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Abstract

Localization is one of the basic skills of a mobile robot. Much progress has been made in this field over
the past years. In particular, the RoboCup competitions have focused their research within robotics on
a unified challenge problem, and the yearly rule adaptations aim at increasingly approximating robotic
soccer to the real world.

Until now, most approaches, however, still rely on special sensors (like laser range scanners, prefer-
ably used in the RoboCup rescue leagues) or artificial environments (like color-tagged soccer fields, as
used by the RoboCup soccer leagues).

In this thesis, a novel approach is presented that can provide compass information purely based on
the visual appearance of a room. A robot using such a visual compass can quickly learn the appearance
of previously unknown environments. By the level of resemblance, a robot can additionally recognize
qualitatively how far it is away from the former training spot. This can be used for visual homing.

The visual compass algorithm is efficient, scaleable and can therefore work in real-time on almost
any contemporary robotic platform. Therefore, the approach has been implemented on the popular Sony
entertainment robot Aibo.

Extensive experiments have validated that the approach works in a vast variety of environments. It
has been shown that a visual compass can supply a mobile robot in natural environments with accurate
heading estimates. Finally, it is shown in experiments that a robot using multiple compasses is able to
estimate its translational pose.
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Chapter 1

Introduction

In the course of this Master’s thesis, an Aibo robot is taught the skill to orientate itself in natural environ-
ments. The robot memorizes the appearance of a place in little time by looking around and turning itself
on the spot. The robot learns the appearance of its surroundings that it can use from now on as a compass.
Moreover, the robot can recognize by the level of resemblance qualitatively how far it is away from the
training spot.

1.1 Intelligent autonomous systems
Over the past decades, autonomous mobile robots have become an important research domain within
Artificial Intelligence [24]. The reasons for this are twofold. From an economic perspective, stationary
robots became an important factor [1] in Western production facilities – which put general emphasis on the
field of robotics. From a research perspective, a shift in paradigm boosted progress in mobile robotics in
the early 1990s enormously: the physical-grounding hypothesis [4] led to a change in focus from symbolic
systems to situated agents. Instead of assuming the existence of a deterministic world evaluated only by
a single omniscient program, adherents to situated AI [19] oppositely promoted dynamic, uncertain and
imperfect real-world environments where multiple agents sense, think and (inter-)act in parallel.

Rodney Brooks formulated this insight as follows:

“The key observation is that the world is its own best model. It is always exactly up to date.
It always contains every detail there is to be known. The trick is to sense it appropriately and
often enough.” (Elephants Don’t Play Chess, R. Brooks, 1990)

Agents constructed using this paradigm are therefore intrinsically interdependent with their environ-
ment. Such situated agents most naturally are embodied in a real robot. If the agent has full control over
its body, it is said to be autonomous. It can then pursue its own agenda in interaction with the environ-
ment. Experiencing and acting in the real world is facilitated if the robot has the ability to move. Other
actors of the real world can then also be modelled as agents, leading to the definition of multi-agent sys-
tems. As the real world is dynamically changing, it is commonly asserted that an agent needs the ability
to adapt – which is in general considered as the basis for intelligence.

In the late 1980s, the group around Brooks constructed several robots to show that situated agents can
exhibit interesting behaviors emerging from simple rules (the subsumption architecture [5]). For example,
a six-legged spider robot [3] could climb over rough terrain controlled by a few simple behaviors. In
another experiment, social behavior was induced: two small autonomous race cars were constructed so
that they could drive around collision-free or follow moving objects when they detected something in
front of them. In the end, the cars chased each other and thereby showed emergent social behavior.

1
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In the history of autonomous robots, much more has happened in the last decade. In the early 1990s,
Honda stunned the public with the first biped robot that could walk in a realistic manner (the ancestor of
the later Asimo robot). In 1997, a four-legged robot called Dappie was developed by Peter van Lith (see
appendix D). Two years later, Sony released the first model of the Aibo entertainment robot. The Aibos
were not only liked by children and technonauts, but they were also rapidly accepted as an inexpensive
and well-equipped robotic platform within the scientific robotics community.

