Semi-supervised Online Learning for
Efficient Classification of Objects in 3D Data Streams

Ye Tao

Abstract— We present a novel learning algorithm especially
designed for challenging, large-scale classification problems in
mobile robotics. Our method addresses two important aims:
first it reduces the required amount of interaction with a human
supervisor, which increases the level of autonomy of the learning
process. And second, it has the capability to update its internal
representation online with every new observed data sample,
which makes it adaptive to new environments. The proposed
method is based on a combination of two established methods,
namely Online Star Clustering and Label Propagation, but
it extends and modifies these in such a way that significant
shortcomings such as classification inaccuracy and run time
inefficiency can be resolved. In experiments on large benchmark
data sets, we show that our approach can quickly learn to
classify 3D objects with a significantly reduced amount of
required ground truth labels for training.

I. INTRODUCTION

With the advent of fast, high-resolution and at the same
time affordable 3D sensors, mobile robotic platforms have
recently experienced an enormous progress in terms of
their perceptual capabilities. RGB-D cameras have become
a standard equipment for mobile robots, and the recent
achievements in RGB-D sensing suggest that these sensors
will be the main exteroceptive sensor source in the near
future. Their impact mainly stems from their high resolution,
evidenced in very densely sampled resulting 3D point clouds,
and from their ability to sense depth and color simultaneously
and at high frame rates. However, while depth sensors
are also used widely in other application areas such as
surveillance tasks, in mobile robots there are at least two
specific major challenges to solve. First, the large amounts
of data produced by these sensors places particular problems
for the learning algorithms used for automated semantic
annotation tasks such as 3D object classification or semantic
mapping. In principle, the major design goal for a mobile
robotic platform is to be as autonomous as possible, i.e.
interactions with human supervisors should be reduced to a
minimal amount!, and this includes interactions needed for
learning, e.g. when labeling ground truth data for training.
Therefore, to be autonomous, a robot should ask for semantic
information only rarely, but this is hard when the acquired
amount of data is large. And second, mobile robots usually
operate in frequently changing environments, and they need
to take decisions quickly and based on their current situation.
Thus, the employed learning algorithms need to be adaptive,

All authors are with Dep. of Computer Science, Technical University
of Munich, Boltzmannstrasse 3 85748 Garching, Germany [ye.tao,
rudolph.triebel, daniel.cremers]@in.tum.de

INote that this is different from interactions with human users, where the
robot itself provides a service and does not depend on human input.

Rudolph Triebel

Daniel Cremers

which means that many standard offline learning techniques
are inadequate due to their computational requirements and
their inability to modify internal representations on the fly.

Therefore, in this paper we propose a learning algorithm
that simultaneously reduces the required amount of human
effort in terms of providing ground truth label information,
and operates online in the sense that it incorporates new
information directly to update and refine its internal represen-
tation. The result is a fast and effective learning method that
is particularly suited for semantic annotation of large 3D data
streams, as we will show in the experiments. We achieve that
using a novel online clustering algorithm that is particularly
taylored for semi-supervised learning. Inspired by established
graph-based methods such as Online Star Clustering [1] and
online Affinity Propagation [2], our approach also uses an
undirected, bipartite graph, however with the difference that
non-exemplar nodes can not turn into exemplar nodes during
vertex insertion, and that we use a more efficient nearest-
neighbor search when inserting a new vertex. This and some
other modifications make our clustering method more useful
for subsequent label propagation, a fast and effective semi-
supervised learning method. As we show in experiments on
standard benchmark data, our method is able to efficiently
learn 3D objects from large data streams online and with
only little input from a human supervisor.

