
DENSE TRACKING AND MAPPING WITH A QUADROCOPTER

J. Sturma,∗, E. Bylowb, C. Kerla, F. Kahlb, and D. Cremersa

a Computer Vision Group, Department of Computer Science, Technical University of Munich, Germany
{juergen.sturm,christian.kerl,cremers}@in.tum.de

b Mathematical Imaging Group, Centre for Mathematical Sciences Faculty of Engineering, Lund University, Sweden
bylowerik@gmail.com, fredrik@maths.lth.se

KEY WORDS: quadrocopter, localization, 3D reconstruction, RGB-D sensors, real-time

ABSTRACT

In this paper, we present an approach for acquiring textured 3D
models of room-sized indoor spaces using a quadrocopter. Such
room models are for example useful for architects and interior
designers as well as for factory planners and construction man-
agers. The model is internally represented by a signed distance
function (SDF) and the SDF is used to directly track the camera
with respect to the model. Our solution enables accurate position
control of the quadrocopter, so that it can automatically follow a
pre-defined flight pattern. Our system provides live feedback of
the acquired 3D model to the user. The final model consisting of a
textured 3D triangle mesh can be saved in several standard CAD
file formats.

1 INTRODUCTION

The ability to quickly scan a 3D model of a room or factory floor
has many potential applications: For example, craftsmen can read
of from such room models the size of a window or its height di-
rectly from the model. Furthermore, interior designers can illus-
trate the effects of decoration using such models, and potential
buyers of an apartment can get a better impression of the real
estate. While it was recently demonstrated that scanning a room
with a hand-held sensor is feasible (Newcombe et al., 2011; Whe-
lan et al., 2012; Bylow et al., 2013), quadrocopter-based scan-
ning (Huang et al., 2011) has several advantages: First, scanning
can be performed fully automatically and no human intervention
is required. Second, it is possible to scan larger rooms (for ex-
ample, industrial production halls) from above which might not
be possible from the ground. Third, it is possible to use quadro-
copters to scan inaccessible or dangerous buildings, e.g., after an
earthquake.

In this paper, which is an extension of our recent work (Bylow
et al., 2013), we first present our approach on 3D scanning using
an RGB-D camera that (1) provides accurate pose information
in real-time and (2) estimates a dense, textured 3D model of the
scene. We demonstrate that our approach is fast, accurate, and
robust enough to control the position of a quadrocopter and thus
to generate a dense 3D model of a room fully automatically. Our
approach relies on an RGB-D camera that yields dense depth im-
ages at video frame rate. While our current implementation relies
on GPU support provided by an external ground station, we are
working towards a scalable CPU implementation that will allow
us to perform all computations onboard the quadrocopter.

While feature-based approaches to the structure-from-motion prob-
lem can be successfully applied to quadrocopter imagery and

This work has partially been supported by the DFG under contract num-
ber FO 180/17-1 in the Mapping on Demand (MOD) project.

Figure 1: We present an efficient method for 3D reconstruction
of indoor scenes using a quadrocopter equipped with an RGB-D
camera. Top: AscTec Pelican platform used in our experiments.
Bottom: Two different views on the reconstructed 3D model of
our lab space.

control, the resulting feature maps are typically sparse and thus
not well suited for a visually pleasant 3D reconstruction (Agar-
wal et al., 2009; Weiss et al., 2012; Engel et al., 2012). There-
fore, we advocate to represent the scene geometry in a dense grid
using a truncated signed distance function (Curless and Levoy,
1996) similar as in the famous KinectFusion approach (New-
combe et al., 2011). While KinectFusion uses ray tracing to gen-
erate a point cloud in each frame and the iterated closest point
(ICP) algorithm for subsequent alignment, we present in this pa-
per a novel method that allows us to directly compute the camera
pose based on the signed distance function.The key idea behind
our approach is that the correct camera pose should minimize
the value of the signed distance function evaluated at the back-
projected points of the depth image. Furthermore, we fuse color
information in an additional 3D voxel grid to generate a texture
for the model. Figure 1(bottom) shows two views on the model
acquired in this way from our lab space.