1.2 RoboCup
Inspired by the situated-agent paradigm, several AI researchers (A. Mackworth et al [25]; M. Asada et
al [12]; M. Valoso, P. Stone et al [29]) proposed, independently from each other, that robotic soccer could
serve as an interesting challenge for in field of Artificial Intelligence. In 1993, the Robot World Cup
initiative was founded (RoboCup for short) with the following goal:

“By the year 2050, develop a team of fully autonomous humanoid robots that can win against
the human world soccer champion team.” (The RoboCup Challenge)

Solving the RobCup challenge requires inter-disciplinary collaboration between numerous research
domains. Issues from control theory, machine learning, computer vision, sensor data fusion, localization
and multi-player collaboration are addressed in the challenge.

Various leagues have been established to pinpoint preliminary research subgoals. By the organization
in leagues, participants can join a league with a similar research focus:

• In the simulation league software agents play in a highly abstracted soccer environment. Although
all agents run on the same computer, they may only communicate a limited amount of data among
each other. Therefore, the league focuses in particular on multi-player strategic collaboration and
coordination problems.

• Games of the small size league are played by relatively small robots (ø = 15cm). They are
controlled by a central computer that analyzes the game situation on basis of images from an
overhead camera. The resulting games show pleasant swarm behavior and interesting team play.

• The midsize league uses relatively big but fully autonomous robots (ø = 50cm), typically equipped
with omni-directional cameras and omni-directional drives. Current issues are locomotion, vision
and team play – with the advantage of having almost no hardware restrictions.

• The 4-Legged league obliges the use of Sony Aibo robots. The scientific issues are quadruped
walking and active vision (with the turnable head camera). This league is discussed in detail in the
next subsection.

• The humanoid league tackles in particular problems concerning the two legs. Biped walking and
running are still problematic, one-legged kicking and actions like falling primarily put the current
focus of research on mechanical issues.

Non-soccer leagues have later been added to deal with important problems of mobile robotics that are
not covered by the traditional soccer domain:

• The rescue leagues focus on urban search and rescue problems for the use in catastrophe environ-
ments. These are either real (focusing on the development on robust drives, able to traverse through
rough terrains) or simulated (focusing on de-centralized and robust multi-agent exploration).
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Figure 1.1: Pictures taken at the RoboCup competitions. Left: 4-Legged league, Aibo ERS210 and ERS7,
a few seconds after kickoff. Right: Honda’s Asimo, demonstrating its abilities by shooting penalties
against a human goalkeeper.

• The at-home league addresses in particular seemingly simple everyday problems of life. Chal-
lenges range from walking stairs, following a human in a crowded place to localizing and navigat-
ing in natural environments.

In 1997, the first RoboCup competitions were held with 37 participating teams. The success was
overwhelming: the number of participating teams continuously doubled in the first years [2]. In 2003, the
(national) Dutch Aibo Team was founded1 with the aim to boost research on collaborative autonomous
and intelligent systems in the Netherlands. In 2006, already 440 teams from more than 35 countries
participated in the RoboCup competitions. The scientific output produced by RoboCup participants is
significant: In the meantime, every 10th article2 on mobile robots is directly related to RoboCup.

After each world cup, the competition rules are adjusted to reflect the progress made in the field and
to keep the problems challenging: For example, since 2004 the Four-legged league plays on a bigger field
without a boundary, while the games of the Midsize league took place in 2006 in open daylight.

Various teams from the Universiteit van Amsterdam have since 2001 participated in different leagues
of the RoboCup competitions (see Appendix, table D.1). The fact that several prices were won at the
world championships validate the scientific competitiveness of the Intelligent Autonomous Systems group
at a world-wide scale.

1.3 Problem domain and related work
From the previous section, it can be concluded that robotic soccer became a widely accepted challenge
problem in the field of Artificial Intelligence. Therefore it is prudent to contribute to these efforts in terms
of a graduation project.

The author has chosen the 4-Legged league as the problem domain for two reasons:

• the focus on vision (i.e. real-time image processing), and

• its application in actual robots (the Sony Aibos)

In the following, the state-of-the-art of the 4-Legged league will be summarized based on the latest
technical reports of successful teams, and from their current algorithms the resulting strong and weak
points will be pointed out. Then, alternative approaches from outside the RoboCup domain will be
carefully examined to collect algorithmic inspirations for possible improvements.