II. RELATED WORK

Our work combines semi-supervised learning (SSL) with
online clustering and is therefore mostly related to these two
areas®. For SSL, there is a good overview text book edited
by Chapelle et al. [3], where detailed theoretical background
is given, as well as a description of the most common
techniques, including transductive Support Vector Machines
(tSVM) [4], Gaussian Process classification (GPC) with null-
category noise model [5] and Label Propagation [6]. Our
proposed method mostly relates to the latter one, mainly due
to efficiency reasons and because, as a graph-based approach,
Label Propagation is very well suited for combination with
efficient graph-based online clustering methods, which we
employ in our approach. In that context, a number of earlier
works have been proposed, where the most relevant ones
are online k-means clustering [7], [8], online Expectation
Maximization (EM) [9], [10], online affinity propagation
(AP) [2], and online star clustering (OSC) [1]. The latter
two approaches have the big advantage over k-means and EM

2Note however the difference to self-supervised learning where semantic
information comes from a different sensor source (see, e.g. [17])

IS
E

\
T~

13

Fig. 1: Overview of our online learning approach for 3D object classification from data streams. See text for details.

that they do not require the number of clusters to be specified
beforehand. Instead, they use a similarity threshold and deter-
mine the number of clusters implicitly. Our approach builds
on OSC because it is more efficient than AP clustering (see
also [11] for an application of OSC to unsupervised scene
classification). However, as we will show, OSC has some
drawbacks for our application in semi-supervised learning.

To compute features from 3D input data, we use Hierarchi-
cal Matching Pursuit (HMP) [12], an unsupervised learning
algorithm based on sparse coding. In the area of unsuper-
vised feature learning, many different approaches have been
proposed, including Restricted Boltzmann Machines (RBM)
[13], convolutional deep belief networks [14] and denoising
autoencoders [15]. However, recent results on HMP-based
classification [16], [12] show that they are very powerful and
at the same time comparably efficient in learning. Therefore,
we decided to use HMP features for our work.

III. OVERVIEW

Fig. 1 shows a schematic overview of our online 3D object
classification method. We see two time lines: one on the top,
which represents the incoming 3D point clouds at each time
step, and one at the bottom for the status of the internal
graph representation per time step. The depicted situation
consists of an existing cluster graph at time step ¢3 and a
new sensor observation (point cloud) from the next time step
t4. In our pipeline, we first compute Hierarchical Matching
Pursuite (HMP) features [16] for each pre-segmented point
cloud in the current frame. We assume that the individual 3D
objects are segmented with their 3D bounding box. Such a
segmentation can be obtained from a tracking algorithm that
separates moving objects from the static scene parts or by
ground plane segmentation (see for example [18]). We note
that, depending on the 3D sensor a pre-processing step might
be required before feature computation. In the example here,

data is obtained from a 3D laser scanner, which means that
we have to create depth images from the point clouds before
being able to apply HMP feature computation. Examples are
shown in the center box in the upper part of the figure.
Of course, when using RGB-D cameras, depth images are
already available and need not to be computed explicitly.

The obtained HMP feature vectors are then inserted as
vertices into the cluster graph. This graph distinguishes
between center and satellite vertices, where the centers are
exemplars for the satellites connected to them (details follow
in Sec. V). Thus, a newly added vertex can either end up
as a satellite of an already existing center, or it can be
itself a new center. This is exemplified in the figure with
the pedestrian and the cyclist, where the former builds a
new center vertex, and the latter is associated to a new
satellite. Then, the algorithm queries ground truth labels for
the new centers if there are any, and infers class labels for the
remaining vertices using Label Propagation. Our reasoning
behind this is that centers are good potential representatives
of an object class, particularly if they have many satellites
attached, which by construction of the graph are similar
to them. Thus, propagating labels from centers to satellites
will lead to less misclassifications and fewer label queries
than, e.g. propagating from satellites to centers. Note that the
number of centers directly influences the performance of the
algorithm: fewer centers lead to less label queries, making the
learning algorithm more autonomous, but at a higher chance
of misclassifications as more satellites will be different from
their centers, i.e. the clusters will be less pure. The challenge
is therefore to obtain pure, but few clusters (centers) at the
same time. In Sec V we show how we address this trade-off,
but first we consider a different approach combining two
standard methods, and we show the drawbacks there that
motivate our own method.