We employ an AscTec Pelican quadrocopter that we equipped
with an Asus Xtion Pro Live sensor (see image at the top of
Figure 1). An external ground station equipped with an Nvidia
GeForce GTX 560 performs camera tracking and 3D reconstruc-
tion in real-time, and sends the estimated position back to the
quadrocopter at 30 fps with a delay of approximately 50 ms. We
integrate the position estimate using an extended Kalman filter
and perform position control using LQR control (Weiss et al.,

2012). To evaluate our algorithm, we performed various flight
patterns and measured the deviation from the desired route. Fur-
thermore, we acquired 3D models of several rooms to demon-
strate its applicability. Additionally, we evaluated our algorithm
on a publicly available benchmark (Sturm et al., 2012). We found
that our algorithm outperforms the KinectFusion implementation
of the point cloud library (PCL) in terms of accuracy and robust-
ness. Furthermore, we found that our approach yields a compa-
rable performance in comparison to the RGB-D SLAM system
(Endres et al., 2012). In contrast to these methods, our solution
outputs a color-textured 3D model of the scene and is signifi-
cantly faster.

This paper is an extension of our recent work (Bylow et al., 2013)
in which we provide a more detailed evaluation of our quadro-
copter experiments. In particular, we measured the position ac-
curacy of a quadrocopter while hovering and path following using
our approach. Furthermore, we provide additional scans that we
acquired using the quadrocopter.

2 RELATED WORK

Simultaneous localization and mapping refers to both the estima-
tion of the camera pose and mapping of the environment. This
requires a suitable representation of the scene geometry, and the
choice of this representation strongly influences the efficiency of
pose estimation and map optimization.

Laser-based localization and mapping approaches often use scan
matching or the iterated closest point algorithm (ICP) (Besl and
McKay, 1992) to estimate the motion between frames. Graph
SLAM methods use these motion estimates as input to construct
and optimize a pose graph (Kümmerle et al., 2011). Typically,
these methods render a joint map only after pose graph optimiza-
tion, and this map is generally not used for further pose optimiza-
tion. The resulting maps are often represented as occupancy grid
maps or octrees (Wurm et al., 2010) and are therefore well suited
for robot localization or path planning. Henry et al. (2010) were
the first to apply the Graph SLAM approach to RGB-D data us-
ing a combination of visual features and ICP. A similar system
was recently presented by Endres et al. (2012) and extensively
evaluated on a public benchmark (Sturm et al., 2012). In this
paper, we compare the performance of our approach to the RGB-
D SLAM system and demonstrate that we achieve more detailed
reconstructions and higher frame rates at a comparable pose ac-
curacy.

Newcombe et al. (2011) recently demonstrated with their famous
KinectFusion approach that dense reconstruction is possible in
real-time by using a Microsoft Kinect sensor. To represent the
geometry, Newcombe et al. employ a signed distance function
(SDF) (Curless and Levoy, 1996) and use ICP in a coarse-to-fine
manner to estimate the camera motion. For each image, the al-
gorithm first renders a point cloud from the SDF at the previous
pose using ray tracing and subsequently aligns this with the next
depth image. Point correspondences are found using projective
data association (Blais and Levine, 1993) and the point-to-plane
distance (Chen and Medioni, 1992). As the original implementa-
tion is not available and no benchmark evaluation is provided, we
compare our approach to the KinFu open-source implementation
as available in the point cloud library (Kin). We show in this pa-
per that our approach outperforms KinFu in terms of speed and
accuracy.

While ICP only minimizes the error on point clouds, several ap-
proaches have recently appeared that minimize the photometric

http://svn.pointclouds.org/pcl/trunk/

error (Steinbrücker et al., 2011; Kerl et al., 2013a) or combina-
tions of both (Tykkälä et al., 2011; Kerl et al., 2013b), however
without subsequent 3D reconstruction. Whelan et al. (2012) re-
cently integrated these methods with the KinectFusion approach
and demonstrated that superior tracking performance can be achieved,
however without evaluating the global consistency of the result-
ing model.