1 Universiteit van Amsterdam, Universiteit Utrecht, Technische Universiteit Delft, Rijksuniversiteit Groningen, Technische
Universiteit Eindhoven, Universiteit Twente, Saxion Universities at Enschede, DECIS Lab

2For the year 2005, Google Scholar counted 522 scientific articles containing the word “RoboCup” compared to 5190 articles
in the same period of time containing the words “mobile robot”.
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1.3.1 State of the art in the 4-Legged League
The rules of the 4-Legged league3 specify that only Sony Aibo Entertainment robots are to be used. Out-
sourcing hardware development and maintenance helps keeping costs and participation efforts minimal.
Unfortunately, Sony decided in spring 2006 to discontinue their robotics branch – forcing the 4-legged
league to seek a replacement.

A Sony Aibo stands on four legs, and has a low-resolution camera4 built in the tip of its nose. Thanks
to more than 20 degrees of freedom, the robot is able to perform relatively agile movements; in particular,
it can turn its head in three dimensions by which it can perceive more than half of its surroundings when
looking around. As all teams have to use robots of the official Aibo series, the solutions for this only
differ in algorithms.

The league handles an open-source and documentation policy with the aim to share improvements
between the teams and to facilitate that new teams can participate with low entry costs. For example the
soccer code of the Dutch Aibo Team [49] and others5 has been branched from the excellent software basis
supplied by the German Team[41].

In the following, selected approaches from successful teams are decomposed into four fundamental
modules [28]. Most emphasis is herein put on the vision and localization, as this forms the context for
the approach described in this thesis.

Motion

Body motion of Aibos playing soccer basically refers to walking (with 4 legs) and kicking (with the whole
body). As the Aibo is able to sense its body pose by sensors in its joints, it is possible to record a series
of body configurations that the Aibo can store and replay later on. Using this technique, many kicks (and
some of the walks) of the German Team [41] have been created.

However, walking this way is neither very fast nor flexible. Therefore, most teams apply a parametrized
walk [11] that allows the Aibo to walk omnidirectional. The idea is to treat each of the Aibo’s legs like
a independent, steerable wheel. Often too many parameters involved to optimize the gait manually, and
therefore several teams have successfully applied genetic algorithms to continuously increase the maxi-
mum speed of their Aibo robots; last year, forward speeds greater than 40cm/s have been reached [32].

Next to speed, precision is also an issue. Mechanical differences between robots complicate parameter
optimization, and even with perfect parameters, walking on four legs stays prone to long-term drifts (i.e.
due to slippage).

Vision

Aibos perceive the world mainly through their internal camera; therefore perception in the 4-Legged
league primarily comes down to image analysis. Relevant visible objects (while playing soccer) in the
images are: the two goals (in blue and yellow), an orange ball, white field lines on a green carpet, and
four flags. Some teams also recognize other robots (dressed in blue and red). Perception typically outputs
the world coordinates of the detected objects in a coordinate system relative to the robot. Most teams use
similar processing steps between the raw image and the percepts:

Image segmentation The color space of the raw images is usually discretized into a small number of
color classes that are present on the field (like white, green, yellow and blue). Some teams addi-
tionally define intermediate color classes [39] (like yellow-orange) to deal in a more sensible way

3http://www.tzi.de/4legged
4208x160 pixels, 24bit YCrCb color space, 30fps
5S.P.Q.R. [38] from Italy, Cerberus [35] from Turkey, Tec Rams from Mexico [40], Wright Eagle [43], sharPKUngfu and

TsinghuaHephaestus from China, and two German spin-offs: the Hamburg Dog Bots [36] and the Microsoft Hellhounds

http://www.tzi.de/4legged
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Figure 1.2: Image analysis as performed by the German Team (winner 2005). Left: Object seeding;
raw images are scanned along sparse grid lines. Pink pixels trigger the flag specialist. Middle: Object
specialists; flag specialist determines second color and exact dimensions. Right: Final flag percept

with overlapping color class regions in color space. The color-to-colorclass mapping is usually
performed using a look-up table, that has to be provided to the robot a-priori.

Image scanning The color class image is then converted into an intermediate representation. Many
teams scan through the image along (sparse) grid lines [41, 42] to generate a list of object candi-
dates (seeds). Other teams convert the whole image into a blob representation[35, 39]: connected
pixels of the same color class are grouped together, and are subsequently represented by only the
corresponding bounding box and a color class tag.

