.

1.3 Contribution

In this paper, we focus on the reconstruction of curved objects of arbitrary
topology with a minimum of user input in an interactive and intuitive framework.
We propose a convex variational method which generates a 3D object in a matter
of seconds using silhouette information only.

To this end, we revert to an implicit representation of the surface given by the
indicator function of its interior (sometimes referred to as voxel-occupancy). In
this representation, the weighted minimal surface problem is a convex functional
and relaxation of the binary function leads to an overall convex problem.

Two approaches are presented to overcome the ambiguity in the reconstruction
process: In the first one we formulate a shape prior which determines the basic
shape and at the same time inflates the reconstruction geometry. In the second
approach we introduce a constraint on the volume of the reconstruction. We
discuss advantages and shortcomings of both approaches. In both cases we detail
how to solve the resulting optimization problem by means of relaxation. This
leads to a solution to the unrelaxed problem that is globally optimal in the case
of a shape prior and that we show to be within in a bound of the optimum in
the case of a volume prior.
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User Strokes Silhouette First Estimate Final Result
for Segmentation

Fig. 1. The basic workflow of the single view reconstruction process: The user marks the
input image with scribbles (left) from which a silhouette is generated by segmentation
(second from left). A first reconstruction estimate is generated automatically from
the silhouette (third from left). The user can then iteratively adapt the model in an
interactive manner (right).

2 Reconstruction Workflow

A good silhouette is the main prerequisite for a reasonable reconstruction result
with the algorithms proposed in Sections 4 and 5. The number of holes in the
segmentation of the target object determines the topology of the reconstructed
surface. Notably, the proposed reconstruction methods can also cope with dis-
connected regions of the object silhouette.

The segmentation is obtained by utilizing an interactive graph cuts scheme
similar to the ones described by [15] and [16]. The algorithm calculates two
distinct regions based on respective color histograms which are defined by rep-
resentational pen strokes given by the user (see Fig. 1).

From the input image and silhouette a first reconstruction is generated auto-
matically, which - depending on the complexity and the class of the object - can
already be satisfactory. However, for some object classes and due to the general
over-smoothing of the resulting mesh (see Section 3), the user can subsequently
adapt the reconstruction by specifying intuitive and simple global and local con-
straints. These editing tools are completely parameter-based. The editing stage
can be reiterated by the user until the desired result is obtained.

3 Implicit Variational Surfaces

Assume we are given the silhouette of an object in an image as returned by an
interactive segmentation tool. The goal is then to obtain a smooth 3D model
of the object which is consistent with the silhouette. How should we select the
correct 3D model among the infinitely many that match the silhouette? Clearly,
we need to impose additional information, at the same time we want to keep
this information at a minimum since user interaction is always tedious and slow.

Formally, we are given an image plane Ω which contains the input image and
lies in R

3. As part of the image we also have an object silhouette Σ ⊂ Ω. Now,
we are seeking to compute reconstructions as minimal weighted surfaces S ⊂ R

3

that are compliant with the object silhouette Σ:
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min

∫

S

g(s)ds (1)

subject to π(S) = Σ

where π : R
3 → Ω is the orthographic projection onto the image plane Ω,

g : R
3 → R

+ is a smoothness weighting function and s ∈ S is an element of the
surface S.

We now introduce an implicit representation by replacing the surface S with
its implicit binary indicator function u ∈ BV (R3; {0, 1}) representing the voxel
occupancy (0 =exterior, 1 =interior), where BV denotes the functions of bounded
variation [17]. The desired minimal weighted surface area is then given by min-
imizing the total variation (TV) over a suitable set UΣ of feasible functions u:

min
u∈UΣ

∫
g(x)|∇u(x)|d3x (2)

where ∇u denotes the derivative in the distributional sense. Eq. (2) favors
smooth solutions. However, smoothness is locally affected by the function g(x) :
R