While our approach on dense tracking and 3D reconstruction was
first introduced in (Bylow et al., 2013), we provide in this paper
a more in-depth evaluation of the resulting accuracy and stability
when used with an autonomous quadrocopter. In particular, we
evaluate the accuracy of keeping a particular position and follow-
ing a pre-defined scanning trajectory. Furthermore, we provide
scans from additional scenes to demonstrate its robustness and
applicability in practice.

3 QUADROCOPTER-BASED 3D MODEL
ACQUISITION

In this section, we explain how we acquire the 3D model of a
room using an RGB-D camera mounted on a quadrocopter. As
our approach currently requires a GPU to achieve real-time pro-
cessing, we connected the RGB-D camera directly to a work sta-
tion using a USB cable and perform all computations off-board.
The estimated camera pose is then sent back to the quadrocopter
and used for data fusion and position control which runs onboard
the quadrocopter.

3.1 Live Dense 3D Reconstruction

In the following, we briefly explain how we track the camera pose
and generate the dense 3D model. We kept this section intention-
ally short and refer the interested reader to (Newcombe et al.,
2011; Bylow et al., 2013) for more details on signed distance
functions, the KinectFusion algorithm, and our recent extensions.

Preliminaries In each time step, we obtain a color image and a
depth image from the Kinect sensor, i.e.,

IRGB : R2 → R3 and IZ : R2 → R. (1)

We assume that the depth image is already registered on to the
color image, so that pixels between both images correspond. Fur-
thermore, we require a signed distance function (SDF), a weight
function, and a color function that are defined for each 3D point
p ∈ R3 within the reconstruction volume:

D : R3 → R,W : R3 → R, and C : R3 → R3. (2)

The SDF represents the distance of each point to the closest sur-
face, i.e., D(p) = 0 holds for all points p lying on surface,
D(p) < 0 for free space, and D(p) > 0 for occupied space.
In the following, we treat IRGB , IZ , D, W , and C as continuous
functions, but we represent them internally as discrete pixel/voxel
grids (of size 640×480 and 256×256×256, respectively). When
access to a non-integer value is needed, we apply bi-/tri-linear in-
terpolation between the neighboring values. We assume the pin-
hole camera model, which defines the relationship between a 3D
point p = (x, y, z)> ∈ R3 and a 2D pixel x = (i, j)> ∈ R2 as
follows,

(i, j)> = π(x, y, z) =

(
fxx

z
+ cx,

fyy

z
+ cy

)>
. (3)

Here, fx, fy, cx, cy refer to the focal length and the optical cen-
ter of the camera, respectively. In reverse, given the depth z =

Table 1: The root-mean square absolute trajectory error for KinFu and our method for different resolutions, metrics and datasets. Also
the result for RGB-D SLAM are presented. More details on this evaluation can be found in (Bylow et al., 2013).

Method Res. Teddy fr1/desk fr1/desk2 fr3/house fr1/floor fr1/360 fr1/room fr1/plant fr1/RPY fr1/XYZ

KinFu 256 0.154 0.057 0.420 0.064 Failed 0.913 0.313 0.598 0.133 0.026
KinFu 512 Failed 0.068 0.635 0.061 1.479 0.591 Failed 0.281 0.081 0.025
Point-To-Plane 256 0.073 0.099 0.089 0.053 0.359 0.669 0.346 0.045 0.047 0.031
Point-To-Plane 512 0.122 0.091 0.515 0.054 0.732 0.562 0.123 0.041 0.043 0.026
Point-To-Point 256 0.089 0.038 0.072 0.039 0.674 0.357 0.187 0.050 0.045 0.028
Point-To-Point 512 0.122 0.037 0.069 0.040 0.544 0.375 0.078 0.047 0.043 0.023

RGB-D SLAM 0.111 0.026 0.043 0.059 0.035 0.071 0.101 0.061 0.029 0.013

IZ(i, j) of a pixel (i, j), we can reconstruct the corresponding
3D point using

ρ(i, j, z) =

(
(i− cx)z

fx
,
(j − cy)z

fy
, z

)>
. (4)

In each time step, we first estimate the current camera pose ξ
given the current depth image IZ and SDF D, and subsequently
integrate the new data into the voxel grids. We represent the cur-
rent camera pose using twist coordinates, i.e.,

ξ = (ω1, ω2, ω3, v1, v2, v3) ∈ R6. (5)

These Lie algebra coordinates form a minimal representation and
are well suited for numerical optimization. Twist coordinates can
be easily converted to a rotation matrixR ∈ R3×3 and translation
vector t ∈ R3 (and vice versa) when needed (Ma et al., 2003).