Object recognition This intermediate representation is then scanned for objects. In the case of candidate
lists, pixel-based object specialists prove or disprove the object seeds. For example, the grid line
scanner of the German Team generates a candidate whenever a long run of pink pixels is detected.
Then the flag specialist determines its second color and the exact dimensions (see figure 1.2). In the
case of blob representation, the detected bounding boxes are translated into real objects using large
object libraries. The object library of the nuBots [39] contains for example a rule about orange
balls: a small yellow-orange blob above a big orange blob above a small red blob (see figure 1.3).

Considering this, two striking limitations become obvious:

Manual calibration of color classes Image segmentation in most teams relies on the existence of a
color-to-colorclass mapping, which has to be provided to the robot beforehand. Usually this cali-
bration process involves hours of manual color tagging, and requires constant illumination over an
extended period of time. This renders demonstrations at arbitrary places practically impossible.

Some teams work on automatic color calibration techniques, like UT Austin Villa [27] from the
USA or the Dutch Aibo Team [44].

Other teams have tried to replace the static color mapping with dynamic approaches. Cerberus[35]
from Turkey and SPQR [38] applied dynamic clustering techniques.

As processing time is crucial, consequently on-line approaches for dynamic color (re-)clustering
consume expensive processing time. The ability to adapt to illumination changes therefore requires
other modules to work faster – which in turn can reduce the overall performance. Additionally, the
current implementations of such approaches are prone to diverge – for example when too too many
children with colorful cloth are sitting around the field.
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Figure 1.3: Image analysis as performed by the nuBots (winner 2006). Left: Image segmentation into
color classes Right: Resulting bounding boxes of color class blobs

Dependency on artificial landmarks The second limitation is the full dependency of all approaches on
the fixed set of artificial landmarks. All approaches inherently include this a-priori-knowledge in
the form of predefined color classes and hard-coded object detectors. Therefore, most teams can
only play on official soccer fields (with currently 6 landmarks).

Two teams6 demonstrated (but not yet published) at this year’s open challenge that their perception
works even without the flags – solely by localizing on field lines and the (colored) goals.

These aspects certainly point out two serious shortcomings of current approaches. Autonomous robots
of the future should be able to adapt intrinsically to new environments on their own – or at least keep
human intervention at a minimum. Moreover, approaches requiring special environments (with artificial
landmarks installed) are not desirable as this confines the robots to a small subset of possible applications.
This does not mean that an agent should not take advantage of existing landmarks; but it should not rely
on them a-priori.

Localization

Typically, the perceptions provided by vision are noisy and incomplete. For example, the Dutch Aibo
Team reported [49] that only 25% of the visible flags had been detected and around 70% of the visible
goals. False positives were not common in the lab (1%), but yielded serious problems at the competition
site.

Localization integrates the odometry data from motion and the detected objects from vision in order
to update the robot’s beliefs about its current pose. Typically next to the robot’s pose on the field also the
ball coordinates are tracked by a (second) localization filter.

Mainly two localization techniques are used in practice:

(Extended) Kalman filters (EKF) model the robot’s belief by a single Gaussian. Effective in computa-
tion and easy in implementation, this is a common choice for many teams. The Dutch Aibo Team
uses a Kalman filter for ball modelling.

Monte-Carlo localization (MCL) can more easily cope with ambiguities as they often occur in robot
soccer. Therefore MCL methods are applied by most teams [16] for position tracking. However
they are computationally much more expensive; the Dutch Aibo Team uses them for the robot pose
with a relatively small number of samples.

6Tsinghua Hephaestus and Wright Eagle from China
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The reported accuracies of the teams differ significantly. The German Team claimed to be able to
localize at approximately 6cm accuracy (on the old field), while the Dutch Aibo Team could only repro-
duce an accuracy of approximately 13cm. A few teams [40] even reported localization errors bigger than
30cm, which is – in consideration of the 80cm wide goal – significantly imprecise.

Behaviors

Localization supplies the robot with both knowledge about its own pose and the position of the ball.
Action planning and decision making then is performed by the behavioral layer. This name already
indicates that typically no deep inference takes place: many teams (like the Dutch Aibo Team[49]) use
state machines as a behavioral language, others ([41, 39, 37] even use interpreted scripting languages
(like python) as the typical processing time needed for behavioral evaluation is relatively insignificant.
The implemented behaviors can be thought of as little programs that enable the robot to perform specific
tasks. Therefore, they are also referred to as (behavioral) skills:

Player skills refer to single players only, like the skill to position the robot at its kickoff position, ap-
proaching and grabbing the ball, or kicking the ball. Several teams use automatic learning for the
ball handling skills.