(a) vertex insertion

(b) updated star graph

Fig. 2: Vertex insertion in the standard Online Star Clustering
algorithm [1]. (a) A new vertex is inserted (yellow diamond)
and all neighbors that are more similar than 1) are determined
(dashed lines). In this case, this results in a new center,
because the degree of the new node is higher than those of
the adjacent centers. (b) Rearranging requires removing and
adding some edges and changing the role of some vertices.

IV. ONLINE SEMI-SUPERVISED LEARNING

As a starting point, and also as a baseline for comparison
with our proposed method, we consider here a straightfor-
ward combination of two concrete algorithms: Online clus-
tering using the algorithm of Aslam et al. [1] and subsequent
semi-supervised learning using Label Propagation [19].

A. Online Star Clustering

The main idea of the Online Star Clustering (OSC) algo-
rithm [1] is to find a minimal number of maximal star-shaped
subgraphs from a given thresholded similarity graph (“min-
max criterion”). This means that the algorithm starts with
a graph Gy that consists of nodes v; for each data sample
and edges e;; connecting two nodes that are more similar
than a given threshold ¥, i.e. s(v;,v;) > ¢ where s is a
similarity measure. Then, it identifies some vertices as cluster
centers and the remaining ones as satellites and removes all
edges from Gy that connect two satellites or two centers.
The assignment of centers and satellites is made such that
the number of clusters is minimal and the cluster sizes are
maximal, and cluster centers have a higher degree (number
of incident edges) than their connected satellites. For our
application, the OSC algorithm has two major advantages
over other clustering methods: First, it does not require the
number of clusters to be given. Instead, its only parameter
is the similarity threshold ©J, which implicitly influences the
number of resulting clusters. And second, the creation of the
graph can be done online, i.e. after insertion of a single new
vertex the min-max criterion is still valid. To guarantee this,
in some cases the algorithm needs to re-assign centers and
satellites and also to remove and add edges. An example of
this is shown in Fig. 2.

The original OSC algorithm uses the cosine distance as
a similarity measure between two connected vertices v; and
vj, 1.€.

= cos(a), (D)

(v, v5)
500 0) = Tl

where « is the angle between the vectors that correspond to
v; and v;. The authors show that with this similarity measure

the similarity between two satellite vertices u' and /> that
are connected to the same center c¢; is bounded by
I ul?) = cosy > cos ay cos ag +

() K2

sin aq sin ag,

2
where v is the angle between the two satellites and «; and
ao are the angles between the satellites and the center c;.
The interesting thing about this formulation is that it can
be completely expressed in terms of dot products between
feature vectors, provided that these are normalized. That
means, we can also use other similarity measures instead
by replacing dot products with Mercer kernels, for example
the Gaussian kernel

(9
s(u T+

[vi — ;2
k(vi,vj) = exp (—202] 3)
with a variance parameter o, or the inverse city block kernel
1

“4)

AN SATTETNE:
whith a constant parameter £. Thus, we then obtain a
kernelized OSC algorithm. In the experiments (Sec. VI), we
show that an appropriate kernel can substantially improve
the measure of similarity.

B. Label Propagation

The OSC algorithm is a classical unsupervised learning
method, i.e. it does not incorporate ground truth information
for learning. However, in our application, we aim for au-
tomated semantic annotation, and this information can only
come from some human supervisor. Therefore, we combine
clustering with a semi-supervised learning (SSL) method
by assigning ground truth labels to the center vertices and
infering the labels for the unlabeled satellite vertices. In
particular, we use Label Propagation (see [19], Algorithm
11.2). This method first computes an affinity matrix W where
the entries are the node similarities, i.e. w;; = s(v;, v;) and
it sets w;; = 0. It then chooses a parameter o € (0,1) and
a small ¢ > 0 and computes p := «/(1 — «). With this,
it iterates over all vertices and updates the labels y; of the
vertices v; in every iteration. We model class labels as vectors
of a fixed length K, which determines the number of classes.
A vertex v; has then the class label k if y* = 1 and all
other entries of the vector y; are zero. For unlabeled vertices,
y; is equal to the zero vector. The operations performed in
each iteration of Label Propagation are as follows: If v; is a
labeled (center) node with an associated ground truth label
ygo) then the update rule at iteration ¢t = 1,2,... is

), 1,00
(t+1) > Wiy, + wYi

5
¢ Zj Wij + i + €)
If v; is an unlabeled satellite vertex, then the rule is
(t)

' 2 Wiy +¢€
These rules are computed until a convergence criterion is
reached. The described Label Propagation (LP) algorithm

is formulated as an offline algorithm, although one could
think of an extension to the online case. However, due to the
shortcomings of this combined ‘OSC+LP’ approach, which
we describe next, we do not consider an online LP version,
but instead suggest an improved algorithm in Sec. V.