Finally, we assume that the noise of the Kinect sensor can be
modeled with a Gaussian error function, i.e.,

p(zobs | ztrue) ∝ exp
(
−(ztrue − zobs)2/σ2) . (6)

In principle, the noise of the Kinect (and any disparity-based dis-
tance sensor) is quadratically proportional to the distance, i.e.,
σ ∝ z2true. However, in our current implementation, we assume
a fixed σ over all pixels.

Camera pose estimation Given a new depth image IZ and our
current estimate of the SDFD, our goal is to find the camera pose
ξ that best aligns the depth image with the SDF, i.e., each pixel
of the depth image should (ideally) map onto the zero crossing in
the signed distance function. Due to noise and other inaccuracies,
the depth image will of course never perfectly match the SDF
(nor will our estimate of the SDF be perfect). Therefore, we seek
the camera pose that maximizes the observation likelihood of all
pixels in the depth image, i.e.,

p(IZ | ξ, D) ∝
∏
i,j

exp(−D(Rxij + t)2/σ2), (7)

where R = R(ξ) is a short hand for the current camera rotation,
t = t(ξ) for the camera translation, and xij = ρ(i, j, IZ(i, j)) for
the reconstructed 3D point to keep our notation uncluttered. Note
that a circular motion constraint is not imposed in the estimation
process. By taking the negative logarithm, we obtain

L(ξ) ∝
∑
i,j

D(Rxij + t)2. (8)

To find its minimum, we set the derivative to zero and apply the
Gauss-Newton algorithm, i.e., we iteratively linearize D(Rxij +
t) with respect to the camera pose ξ at our current pose estimate
and solve the linearized system.

Note that KinectFusion pursues a different (and less effective)

approach to camera tracking, as it first extracts a second depth
image from the SDF that it then aligns to the current depth im-
age using the iteratively closest point algorithm (ICP). As this
requires an intermediate data association step between both point
clouds, this is computationally more involved. Furthermore, the
projection of the SDF onto a depth image looses important infor-
mation that cannot be used in the iterations of ICP. To evaluate the
performance of both approaches, we recently compared (Bylow
et al., 2013) our approach with the free KinFu implementation in
PCL on publicly available datasets (Sturm et al., 2012). The re-
sults are presented in Tab. 1 and clearly show that our approach
is significantly more accurate.

Updating the SDF After the current camera pose has been es-
timated, we update the SDF D, the weights W , and the texture
C similar to (Curless and Levoy, 1996; Bylow et al., 2013). We
transform the global 3D coordinates p = (x, y, z)> of the voxel
cell into the local frame of the current camera p′ = (x′, y′, z′)> =
R>(p− t). Then we compare the depth of this voxel cell z′ with
the observed depth IZ(π(x′, y′, z′)),

dobs = z′ − IZ(π(x′, y′, z′)). (9)

As dobs is not the true distance but an approximation, dobs gets
increasingly inaccurate the further we are away from the surface.
Furthermore, the projective distance is inaccurate when the view-
ing angle is far from 90◦ onto the surface as well as in the vicinity
of object boundaries and discontinuities. Therefore, we follow
the approach of Curless and Levoy (1996) by truncating the dis-
tance function at a value of δ and defining a weighting function
to express our confidence in this approximation:

d(dobs) =

 −δ if dobs < − δ
dobs if |dobs| ≤ δ
δ if dobs > δ

, (10)

w(dobs) =

{
1 if dobs ≤ 0
exp(−(dobs/σ)2) if dobs > 0

. (11)

A visualization of these functions is given in Fig. 2.