Team skills refer to team play, where multiple team mates interact with each other (in a way that is
typically beforehand negotiated by the robots using wireless communication). Role allocation for
example prohibits that a robot that is busy with the ball is interrupted by an approaching team
mate. Many interesting things can be done here, like passing the ball between two players (Passing
Challenge in 20067) or even guiding a blind-folded robot over the field (as demonstrated in the
Open Challenge by the German Team in 2006).

Summary In this short review about the state-of-the-art in the 4-Legged league it can be seen that
playing soccer with Sony Aibos is substantially far developed: The soccer games look interesting and are
also appealing for the audience. Great improvements have been made with quadruped walking, and the
robots of most teams can localize reliably. This year’s challenges have proven that team play (i.e. ball
passing) is in principle possible; however, it will take a while until these skills will really become visible
in actual games.

The reason for this is that the higher modules (like the team skills, but also the player skills and even
localization) can only perform as well as the underlying modules do as they dependent on them. As
attractive as research on higher level behaviors may be, some things might just render impossible with
the limitations of the current solutions. This brings back the main focus on the three basic layers of the
robots: motion, vision and localization.

Rule changes in the 4-Legged league (and also in other leagues) indicate that within a few years, the
amount of artificial landmarks will be greatly reduced8, and the precondition of constant illumination9

will be discontinued.
Therefore, it seems to be mandatory to find ways how mobile robots (i.e. Sony Aibos) can localize in

more natural environments without a-priori knowledge about the site. In the next subsection, a literature
review of approaches applied outside the RoboCup world is given with the aim to be inspired on how to
remedy the limitations of the current approaches in the 4-Legged league.

7The Dutch Aibo Team demonstrated the work done by a DOAS group of the UvA at this challenge.
8See the almost-SLAM challenge in 2005, the New Goal challenge in 2006, and the reduction to 2 (instead of 4) flags in 2007.
9As already implemented in the midsize league in 2006
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Figure 1.4: SLAM approach using SIFT features [26]. Left: Image with SIFT features marked Right:
Bird’s eye view of the SIFT landmark map after training

1.3.2 Other approaches
Approaches from the visual SLAM domain

Promising solutions that remove the dependency on specific landmarks can be found in the visual SLAM
domain. Some approaches create dynamic landmarks on-the-fly – for example by extracting SIFT fea-
tures [18] from the images.

A well-working implementation on a stereo-vision robot is described in [26]: for each frame, the
robot matches the detected SIFT features in the left and right image (typically 100 features per frame,
see fig. 1.4(left)). By triangulation, the robot estimates the three-dimensional coordinates of the features
and subsequently adds them to its 3D SIFT database map as a new dynamic landmark. If the robot then
moves along, it matches newly perceived features with the map (fig. 1.4(right)) – by finding the corre-
spondence using a least-squares-minimization. Except for the fact that SIFT features are computationally
expensive to extract (their approach works at 2Hz on contemporary hardware), approaches like this prove
that accurate localization of mobile robots is possible in natural environments.

Approaches on visual homing

Several approaches inspired by biology support the landmark paradigm – but reduce its complexity sig-
nificantly. The source of inspiration is that small animals (such as insects) navigate through natural
environments seemingly with little effort. Honey bees and desert ants – despite their relatively simple
nervous system (and implicitly small data storage capacity) – are able to find their way back to their hive
or anthill. An approach for visual homing is described in [21], based on the snapshot model:

The robot is equipped with an omni-directional camera allowing it to take panoramic pictures. The
robot divides its surroundings into 360 sectors, each of which can either be occupied by a landmark or
be empty. At the target pose, the robot takes a snapshot of the scene. When the robot is kidnapped, it
seeks a correspondence between the new image and the recorded snapshot – simply by correlating each
sector with the closest matching neighbor. Each sector correspondence then produces a motion vector –
either to the left or to the right, with its length corresponding to the disparity of the match. Finally, all
sector motion vectors are summed up and guide the robot iteratively towards its target pose. Of course,
the initial assumption of a black and white world is relatively strict (and can be given up [33]). Still,
this approach shows that successfull navigation in natural environments not necessarily requires complex
algorithms – and is (despite the limitations) feasible in real-time.
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Figure 1.5: Biologically-inspired approach [21] using homing vectors. Left: Example of a landmark
array used for the robot experiments. Middle: Homing vectors can be assigned to each point on the
plane. Right: Transformation of the current view over time (upper part) towards the snapshot (lower
part).