3 → R
+ which will be used later for modeling. Without any modeling g is the

identity mapping by default, i.e. g(x) ≡ 1.
How does the set UΣ of feasible functions look like? For simplicity, we assume

the silhouette to be enclosed by the surface. Then all surface functions that are
consistent with the silhouette Σ must be in the set

UΣ =

⎧⎪⎨
⎪⎩u ∈ BV (R3; {0, 1})

∣∣∣ u(x) =

⎧⎪⎨
⎪⎩

0, π(x) /∈ Σ

1, x ∈ Σ

arbitrary, otherwise

⎫⎪⎬
⎪⎭ (3)

Obviously, solving problem (1) / (2) results in the silhouette itself. Therefore we
need further assumptions in order to rule out trivial solutions. In the subsequent
sections we propose two different approaches to the problem.

Using the Weighting Function for Modeling

The weight g(x) of the TV-norm in Eq. (2) can be used to locally control the
smoothness of the reconstruction: With a low value 0 ≤ g(x) < 1, the smoothness
condition on the surface is locally relaxed, allowing for creases and sharp edges to
form. Conversely, higher values for g(x) > 1 locally enforces surface smoothness.
For controlling the weighting function we employ a user scribble interface. The
parameter associated to each scribble marks the local smoothness g(x) within the
respective scribble area and is propagated through the volume along projection
direction.

This approach of parametric local smoothness adaptation can be applied in
the case of a data term (Section 4) as well as in case of a constant volume
constraint (Section 5).
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4 Inflation via Shape Prior

By introducing a data term, we realize two objectives: volume inflation and
determination of the basic reconstructed shape. Since there is no inherent data
term in the single view setting we have to define one heuristically. We choose a
term of the following form: ∫

u(x) φ(x)d3x (4)

φ : R
3 �→ IR can be adopted to achieve the desired object shape and may also be

adopted by user-interaction later on. Adding this term to the energy in Equation
(2) amounts to the following problem:

min
u∈UΣ

∫
u(x) φ(x)d3x + λ

∫
g(x)|∇u(x)|d3x (5)

where λ is a weighting parameter that determines the relative smoothness of the
solution.

In order to fix a definition for φ we make the simple assumption that the
thickness of the observed object increases as we move inward from its silhouette.
For any point p ∈ V let

dist(p, ∂S) = min
s∈∂S

‖p − s‖ , (6)

denote its distance to the silhouette contour ∂S ⊂ Ω. Then we set:

φ(x) =

{
−1 if dist(x, Ω) ≤ h(π(x))
+1 otherwise ,

(7)

where the height map h : Ω �→ IR depends on the distance of the projected 3D
point to the silhouette according to the function

h(p) = min
{
μcutoff , μoffset + μfactor ∗ dist(p, ∂S)k

}
(8)

with four parameters k, μoffset, μfactor, μcutoff ∈ R
+ affecting the shape of the

function φ. How the user can employ these parameters to modify the computed
3D shape will be discussed in the following paragraph.

Note that this choice of φ implies symmetry of the resulting model with respect
to the image plane. Since the backside of the object is unobservable, it will be
reconstructed properly for plane-symmetric objects.

Data Term Parameters. By altering the parameters μoffset, μfactor, μcutoff and
the exponent k of the height map function (8), users can intuitively change
the data term (4) and thus the overall shape of the reconstruction. Note that
the impact of these parameters is attenuated with increasing importance of the
smoothness term. The effects of the offset, factor and cutoff parameters on the
height map are shown in Fig. 2 and are quite intuitive to grasp. The exponent
k of the distance function in (8) mainly influences the objects curvature in the
proximity of the silhouette contour. This can be observed in Fig. 2 showing an
evolution from a cone to a cylinder just by decreasing k.
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k = 2 k = 1 k = 1/100

Fig. 2. Effect of μoffset, μfactor, μcutoff (left) and various values of parameter k and
resulting (scaled) height map plots for a circular silhouette

Altering the Data Term Locally. Due to the incorporation of a distance
transform in the data term, the reconstruction will always become flat at the
silhouette border. However this is not always desired like for instance for the
bottom and top of the vase in Fig. 3.