Experimentally, we determined δ = 0.3m to work well for our
application. To interpret this number, notice that δ expresses our
prior about the average thickness of objects in the scene. As
our primary objects of interest are things such as walls, cabinets,
chairs, and tables, such a prior seems reasonable. In our experi-
ments, we found that larger δ lead to more stable tracking but less
accurate reconstructions, while smaller δ generally lead to more
accurate reconstructions with more details, but reduced stability,
i.e., a diverging map after jumps in the flight behavior. We be-
lieve that this instability can be explained as follows: Imagine the
quadrocopter has built up the SDF up to a distance of δ from the
observed surface. When the quadrocopter now jumps forward by
a distance of δ, the SDF does not contain any useful information

http://svn.pointclouds.org/pcl/trunk/

anymore to recover the camera pose. In our flight experiments,
we observed (occasionally) translational jumps of up to 0.08m,
so that δ = 0.3m is a reasonable choice.

We update each voxel cell with (global) 3D coordinates (x, y, z)>

according to

D ← (WD + wd)/(W + w), (12)
C ← (WC + wc)/(W + w), (13)
W ←W + w, (14)

where c = IRGB (π(x
′, y′, z′)) is the color from the RGB image.

Both steps (the estimation of the camera pose and updating the
voxel grids) can be easily parallelized using CUDA. With our
current implementation, the computation time per frame is ap-
proximately 27ms on a Nvidia GeForce GTX 560 with 384 cores,
and runs thus easily in real-time with 30fps.

Visualization With the algorithm described above, we obtain
an estimate of the signed distance and color for every cell of the
voxel grid. To display this model to the user, we copy the data
every two seconds from the GPU to the CPU (which consumes
60ms) and run a threaded CPU implementation of the marching
cubes algorithm (Lorensen and Cline, 1987). The mesh gener-
ation takes around between 1000 and 1500ms on a single CPU
core. The resulting triangle mesh typically consists of approx-
imately 200.000–500.000 vertices (and faces), that we display
together with the estimated camera trajectory to the user using
OpenGL.

Quadrocopter Control Figure 3 shows the flow diagram of the
control architecture used in our approach (Weiss et al., 2012).
The low level processor (LLP) provides the attitude control for
the platform. The high level processor (HLP) runs the extended
Kalman filter and position/velocity control at 1KHz, and accepts
velocity commands and waypoints. The error controller is a LQR
controller for each axis. The feed forward model allows the quadro-
copter to quickly reach the waypoint and reduces overshoot. It is
possible to specify the approach speed and accuracy with which
the quadrocopter should reach the goal location. The onboard
PC running ROS supplies the HLP with the visual pose estimates
and waypoints at 30Hz. The dense tracking and 3D reconstruc-
tion module runs on an external workstation with a GPU that is
directly connected to the RGB-D camera on the quadrocopter and
the onboard PC.

4 QUADROCOPTER EXPERIMENTS

In this section, we present the results of our experiments evalua-
tion. First, we provide an evaluation of the flight stability and ac-
curacy when the quadrocopter is controlled using the poses from

−2 −1 0 2

−1

0

1

δ

distance from surface dobs

d
w

Figure 2: We use a truncated distance function and a weighting
function that decreases exponentially behind the observed surface
(i.e., for dobs > 0).

3D Model Flight Plan User

Tracking Mapping Ext. Workstation

EKF (Cov.) Waypoint Control Onboard PC

EKF (State) Position Control High Level Proc.

IMU Strap-Down Attitude Control Low Level Proc.

Sensors Motors Quadrocopter

30 Hz, Soft-RT

30 Hz, Soft-RT

1 KHz, RT

1 KHz, RT

Figure 3: Control architecture used by our approach. The quadro-
copter has three processors that operate at different cycle times.

our approach. Second, we present and discuss the 3D models that
we obtained in different indoor environments using our approach.