Purely appearance-based approaches

The class of appearance-based approaches works so efficiently because they treat the converted images
as a single feature vectors; that is somehow produced by the underlying vision system. This motivates
purely appearance-based approaches, with a minimum on image preprocessing.

An interesting approach using no preprocessing (except for image rectification) is presented in [14,
15]: a mobile robot is equipped with both a omni-directional camera and a magnetic compass. The robot
then compares each captured image with the previous one, by computing the (Manhattan) distance be-
tween the two images. The new image is now pixel-wise rotated horizontally, to find the rotation under
which the distance gets minimal. This rotation is then reported to the robot as differential compass infor-
mation. In relatively short runs (around 400 images), an accuracy better than 10◦ degrees was measured.
This was significantly better than the magnetic compass, that occasionally showed derivations of up to
20◦. However, this approach to visual compassing is prone to long-term drift, because only the two pre-
vious images are evaluated. A second drawback is that the proposed distance measure is computationally
extremely expensive; the visual compass could therefore only evaluate images at 2fps.

Another interesting example with minimal preprocessing is described in [10, 9]: a mobile shopping
assistant equipped with an omni-directional camera is moved along a known path through a store. The
robot splits the panoramic images into a small number of sectors (around 10) and computes the mean
RGB value of every sector which it subsequently stores in its internal map. After sufficient training spots
have been visited (around 4spots/m2), the robot is kidnapped to an unknown place and moved along a
unknown path through the store. A particle filter then removes ambiguities and subsequently tracks the
robot’s pose. The robot was able to localize successfully, and the measured mean error in localization
was around 25cm. All computations could easily be performed in real-time. This contemporary research
indicates that the domain of such light-weight approaches is not yet fully explored and presumably holds
hidden potential.

Summary In this section, a review about contemporary research in the domain of mobile robot vision
and localization was given. Successful approaches from the world of RoboCup have been analyzed that
had been designed for real-time applications in soccer robots. Although this means that the applied ap-
proaches are somehow outdated, the RoboCup challenge implicitly filtered the scientific output efficiently
in two categories: well-working in practice, and only successful under laboratory conditions.

At the same time it is clear, that novel approaches from research exist that can perform much bet-
ter: this motivates the analysis of promising approaches from outside the RoboCup world. However, such
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Figure 1.6: Appearance-based localization. Left: A panoramic image is split into sectors. A single sector
is represented by its mean RGB values. Middle: Localization after 3 frames. Right: Localization after 8
frames.

approaches only work at low frame rates or make simplifying assumptions about the environment. Never-
theless, the ideas behind theses approaches certainly will contribute to the spectrum of possible solutions
in the future.

1.4 Thesis goal and research question
A central goal of robotics and AI is to be able to deploy a mobile robot that acts autonomously in the real
world. As no specific assumptions can be made about natural environments, it is commonly asserted that
the robot must be able to learn from its surroundings.

The most striking limitation of current RoboCup approaches seems the dependency on artificial envi-
ronments, but interesting approaches designed for natural environments (outside the RoboCup world) are
already within reach. Switching from artificial to natural environments puts the primary focus on vision:

Focusing on natural instead of artificial environments has its main focus on perception:
The research question therefore is to determine in which way approaches to vision (and localization)

can be extended for a real-time reactive robot to cope with natural environments. The thesis goal is then
to develop a novel approach that enables a mobile robot to quickly adapt to unknown environments while
at the same time requiring as little as possible human assistance.

1.5 Outline
Chapter 2 gives a short theoretical introduction to probabilistic robotics. The main focus hereby lies on
motion models, sensor models and localization filters. In Chapter 3, the mathematical foundations of
a novel appearance-based approach is derived that can be used for mobile robot localization in natural
environments. A real-time implementation of this approach for a Sony Aibo is developed in Chapter 4,
bridging the gap from theory to practice. Chapter 5 describes the conducted experiments and presents
the results. In Chapter 6, the approach is analyzed in terms of the research question and discussed using
existing techniques. Finally, this chapter concludes by summarizing directions for future research that
have been identified throughout the project.