A simple remedy to this problem is to ignore parts of the contour during
the calculation of the distance function. The user indicates the sections of the
silhouette contour he wants to have ignored. To keep user interaction simple, we
approximate the object contour by a polygon which is laid over the input image.
By clicking on the edge, the user indicates to ignore the corresponding contour
pixels during distance map calculation (see Fig. 3 top right).

4.1 Optimization via Convex Relaxation

To minimize energy (2) plus the data term (4) we follow the framework developed
in [18]. To this end, we relax the binary problem, looking for functions u : V →
[0, 1] instead.

We can globally minimize the resulting convex functional by solving the cor-
responding Euler-Lagrange equation

0 = φ − λ div
(

g
∇u

|∇u|
)

, (9)

using a fixed-point iteration in combination with Successive Over-Relaxation
(SOR). A global optimum of the original binary labeling problem is then ob-
tained by simple thresholding of the solution of the relaxed problem – see [18]
for details.

In [19] it was shown that such relaxation techniques have several advantages
over graph cut methods. In this work, the two main advantages are the lack
of metrication errors and the parallelization potential. These two aspects allow
to compute smooth single view reconstructions with no grid bias within a few
seconds using standard graphics hardware.
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Fig. 3. Top row: height maps and corresponding reconstructions with and without
marked sharp contour edges. Bottom row: input image with marked contour edges
(blue) and line strokes (red) for local discontinuities which are shown right.

Input Image Reconstructed Reconstructed Textured
Geometry with Geometry only Geometry
Input Image

Fig. 4. An example with intricate topology. Due to the implicit representation of the
reconstruction surface, the algorithm of Sections 4 and 5 can handle any genus

4.2 Experiments

In the following we apply our reconstruction method with data term to several
input images. We show different aspects of the reconstruction process for typical
classes of target objects and mention limitations of the approach.

The experimental results are shown in Figures 4, 5, 6 and 7. Default values
for the data term parameters (8) are k = 1, μoffset = 0, μfactor = 1, μcutoff = ∞.
Each row depicts several views of a single object reconstruction starting with
the input image.
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Input Image Textured Reconstructed Textured
Geometry with Geometry only Geometry
Input Image

Fig. 5. For the cockatoo very little additional user input was necessary. The smoothness
was reduced locally by a single user scribble (see Section 3).

Input Image Textured Reconstructed Textured
Geometry with Geometry with Geometry
Input Image Input Image

Fig. 6. The Cristo statue composes of smooth and non-smooth parts. The socket part
was marked as non-smooth by a user scribble adapting the weight of the minimal
surface locally.

The fence in Fig. 4 is an example of the complex topology the algorithm can
handle. The reconstruction was automatically generated by the method right
after the segmentation stage, i.e. without changing the surface smoothness.

Figures 5, 6 and 7 demonstrate the potential of user editing as described in
Sections 3 and 4. The reconstructions were edited by adapting the local smooth-
ness and locally editing the data term. It can be seen, that elaborate modeling
effects can be achieved by these simple operations. Especially for the cockatoo a
single curve suffices in order to add the characteristic indentation to the beak.
No expert knowledge is necessary. For the socket of the Cristo statue, creases
help to attain sharp edges, while keeping the rest of the statue smooth. It should
be stressed, that no other post-processing operations were used.

The experiments in Figure 7 stand for a more complex series of target objects.
A closer look reveals that the algorithm clearly attains its limit. The structure of
the opera building (third row) as well as the elaborate geometry of the bike and
its drivers cannot be correctly reconstructed with the proposed method due to a
lack of information and more sophisticated tools. Yet the results are appealing
and could be spiced up with the given tools.
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Input Image Textured Reconstruction Textured
Geometry with Geometry only Geometry
Input Image

Fig. 7. Reconstruction examples where the algorithm attains its limit. Nevertheless
the results are pleasing and could be used for tasks like new view synthesis.