C. Drawbacks of the OSC+LP Approach

The presented combination of OSC and LP has at least
three major drawbacks: First, it requires a nearest-neighbor
search for each newly inserted vertex over the entire existing
data set. This increases the run time significantly when the
data set is very large. Second, due to the requirement that
the min-max-criterion has to be fulfilled always, it can lead
to many changes from satellite vertices to center vertices
and vice-versa. This is not only inefficient in terms of
computation time, but it also causes more label queries,
especially if satellites turn into centers. In a sense, the fact
that OSC guarantees a minimal number of clusters remedies
this somehow, because with fewer clusters there are less label
queries. However, as we perform label queries in every time
step, one has to consider all vertices that at some point in the
past have been centers, i.e. this includes all those satellites
that where flipped from centers. And the third problem
with OSC+LP is that the algorithm uses a fixed similarity
threshold 14, which results in many isolated vertices that are
not connected to any other one. These outliers again increase
the required number of label queries, because each of them
is considered a center of a cluster with size 1. In the next
section, we propose our improved version of the algorithm,
which particularly mitigates these three drawbacks.

V. PROPOSED APPROACH

Assume we are given a stream of data points x1,Xs, ...
with x; € R, Our aim is to incrementally build from these
data a graph G = (V,&,), P, S), where V is the set of
vertices, £ are the edges,) are the class labels for each
vertex, P are the properties of the vertices and S are the
similarities assigned to each edge. Concretely, each vertex
v; € V can have either the property ‘center’ or ‘satellite’,
and each edge e;; € £ connecting vertices v; and v; has
a similarity value s;; based on a distance measure between
v; and v;. The center vertices play the role of exemplars,
i.e. they are representatives of a whole set of other vertices,
namely the satellites connected to them. In any stage of the
algorithm, the graph G is bipartite, i.e. there are only edges
connecting centers with satellites, and never edges between
two centers nor between two satellites. The main idea of our
semi-supervised online learning algorithm is to use only the
centers to query ground truth class labels and to use these
to infer the labels for the satellites, i.e. in a similar way
as is done in label propagation. The individual steps of our
algorithm are described next.

A. Vertex Insertion

As mentioned, our algorithm is inspired by the Online
Star Clustering (OSC) approach [1]. This means, we also
aim for a vertex insertion method that is efficient and at the

Fig. 3: Vertex insertion into the graph G. At time ¢, we insert
vertex v; (yellow diamond). For that, we first compute the m
center vertices ¢i,..., ¢, that are closest to v; (blue filled
circles). Each of these centers has satellite vertices attached,
here indicated with lines. The center closest (or most similar)
to v; is denoted c{**®. Then, for ¢ = 1,...,m we compute
the similarities s(v, ¢;) and s(ve, ¢f***) (dashed red lines),
as well as the similarities between v; and all satellites uz
attached to center ¢; (dotted green line). All such satellites
that fulfill the condition in Eq. (8) are detached from ¢; and
connected to v;, which then becomes a center vertex.

same time produces graphs that correspond to a good data
clustering. However, in standard OSC, the major focus is
laid more on the latter by guarateeing that after insertion the
graph still consists of a minimal set of maximal star-shaped
sub-graphs (i.e. clusters). While this is a good property for
pure unsupervised learning applications, in semi-supervised
learning as we propose it, it is more advantageous to have
purer clusters, even if the number of clusters is not minimal.
Concretely, this means that we do not stricly connect a new
vertex to its closest neighbors in the graph as in OSC, thereby
accepting that the number of clusters can be sub-optimal.
This slight drawback is however outweighed by the fact that
our insertion is more efficient and produces purer clusters.