The work described in this thesis has been carried out at the Autonomous Intelligent Systems group
at the Informatics Institute of the Universiteit van Amsterdam. It builds on software developed by the
Dutch Aibo Team.
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Publications
Parts of this thesis have been published in the proceedings of international conferences:

The pre-requisite of automatic color calibration has been introduced in [44] (along with an extension
to make the approach usable in classical, landmark-based robotic soccer). The main contribution (the vi-
sual compass approach) has been described in [45]. Finally, the extension towards positional localization
has been presented in [47].
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Chapter 2

Probabilistic robotics

In this chapter, an introduction about probabilistic robotics will be given [31]. In particular, the basic
concepts for probabilistic motion, sensors and localization techniques will be discussed. At the same
time, a clear vocabulary and corresponding mathematical nomenclature will be established that will be
used consistently in the remainder of this thesis.

The introduction starts with a definition of motion models that try to describe the action dynamics of
a mobile robot. After that, the concept of sensor models will be explained. Sensor models try to relate
the perception of the sensors to the world state. Finally, the concept of localization filters is introduced
that apply the motion and sensor models to update the robots beliefs.

2.1 Motion
As most mobile robots stand on the ground, their pose x =< φ, τ > can usually be described by three
degrees of freedom: their two-dimensional translational position τ =

(
x y

)T
on the ground relative

to some external coordinate frame plus their angular rotation φ (orthogonal to the ground plane). The
translational part it is commonly referred to as the robot’s location, while the rotational part is also called
the robot’s bearing or heading direction.

The robot can alter its pose by sending control actions to its effectors (like wheels or legs). The
calculus describing the effects of control actions on the robot pose is called kinematics. In contrast,
the calculus of inverse kinematics is concerned with deriving the necessary control actions that will
(reversely) allow the robot to change from one pose into another.

In real world situations, the deterministic calculus of classical kinematics becomes inadequate quickly.
In practice, the outcome of a control action is therefore only predicable within probabilistic terms. The
reason for this is the noise of various forms inherent to real-world robotics. Noise occurs internally in
the robot (for example due to friction in the thread of the motor), in-between at the moment of power
transmission (like slippage of the legs) or it can also be purely external (for example due to a sudden push
by another robot).

The only possibility to deal with these kinds of noise (and uncertainty) is by refining the deterministic
motion models into probabilistic ones. Probabilistic motion models describe the relationship between
the previous and current pose and the issued set of commands by a probability distribution.

As motion models descend from the field of dynamic control theory, it is common to consider the
robot’s pose as a state x(t) changing continuously over time. For the sake of tractability, the state is
typically only evaluated at discrete time steps, and therefore the pose is usually indicated by xt.

13
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Figure 2.1: Visualization of the effects of a probabilistic motion model [31]. Here a mobile robot moves
along a simple path. Its uncertainty about its pose grows the further the robot moves. Each red dot
corresponds to a pose sample that has probabilistically been sampled from the motion model.

Definition 1. A probabilistic motion model defines the state transition between two consecutive time steps
t− 1 and t after a control action ut−1 has been carried out. It is expressed by the posterior distribution
p (xt|ut−1, xt−1).

In order to derive this conditional, it is necessary to derive the kinematics from its mechanics on
the one hand and its possible sources of noise and deviation on the other hand. The calculation of the
(deterministic) kinematic equations is the easy part; in practice, it turns out to be much more difficult to
model the relevant sources of noise adequately. An example of a noisy motion model on the robot pose
is visualized in fig. 2.1.

To begin with, the robot’s actions might have already been carried out imprecisely by the hardware.
Motors have certain acceleration and de-acceleration times which can be hard to predict. Additionally, the
robot’s wheels or legs could encounter mechanical difficulties by slipping on smooth surfaces. Further-
more, the robot could get stuck to an object next to it which can change its orientation or even block its
way entirely without noticing this. It could even happen that a robot is suddenly kidnapped (for example
by a referee in a soccer game) and put back at a totally different place. In the end, the fuzziness of the
transition model should nicely reflect the probabilistic outcome of the robot’s actions in the real world.