5 Inflation via Volume Prior

Adding a data term to the variational problem (2) delivers reasonable results
for single view reconstruction, as shown in the last section. However, we have
also seen that a data term imposes a strong bias on the shape. Ideally we would
like to have a non-heuristic inflation approach that does not restrict the shape
variety while at the same time exhibits the same natural compactness as seen in
the experiments above.

As an alternative inflation strategy we propose to use a constraint on the
size of the volume enclosed by the minimal surface. We formulate this as a hard
constraint by further constraining the feasible set of problem (2):

min
u∈UΣ∩UV

E(u) where E(u) =
∫

g(x)|∇u(x)|d3x (10)

and UV =
{

u ∈ BV (R3; {0, 1})
∣∣∣

∫
u(x)d3x = Vt

}
(11)

where UV denominates all reconstructions with bounded variation that have the
specific target volume Vt.

Different approaches to finding Vt can be considered. Since in the implemen-
tation the optimization domain is naturally bounded, we choose Vt to be a fixed
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fraction of the volume of this domain. In a fast interactive framework the user
can then adapt the target volume with the help of instant visual feedback. Most
importantly, as opposed to a data term driven model volume constraints do not
dictate where inflation takes place.

5.1 Optimization via Convex Relaxation

As in Section 4 we choose to relax the binary problem. This amounts to replacing
UV and UΣ with their respective convex hulls U r

V and U r
Σ . The corresponding

optimization problem is then convex:

Proposition 1. The relaxed set U r := U r
Σ ∩ U r

V is convex.

Proof. The constraint in the definition of UV is clearly linear in u and therefore
U r

V is convex. The same argument holds for UΣ . Being an intersection of two
convex sets U r is convex as well.

One standard way of finding the globally optimal solution to this problem is
gradient descent, which is known to converge very slowly. Since optimization
speed is an integral part of an interactive reconstruction framework, we convert
our problem to a form for which a primal-dual scheme [20] can be applied.

We start by replacing the TV-norm in our minimal surface problem by its
weak equivalent:

min
u∈Ur

∫
g(x)|∇u|d3x = min

u∈Ur
max

|ξ(x)|2≤g(x)

{∫
−udivξ d3x

}
(12)

where ξ ∈ C1
c (R3, R3).

The main problem is that we are dealing with an optimization problem over
a constrained set. u needs to fulfill three constraints: Silhouette consistency,
constant volume and u ∈ [0, 1].

In order to maintain silhouette consistency (3) of the solution we simply re-
strict updates to those voxels which project onto the silhouette interior excluding
the silhouette itself. Furthermore we reformulate the volume constraint as a La-
grange multiplier λ, which together with Equation (12) leads to the following
Lagrangian dual problem [21]:

max
|ξ(x)|2≤g(x)

λ

min
u∈Ur

Σ

{∫
−udivξ d3x + λ

(∫
u d3x − Vt

)}
(13)

Equation (13) is a saddle point problem. In [20] it was presented how to solve
such problems of this special form with a primal-dual scheme. We employ this
scheme which is fast and provably convergent. It consists of alternating a gradient
descent with respect to the function u and a gradient ascent for the dual variables
ξ and λ interlaced with an over-relaxation step on the primal variable:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ξk+1 = Π|ξ(x)|2≤g(x)(ξk + τ · ∇ūk)
λk+1 = λk + τ · (∫ ū dx − Vt)
uk+1 = Πu∈[0,1](uk − σ · (divξk+1 + λ))
ūk+1 = 2uk+1 − uk

(14)
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where ΠA denotes the projection onto the set A (see [20] for details). Note that
the projection for the primal variable u now reduces to a clipping operation.
Projection of ξ is done by simple clipping as well.

The scheme (14) is numerically attractive since it avoids division by the poten-
tially zero-valued gradient-norm which appears in the Euler-Lagrange equation
of the TV-norm. Moreover, it is parallelizable and we therefore implemented it
on the GPU.