For the description of our insertion method, we define the
set of centers C; at time ¢ as C; = {v; € V; | p; = ‘center’}
and its cardinality as C;. With this, the first step of insertion
is to find a fraction ¢ € [0, 1] of centers in C;_; that are most
similar to the new vertex v;. This has two advantages: First, it
does not require a fixed similarity threshold for connecting
vertices, which avoids un-connected outliers. And second,
it is more efficient than finding neighbors in the entire set
of vertices V;, because C; is usually much smaller than V.
Thus, formally we find an index ordering m : N — N so
that s(cq(s),vt) > S(Cr(it1),v¢) forall i = 1,...,Cy — 1,
where we denote the similarity s as a binary function of
vertices, and the elements of C; are cy, . . ., ¢¢,. Furthermore,
we define the center that is most similar to v; as c¢;**”,
ie. ¢f"* := cr(1). Then, the result of this first step is a
subset ét C C; consisting of the first m sorted centers, i.e.
Cr(1)s -+ Cr(m) Where m = [qC¢].

In the next step, we search for neighbors of v; in the set
of satellites that are connected to centers in ét. Thus, for

each of the m most similar centers ¢1, ..., ¢, we loop over
all attached satellites «] and decide whether they should be
detached from their center ¢; and reconnected to v;, which
then becomes a new center, or whether v, is simply added
as a satellite to ¢;***. Our criterion for this re-connection
step is based on the similarity of the satellites u] and vy, but
also on the general similarity of the cluster represented by
¢;. Concretely, we compute the normalized similarity
s(vt, &)

7
maz) ()

§(’Ut,éi) = S(Ut -
-t

and do a re-connection whenever
s(vt,ug)g(vt,éi) > s(ug,él-).)

If the condition in Eq.(8) is not valid for any satellite uZ , We
connect v; as a new satellite to c;***.

B. Minimal Average Cluster Size

As mentioned in Sec. IV-C, one major problem with
standard OSC is that it tends to produce many unconnected
vertices, which are treated as centers. This means that the
SSL algorithm will query labels for them, even though the
obtained information is often not very useful, because the
queried labels are not representative for many other samples.
The same problem occurs in our approach when many satel-
lites of a given cluster center are detached and reconnected as
described. Therefore, we introduce a parameter wy;,, which
defines a lower bound on the average cluster size. Then,
each time a satellite u] should be detached from its center
¢; according to Eq. (8), we test whether the average cluster
size Zz; is still larger than w,,;,. If this is not the case, all
vertices of the cluster represented by ¢; are inserted into
the cluster that is closest to ¢;. Note that Z; at time ¢ can
be easily computed from z = C%, because at time ¢ there
are t vertices inserted in total and the number of clusters
is C;. The same procedure is done with the potentially new
cluster formed by v; as a center: As long as adding this
new cluster does not cause the average cluster size Z to be
smaller than w,,;,, it can be added. Otherwise, it is not added
and v, is attached to its closest center, as above. To avoid
unnecessary re-connecting steps, we therefore wait until all
centers closest to vy are processed before we actually perform
the reconnection of satellites.

C. Label Propagation

As in the OSC+LP approach described above, our last step
is also label propagation. That is, if the newly added vertex
v; ends up as a new center, we query a ground truth label
for it and propagate this new label to the satellites attached
to v;. If v, has become a satellite, we propagate the label of
the corresponding center (which was queried earlier queried)
to it. Here, we note an important difference to the OSC
algorithm: in our approach, all satellite vertices are connected
to exactly one center. Therefore, Eq. (6) simplifies to a simple
“copy” of the label from the center to the satellites. Similarly,
Eq. (5) directly assigns the ground truth label to the labeled
center. Thus, by our graph construction, the LP method can
also be performed more efficiently.