4.1 Flight Accuracy

In all of our experiments, we initialized the map with the quadro-
copter standing on the ground. From then onward, the visual pose
estimate from our approach is fed into the EKF and used for po-
sition control. To initiate take-off, we send a positive velocity
in z-direction to the position controller. After the quadrocopter
reaches a certain height, we switch to waypoint control.

In our first experiment, we started the quadrocopter as described
and commanded a single way point as its goal location. Figure 4
shows the result. As can be seen from this plot, the quadrocopter
is able to accurately maintain the desired goal location. In partic-
ular, we measured an average standard deviation of 2.1cm during
hovering.

In our second experiment, we provided a rectangle as the flight
plan to the quadrocopter. As can be seen from Fig. 5, the quadro-
copter closely follows the generated waypoints. Furthermore, we
could repeat this procedure for several minutes without noticing
any degradation of the 3D model or the flight stability.

4.2 3D Scans

We used our approach to scan three different rooms to verify the
stability, robustness, and applicability of our approach.

The first room, shown in Fig. 1, is our quadrocopter lab. It has
a kitchen unit in front, several cabinets with little structure and
texture on the right, and tables on the left. The quadrocopter per-
formed an autonomous take-off and followed a pre-defined mo-
tion along a half-circle. As can be seen from the two images
in the bottom row, the reconstructed 3D model provides a good
impression of the scene. An architect or interior designer could
clearly use this model to measures the size of the room or other
distances. Furthermore, as can be seen from the top-down view,
there is only little drift: The opposing walls (which have never
been observed simultaneously) are mostly parallel.

Furthermore, we scanned a normal office in our lab with four
workspaces, see Fig. 6. Here, we sent a different flight pattern to

−0.2

−0.1

0

−0.1

0

0.1

0.3

0.35

0.4

0.45

0.5

x [m]y [m]

z
[m

]

Figure 4: Hovering experiment using the position information
from the proposed approach. The average deviation from the set
point was 2.1cm. Blue: Estimated position of the quadrocopter.
Red: Goal location.

−0.2
0

0.2

−0.2

0

0.2

0

0.2

0.4

0.6

x [m]

y [m]

z
[m

]

Figure 5: Path following experiment (rectangle). Blue: Estimated
position of the quadrocopter. Red: Waypoints. As can be seen
from this plot, the quadrocopter follows accurately and robustly
the commanded trajectory for several rounds.

Figure 6: Office space with four desks scanned with our quadro-
copter. The quadrocopter followed a pre-defined flight plan (rect-
angle and rotations) to acquire the 3D model. Top: Image from
external camera. Bottom: Reconstructed 3D models from side
view and top view. The coordinate axes correspond to the esti-
mated trajectory.

Figure 7: Couch corner in our lab. In this experiment, a human
pilot specified the waypoints during scanning. The quadrocopter
approached these waypoints using our approach. Top: Image
from external camera. Bottom: Reconstructed 3D models from
side view and top view.

the robot, consisting of a rectangular motion in combination with
a 270◦ turn. The estimated trajectory is visualized on top of the
reconstructed models in the bottom row.

Finally, we scanned the couch space in our lab as shown in Fig. 7.
In this experiment, we used the assisted flight mode, i.e., a pilot
specified the waypoint manually with the remote control, while
the quadrocopter used the estimated pose to approach this pose.
This mode has the advantage that this solution is more flexible,
as the pilot can specify additional waypoints while the room is
being scanned. In contrast to manual flight, the cognitive load of
the pilot is greatly reduced as only a waypoint has to be specified
and no control commands have to be issued.

5 CONCLUSION

In this paper, we have presented a novel technique to acquire
high-quality 3D models of rooms using an autonomous quadro-
copter. We incrementally construct a signed distance function of
the scene and estimate the current camera pose with respect to
the SDF. In our experiments, we demonstrated that camera pose
estimation is fast, accurate, and robust enough to be used for posi-
tion control of an autonomous quadrocopter. We acquired various
3D models of office rooms in our lab to demonstrate the validity
of our approach. The resulting 3D models are valuable for vari-
ous tasks, including interior design, architecture, or refurnishing
work.