5.2 Optimality Bounds

Having computed a global optimal solution uopt of Equation (12), the question
remains how we obtain a binary solution and how the two solutions relate to
one another energetically. Unfortunately no thresholding theorem holds, which
would imply energetic equivalence of the relaxed optimum and its thresholded
version for arbitrary thresholds.

Nevertheless we can construct a binary solution ubin as follows:

Proposition 2. The relaxed solution can be projected to the set of binary func-
tions in such a way that the resulting binary function preserves the user-specified
volume Vt.

Proof. It suffices to order the voxels x by decreasing values u(x). Subsequently,
one sets the value of the first Vt voxels to 1 and the value of the remaining voxels
to 0.

Concerning an optimality bound the following holds:

Proposition 3. Let ur
opt be the global optimal solution of the relaxed energy and

uopt the global optimal solution of the binary problem. Then

E(ubin) − E(uopt) ≤ E(ubin) − E(ur
opt) . (15)

5.3 Theoretical Analysis of Material Concentration

As we have seen above, the proposed convex relaxation technique does not guar-
antee global optimality of the binary solution. The thresholding theorem [22]
– applicable in the unconstrained problem – no longer applies to the volume-
constrained problem. While the relaxation naturally gives rise to posterior op-
timality bounds, one may take a closer look at the given problem and ask why
the relaxed volume labeling u should favor the emergence of solid objects rather
than distribute the prescribed volume equally over all voxels.

In the following, we prove analytically that the proposed functional has an
energetic preference for material concentration. For simplicity, we consider the
case that the object silhouette in the image is a disk. And we compare the two
extreme cases of all volume being concentrated in a ball (a known solution of
the Cheeger problem) compared to the case that the same volume is distributed
equally over the feasible space (namely a cylinder) – see Figure 8.
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Fig. 8. The two cases considered in the analysis of the material concentration for the
approach in Section 5. On the left hand side we assume a hemi-spherical condensation
of the material. On the right hand side the material is distributed evenly over the
volume.

Proposition 4. Let usphere denote the binary solution which is 1 inside the
sphere and 0 outside – Fig. 8, left side – and let ucyl denote the solution which
is uniformly distributed (i.e. constant) over the entire cylinder – Fig. 8, right
side. Then we have

E(usphere) < E(ucyl), (16)

independent of the height of the cylinder.

Proof. Let R denote the radius of the disk. Then the energy of usphere is simply
given by the area of the half-sphere:

E(usphere) =
∫

|∇usphere|d2x = 2πR2. (17)

If instead of concentrated to the half-sphere, the same volume, i.e. V = 2π
3 R3,

is distributed uniformly over the cylinder of height h ∈ (0,∞), we have

ucyl(x) =
V

πR2h
=

2πR3

3πR2h
=

2
3

R

h
. (18)

inside the entire cylinder, and ucyl(x) = 0 outside the cylinder. The respec-
tive surface energy of ucyl is given by the area of the cylinder weighted by the
respective jump size:

E(ucyl) =
∫
|∇ucyl|d2x

=
(
1 − 2R

3h

)
πR2 +

2R

3h
(πR2 + 2πRh)

=
7
3
πR2 > E(usphere). (19)

5.4 Experiments

In this section we study the properties of constant volume weighted minimal
surfaces again within an interactive reconstruction environment. We show that
appealing and realistic 3D models can be generated with minimal user input.
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Input Image Reconstruction +30% volume +40% volume

Fig. 9. By increasing the target volume with the help of a slider, the reconstruction is
intuitively inflated. In this example the intial rendering of the volume with 175x135x80
voxels took 3.3 seconds. Starting from there each subsequent volume adaptation took
only about 1 second.

Input Image Reconstructed Geometry Textured Geometry

Fig. 10. The constant volume approach favors minimal surfaces for a user-specified
volume. This amounts to solving a Cheeger set problem.