D. Time-dependant Paramters

Two main parameters of our algorithm are the fraction ¢ of
most similar centers considered and the lower bound w;,;,
on the average cluster size. For both, there is an implicit
dependence on the current size of the graph. In the beginning,
there are only few samples and the graph is sparse. Thus, the
fraction ¢ of nearest neighbors can be larger, because nearest-
neighbor search will anyhow be very efficient. Similarly, the
minimal number of elements w,,;, of an average cluster
can be larger when there are more vertices in the graph.
Therefore, we recompute ¢ and w,,;, at time step ¢ as

Whin = Wmin(1—e) ©)
¢ = ql—-eT), (10)

where 7 is a damping parameter.

Algorithm 1 summarizes all steps of our approach®. Note
that satellites are not actually disconnected until all centers
in C have been considered and the new vertex forms a cluster
that is large enough (line 15-17). Clusters that are too small
are removed and all elements are assigned to the cluster that
is most similar to their center. This is the Recluster step.

Algorithm 1: Online Exemplar Based Clustering

Data: stream x; fort =1,2,...
Input: nearest-neighbor fraction ¢, damping factor 7,
min average cluster size wy,in
Output: inferred or queried labels y;
vt + CreateVertex(x')
Whnin < Wmin(1 —e~7") (see Eq.(9))
qt + q(1 — e™ ™) (see Eq.(10))
C; « MostSimilar Exemplars(Ct,vt, q)
Z¢ o
K+ 0
forall the ¢; € @t do
forall the u connected to ¢; do
if Eq. (8) is true then
L K+« Kuul

MarkDisconnected(u?, ¢;)

o 0 NN A R W N =

"
= =

2 | ifz >wl,, & Size(é;) <wl,,, then

13 L Recluster(¢é;, {uf})
uif z > wy, & K]+ 1> w),,, then
15 | DisconnectAllMarked({ul},{¢})
16 MakeNewCluster (v, K)

17 yr < QueryGroundTruthLabel (vy)

18 yi < PropagateLabels(vy, K)

19 else .
20 UnmarkAll({ul},{é})
21 Connect(vg, cj***)

max)

22 |y < PropagateLabel(ci"*", v,

3An implementation of our approach in C++ is available at

https://github.com/mmmonkeytao/oscl.git.

—Accuracy

—Homogeneity
Completeness

—V_measure

0.8 0.8
0.7 0.7
0.6 06 ——No0.% of Clusters

04 ——Accuracy 04
03 ——Homogeneity 03
Completeness
0.2 —V-measure 02WWW
o1 ——% of Clusters 01l

0 1 4 5 0 1 4 5

2 3 2 3
Iterations 10t Hterations 10

Fig. 5: Evaluation on the RGB-D data set based on V-
measure (violet), classification accuracy (blue) and number
of clusters per vertex (green). Left: Our approach. Right:
OSC+LP. Note that our approach significantly outperforms
the OSC+LP method in terms of accuracy and V-measure,
although there is no big difference in the number of clusters.

VI. EXPERIMENTS

We evaluated our approach on two different data sets: the
RGB-D data set provided by Lai er al. [20] with 41876
instances of 51 different object classes, and a subset of the
KITTTI data set of 3D point clouds in an urban environment
[21], which contains objects from 7 classes, namely 1265
cars, 775 cyclists, 1035 Pedestrians, 957 vans, 667 trucks,
223 sitters and 257 bakground objects (misc). For both data
sets, we compute HMP features, while for point clouds we
first compute depth images (see Sec. III). For the HMP
features, we first learn a dictionary of size 75 on the first
level with K-SVD for depth and gray channels, and of size
150 for normal vectors and RGB channels. Then, on the
second level we learn dictionaries of size 500 for gray scale
and depth, and 1000 for RGB and normals. For each RGB-D
image we compute an HMP feature vector of length 42000.