Despite these promising results, there are several aspects remain-
ing for future work. First, we would like to investigate whether
similar results can be obtained with stereo cameras. This would
allow us to scan outdoor scenes, for example, on construction
sites. Second, we are currently working on a CPU implemen-
tation that can run in real-time (but at a reduced resolution) on
board the quadrocopter. Third, we solely use the reconstructed
3D model at the moment to display it to the user. However, it
could also be used during assisted flight, e.g., to avoid collisions.
Moreover, it would be interesting to generate the next waypoint
based on autonomous exploration using the partial map.

References

KinectFusion Implementation in the Point Cloud Library (PCL).
http://svn.pointclouds.org/pcl/trunk/.

S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, and R.Szeliski.
Building rome in a day. In ICCV, 2009.

P.J. Besl and N.D. McKay. A method for registration of 3-D
shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–
256, 1992.

G. Blais and M.D. Levine. Registering multiview range data to
create 3D computer objects. IEEE Trans. Pattern Anal. Mach.
Intell., 17:820–824, 1993.

E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-time
camera tracking and 3d reconstruction using signed distance
functions. In RSS, 2013.

Y. Chen and G. Medioni. Object modelling by registration of
multiple range images. Image Vision Comput., 10(3):145–155,
1992.

B. Curless and M. Levoy. A volumetric method for building com-
plex models from range images. In SIGGRAPH, 1996.

F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard. An evaluation of the RGB-D SLAM system. In
ICRA, May 2012.

J. Engel, J. Sturm, and D. Cremers. Camera-Based Navigation of
a Low-Cost Quadrocopter. In IEEE/RSJ Intl. Conf. on Intelli-
gent Robot Systems (IROS), 2012.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using depth cameras for dense 3D modeling of
indoor environments. In Proc. of the International Symposium
on Experimental Robotics (ISER), 2010.

A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana,
D. Fox, and N. Roy. Visual odometry and mapping for au-
tonomous flight using an RGB-D camera. In Intl. Symp. of
Robotics Research (ISRR), 2011.

C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation
for rgb-d cameras. In Proc. of the IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2013a.

C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d
cameras. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), October 2013b.

R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard. g2o: A general framework for graph optimization. In
Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2011.

William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. Computer
Graphics, 21(4):163–169, 1987.

Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An Invitation to 3D
Vision: From Images to Geometric Models. Springer Verlag,
2003.

R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A.J. Davison, P. Kohli, J. Shotton, S. Hodges, and A.W.
Fitzgibbon. KinectFusion: Real-time dense surface mapping
and tracking. In Proc. of the International Symposium on
Mixed and Augmented Reality (ISMAR), pages 127–136, 2011.

F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual
odometry from dense rgb-d images. In Workshop on Live
Dense Reconstruction with Moving Cameras at ICCV, 2011.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers.
A benchmark for the evaluation of RGB-D SLAM systems. In
Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012.

T.M. Tykkälä, C. Audras, and A.I Comport. Direct iterative clos-
est point for real-time visual odometry. In Workshop on Com-
puter Vision in Vehicle Technology at ICCV, 2011.

S Weiss, M Achtelik, M Chli, and R Siegwart. Versatile Dis-
tributed Pose Estimation and Sensor Self-Calibration for an
Autonomous MAV. In IEEE Intl. Conference on Robotics and
Automation (ICRA), 2012.

T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, and J.B. Mc-
Donald. Robust tracking for real-time dense RGB-D mapping
with Kintinuous. Technical report, MIT, 2012.

K.M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and
W. Burgard. OctoMap: A probabilistic, flexible, and compact
3D map representation for robotic systems. In Workshop on
Best Practice in 3D Perception and Modeling for Mobile Ma-
nipulation at ICRA, 2010.

http://svn.pointclouds.org/pcl/trunk/

	Introduction
	Related Work
	Quadrocopter-Based 3D Model Acquisition
	Live Dense 3D Reconstruction

	Quadrocopter Experiments
	Flight Accuracy
	3D Scans

	Conclusion