Cheeger Sets and Single View Reconstruction. Solutions to the problem
in Eq. (10) are so called Cheeger sets, i.e. minimal surfaces for a fixed volume.
In the simplest case of a circle-shaped silhouette the corresponding Cheeger set
is a ball. Fig. 10 demonstrates that in fact round silhouette boundaries (in the
unweighted case g(x) ≡ 1) result in round shapes. In the example of the balloon
it also becomes apparent that thinner structures in the silhouette are inflated
less than compact parts: Coming from the top of the balloon toward the basket
on the bottom the inflation gradually degrades along with the silhouette width.

Varying the Volume. In the constant volume formalism presented in this
section the only parameter we have to determine for our reconstruction is the
target volume Vt (apart from the weighting function g(x) of the TV-norm in Eq.
(12)).

The effect of changing this scalar parameter on the appearance of the recon-
struction surface can be witnessed in Fig. 9. One can see that the adaptation of
the target volume has an intuitive effect on the resulting shape. This is impor-
tant for an interactive user driven reconstruction process that is made possible
by the small computation times that we gain through a parallel implementation
of algorithm in Eq. (14).
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Image with User Input Reconstructions Pure Geometry

Fig. 11. The proposed approach allows to generate 3D models with sharp edges,
marked by the user as locations of low smoothness (see Section 3). Along the red
user strokes (second from left) the local smoothness weighting is decreased.

Input Reconstruction Different View Geometry

Fig. 12. Volume inflation dominates where the silhouette area is large (bird) whereas
thin structures (twigs) are inflated less

Sharp Edges. Similar to Section 4 we examine the effects of adapting the
smoothness locally, but now using the volume prior instead of the shape prior.

Fig. 11 shows that by adapting the weighting function g(x) of Eq. (12) not
only round, but other very characteristic shapes can be modeled with minimal
user interaction. The 2D user input is shown alongside with the reconstruction
results. More experiments with smoothness adaptation for the constant volume
case are presented in the following Section 6.

6 Comparison

In this section we compare the two proposed priors with respect to their recon-
struction results, usability and runtime.

Comparison of Experimental Results. We have already indicated that the
data term acts as a strong prior on the resulting shape of the reconstruction. This
can be verified in Fig. 14: The left reconstruction was done with the shape prior
as described in Section 4. Clearly the silhouette distance transform dominates
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Input Image Data Term Reconstruction with Reconstruction with
as Shape Prior Shape Prior Volume Prior

Fig. 13. Using a silhouette distance transform as shape prior the relation between data
term (second from left) and reconstruction (third from left) is not easy to assess for
a user. The Cheeger set approach of Section 5 behaves more naturally in this respect
(right).

the shape in the resulting reconstruction. This might of course be advantageous
for particular shapes like the examples shown in Fig. 2. Still, often a Cheeger
set (right of Fig. 14) is a better guess for natural shapes.

Increasing the smoothness parameter in the data term approach will mitigate
the influence of the distance transform. However, with higher smoothness the
result tends to be less voluminous making it hard to achieve ball-like shapes (see
Fig. 13). In both approaches thin structures in the silhouette are less inflated
than more compact parts. This is a basic property of minimal surfaces. Never-
theless in the data term approach thin structures tend to be too flat, especially
in the presence of a high smoothness parameter (see Fig. 14).

In principle a data term inhibits the flexibility of the reconstructions. The air
plane in Fig. 15 represents an example in which a parametric shape prior - just as
the proposed data term of Section 4 - would fail to offer the necessary flexibility
required for modeling protrusions. Since our fixed-volume approach does not
impose points of inflation user input can influence the reconstruction more freely:
Marking the wings as highly non-smooth (i.e. low weights 0 < g(x) < 0.3)
effectively makes them pop out. From a user perspective the shape prior approach
is much more involved in terms of the amount of user input. The shape prior
consists of four parameters to offer reasonable but still limited flexibility to adapt
its shape. On the other hand, for the volume prior approach only one parameter
needs to be specified by the user.