A. Similarity Analysis

To find a good similarity measure (kernel) for our online
clustering algorithm, we ran a specific test on 10,000 samples
from the RGB-D data set. For each pair of images within
the same object class and across different object classes
we computed similarities and the corresponding average
similarities. The result for the Gaussian kernel and the
Inverse City Block (ICB) kernel are shown in Fig. 4. For
each class, a colored circle refers to the average similarity
with another class. Blue circles, which are connected with red
lines depict the average self-similarity of each class. Thus,
we can see that the self-similarity values tend to be better
for the ICB kernel than for the Gaussian kernel. Therefore,
in our following experiments, we only used the ICB kernel.

B. Online Learning of 3D Objects

To assess the performance of our approach we randomly
shuffle the 41876 different cropped images from the RGB-D
data set and present them to our online SSL algorithm. We
compare the results with the baseline method OSC+LP, de-
scribed in Sec. IV, where we use the following criteria. First,
the V;j-measure [22], which is a measure for cluster quality
and consists of the harmonic mean between homogeneity and
completeness. Intuitively, homogeneity is closely related to

07

- 0SC
6000 {{——0ur approach o 06

5000 05

04

2
8
8
8

No. of Queries

03

@
8
8
8

2000} 0z2r|

1000} & o1f \

\R‘

3 4 0 500 1000 1500 2000 2500 3000

1

2
Iterations «10* lierations

Fig. 6: Left: Accumulated number of generated label queries.
Our approach generates significantly less label queries.
Right: Result of our algorithm on the KITTI data set. The
accuracy is worse than on the RGB-D set, but the input
features are only based on depth values and not on color.

Inserton Time(s)
Insertion Time(s)

1

2 3 4
Iterations x10*

Fig. 7: Vertex insertion times for OSC (left) and our online
clustering approach (right). Note that our approach never
takes more than 0.5 seconds and that run time increases
initially, because more new clusters are created. Later, new
vertices often are satellites, which reduces the run time.

purity, i.e. it is high if clusters consist of many samples from
the same object class. In contrast, completeness is high if
many samples from an object class are in the same cluster
(for details see [22]). Our second criterion is the number of
clusters divided by the total number of vertices. Ideally, this
value should be low because then we have less label queries.
Finally, the third criterion is the classification accuracy, i.e.
the percentage of correctly classified samples.

Fig. 5 shows the results on the whole RGB-D data set,
where the left part shows our results, with w,,;, = 25,
and the right part the ones obtained with OSC+LP with a
threshold 1 = 0.009. As we can see, our method outperforms
the OSC+LP algorithm both in terms of cluster homogeneity
and in final classification rate. At the same time, the number
of clusters produced by our algorithm is only slighty higher.
This is good, because the number of clusters is directly
related to the number of label queries. This is shown in Fig. 6
(left), where we plot the accumulated number of generated
label queries for both methods. We see that, compared to
OSC+LP our approach only requires very few ground truth
labels for learning. For the KITTI data we obtain the results
of Fig. 6 (right). Note that we only use a subset of the data
because the entire data set is very unbalanced between the
classes. We see that the classification is worse than the one
on RGB-D, but the feature vectors only contain depth values.

Furthermore, we compare our approach with OSC+LP in
terms of run time needed for a vertex insertion, as this was
also one of our main design goals. Fig. 7 (left) shows the

simiarty

(a) Gaussian Kernel with o = 1.0

(b) Inverse CityBlock Kernel

Fig. 4: Comparison of two similarity measures (kernels). For each object class in the RGB-D data we show the average
similarity across classes as colored circles, and the self-similarity for each class (blue circles, connected with red lines).

insertion time for OSC+LP for each iteration (insertion) on
the RGB-D data. We can see one major peak at around
23000 observed samples. We relate this to an extremely
large amount of cluster rearrangements required at this stage.
Later, towards the end of the data set, the run time increases
again very quickly. In contrast, insertion in our algorithm
never takes more than 0.5 seconds (see right plot in Fig. 7).

VII. CONCLUSIONS

As we have shown, the combination of semi-supervised
learning methods with online clustering can be a very ef-
ficient approach for learning 3D object classes from large
data streams. However, a straightforward implementation
using standard Online Star Clustering and Label Propagation
results in a suboptimal performance, both in run time and in
accuracy, because OSC is not particularly designed for com-
bination with SSL. In contrast, if we modify the clustering
algorithm accordingly, we obtain impressive results for 3D
object classification with comparably little effort in terms of
run time and generated label queries. As a consequence, our
proposed method is very well suited for challenging online
classification tasks in mobile robotics.