In Fig. 14 and 13 we make use of the same input images that were used
in [12]. Comparing both results with the ones in their work reveals that we get
comparable results with a significantly lower amount of user input. As opposed to
their work, our method exhibits complete topological freedom. Figure 16 depicts
a direct comparison of the two proposed priors on several reconstruction results.
Again one can observe that the volume prior generally yields more roundish
shapes, while the distance function dominates the results with the shape prior.

In sum, both priors yield comparable reconstruction results. Although for the
shape prior approach the user has slightly more possibilities to adapt the final
shape of the reconstruction, this freedom is paid off by a significant amount of
additional user input as it is not always simple to find the right combination of
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Input Image Reconstruction with Reconstruction with
Data Term as Shape Prior Volume Prior

Fig. 14. In contrast to a solution with shape prior (Eq. 5) (center), the solution with
volume prior (right) does not favor a specific shape and generates more natural look-
ing results. Although in the center reconstruction the dominating shape prior can be
mitigated by a higher smoothness (λ in Eq. (5)), this ultimately leads to the flattening
of thin structures like the handle.

Image with Reconstructed Geometry Textured Geometry
User Input

Fig. 15. An example for a minimal surface with prescribed volume and local smooth-
ness adaptation. Colored lines in the input image mark user input, which locally alters
the surface smoothness. Red marks low, yellow marks high smoothness (see Section 3
for details).

parameters. In contrast, the volume prior has only a single parameter making it
simpler to adapt the shape of the reconstruction. A limitation of both methods
is the implicit assumption that the plane of object symmetry should be approxi-
mately parallel to the image plane since the topology of the reconstructed object
is directly inferred from the topology of the object’s silhouette.

Runtime Comparison. The two priors lead to different optimization problems
and we solved them with different optimization schemes. Both have been imple-
mented in a parallel manner using the NVIDIA CUDA Framework. All compu-
tation times refer to a PC with a 2.27GHz Intel Xeon CPU and an NVIDIA
GeForce GTX580 graphic device running a recent Linux distribution.

The computation times for the shape prior approach are slightly lower than
the ones of the volume prior approach. For instance, the teapot example (Fig.
14) with a resolution of 189 × 139 × 83 the method with shape prior needs 2
seconds while the method with volume prior needs 4.7 seconds. However, the
computation times depend mainly on the volume resolution and also on the
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Input Image Reconstruction with Geometry with
Shape Prior Volume Prior Shape Prior Volume Prior

Fig. 16. Direct comparison of the methods with shape and volume prior for several
examples

object to be reconstructed. For a reasonable quality of the reconstruction also
lower volume resolutions may be sufficient. When using e.g. 63 × 47 × 32 the
computation times drop down to 0.03s and 0.13s for the methods with shape
and volume prior, respectively.

7 Conclusion

In this work we considered a variational approach to the problem of 3D recon-
struction from a single view by searching for a weighted minimal surface that is
consistent with the given silhouette. A major part of our contribution is to show
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that this can be done in an interactive way by providing a tool that is intuitive
and computes solutions within seconds.

Two paradigms were proposed in order to deal with the highly ill-posed task.
In the first one we introduce a shape prior that is incorporated as a data term
in order to avoid flat solutions. This approach is along the lines of other works
as it boils down to fixing depth values of the reconstruction in order to inflate
it. In the other proposed method we search for a weighted minimal surface that
complies with a fixed user given volume. The resulting Cheeger set problem goes
without specifying expected depth of any sort thus providing more geometric
flexibility of the result. In the former case we compute globally optimal solutions
to the variational problem. In the latter case we showed that the solution lies
within a bound of the optimum and exactly fulfills the prescribed volume. We
compared both priors and found that the volume prior is more flexible and
thus better suited for the task of single view reconstruction. On a variety of
challenging real world images, we showed that the proposed method compares
favorably over existing approaches, that volume variations lead to families of
realistic reconstructions and that additional user scribbles allow to locally reduce
smoothness so as to easily create protrusions.
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