Acknowledgement: The work in this paper was funded
by the EU project SPENCER (ICT-2011-600877).

REFERENCES

[1] J. Aslam, E. Pelekhov, and D. Rus, “The star clustering algorithm
for static and dynamic information organization,” Journal of Graph
Algorithms and Applications, vol. §, no. 1, pp. 95-129, 2004.

[2] J.-P. Zhang, F.-C. Chen, L.-X. Liu, and S.-M. Li, “Online stream clus-
tering using density and affinity propagation algorithm,” in Software
Engineering and Service Science (ICSESS), 2013, pp. 828-832.

[3] O. Chapelle, B. Scholkopf, and A. Zien, Eds., Semi-Supervised Learn-
ing. MIT Press, 2006.

[4] T. Joachims, “Transductive inference for text classification using
support vector machines,” in Proc. of the International Conference
on Machine Learning (ICML), 1999, pp. 200-209.

[5]1 N. D. Lawrence, J. C. Platt, and M. 1. Jordan, “Extensions of the
informative vector machine,” in Proc. of the First Intern. Conf. on
Deterministic and Statistical Methods in Machine Learning. Springer-
Verlag, 2004, pp. 56-87.

[6]

[7]
[8]
[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled
data with label propagation,” Carnegie Mellon University, Tech. Rep.
CMU-CALD-02-107, 2002.

W. Barbakh and C. Fyfe, “Online clustering algorithms,” International
Journal of Neural Systems (IJNS), vol. 18, no. 3, pp. 1-10, 2008.

A. Choromanska and C. Monteleoni, “Online clustering with experts,”
in ICML W. on Online Trading of Exploration and Exploitation, 2011.
O. Cappé, “Online EM algorithm for hidden markov models,” J. of
Comput. and Graphical Statistics, vol. 20, no. 3, pp. 728-749, 2011.
S. Yildirim, S. S. Singh, and A. Doucet, “An online expecta-
tion—maximization algorithm for changepoint models,” J. of Comput.
and Graphical Statistics, vol. 22, no. 4, pp. 906-926, 2013.

R. Triebel, R. Paul, D. Rus, and P. Newman, “Parsing outdoor scenes
from streamed 3d laser data using online clustering and incremental
belief updates,” in Robotics Track of AAAI Conference on Artificial
Intelligence, 2012.

L. Bo, X. Ren, and D. Fox, “Hierarchical Matching Pursuit for Image
Classification: Architecture and Fast Algorithms,” in Advances in
Neural Information Processing Systems (NIPS), December 2011.

R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in
Proc. of the International Conference on Artificial Intelligence and
Statistics, vol. 5, 2009, pp. 448-455.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 609-616.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
of the 25th International Conference on Machine Learning. New
York, NY, USA: ACM, 2008, pp. 1096-1103.

L. Bo, X. Ren, and D. Fox, “Unsupervised Feature Learning for RGB-
D Based Object Recognition,” in ISER, June 2012.

J. Maye, R. Triebel, L. Spinello, and R. Siegwart, “Bayesian on-
line learning of driving behaviors,” in Int. Conf. on Robotics and
Automation (ICRA), 2011.

O. H. Jafari, D. Mitzel, and B. Leibe, ‘“Real-Time RGB-D based
People Detection and Tracking for Mobile Robots and Head-Worn
Cameras,” in Int. Conf. on Robotics and Automation (ICRA), 2014.
Y. Bengio, O. Delalleau, and N. L. Roux, Semi-supervised Learning.
MIT Press, 2006, ch. Label Propagation and Quadratix Criterion.

K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view rgb-d object dataset,” in Int. Conf. on Robotics and Automation
(ICRA), 2011.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The Kkitti dataset,” Intern. Journal of Robotics Research (IJRR), 2013.
A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), 2007, pp. 410-420.