In the basic form of motion models no feedback is involved. Therefore, this class of motion models
is also referred to as open-loop. Thanks to the simplicity, open-loop models are an attractive choice;
however, they have a serious drawback: pure open-loop approaches are intrinsically prone to let the
robot’s pose estimate drift away fast from its true position (or ground truth).

A solution to this problem are closed-loop approaches. These approaches take advantage of a motion
feedback mechanism – for example by additional sensors in the robot’s actuators. Closed-loop approaches
do not blindly assume that their control actions have been executed correctly. Sensors in the motors or
joints can give feedback to a robot about the current configuration of its legs. This means that instead of
formulating the motion model in dependence of the control actions, it can be expressed in terms of motor
data (or odometry). Closed-loop motion models p (xt|ut, xt−1) use instead of the control action ut the
data from odometry (which is in practice also denoted by ut).

As an example, the motion model as used in the soccer code of the Dutch Aibo Team is modelled as

xt = xt−1 + ut + εerror (2.1)
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in which the noise εerror is assumed to be

εerror = < εφerror,

(
εxerror
εyerror

)
> (2.2)

= < 0.002
√

(uxt )
2 + (uyt )

2 + 0.2uφt ·Xφ,

 0.10
√

(uxt )
2 + (uyt )

2 ·Xx

0.02
√

(uxt )
2 + (uyt )

2 ·Xy

 > (2.3)

with Xx, Xy, Xφ ∼ U [−1; 1] being independent uniformly-distributed random variables.

2.2 Vision
A robot typically possesses several sensors to perceive its environment. Researchers can choose to equip
their robots with a variety of different sensor modalities. For example there are tactile sensors that react
to touching, range sensors using ultrasone or laser beams, microphones that record sound, cameras that
can take snapshots or capture video and wireless receivers such as networking and GPS (for communi-
cation and localization).

From the spectrum of possible sensors, laser range scanners are often used for robot localization.
However, these sensor modalities have a number of problems – particularly for the use in natural envi-
ronments. So for example the limitation in range makes them difficult to apply in large open areas, where
in general no stable landmarks can be observed. Additionally, they tend to be easily confused in dynamic
environments (for example by people walking around that occasionally block the laser beams). Lastly,
sensors using distance measurements are considered to be counterintuitive to human perception.

Therefore, vision has long been advertised as providing a solution to these problems. From a con-
ceptual perspective, it is desireable that a robot could perceive the world in the same way that humans
do. The real world is full of visual indications that have especially been installed to facilitate (human)
localization, such as public signage, arrows or other artificial landmarks. Moreover, the behavior of a
straying robot under difficult (or confusing) circumstances then becomes easier to trace.

Cameras have become a lot cheaper in the past years, and the existence of digital signal processors
(DSPs) have made the application of cameras even appealing in non-computerized devices (such as an
optical mouse). Mobile robots can easily be equipped with cameras, thanks to standardized hardware
protocols (like USB and FireWire). In general, mobile robots are equipped with one (or more) cameras;
the two camera types most used for mobile robots are:

• Conventional cameras (also called directed cameras) capture the scene by projecting it on the
internal image sensor. Although in principle a pinhole aperture would suffice, typically one or
more lenses are used to improve the light sensitivity. Conventional cameras have a limited field
of view which is typically denoted by their opening angle (or inversely related, their focal length).
The opening angle of the Aibo camera for example is 57o in the horizontal and 45o in the vertical
direction – which is close to the opening angle of typical consumer photo cameras (comparable to
a f = 35mm lens).

• Omni-directional cameras have a hemispherical field of view, usually thanks to a convexly-shaped
mirror. Therefore, they have an (almost) 360o view in the horizontal direction and a normal opening
angle in vertical the direction. Sometimes, two such cameras are mounted together back-to-back,
to form a truly omnidirectional sensor. As conventional cameras are used internally (below the mir-
ror), the images are usually rectified into panoramic images using epipolar image geometry [30].
Panoramic cameras are used with great success in the RoboCup midsize league and for research of
SLAM 1 approaches.

1Simultaneous Localization and Mapping
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Whatever kind of camera is used with a mobile robot, it is obvious that the robot has to reduce the
amount of data significantly before the data becomes meaningful to the robot. The images are therefore
converted into an intermediate representation. This conversion from raw images to a feature space can
take place at different levels of complexity:

• Low-complexity approaches feature only minimal preprocessing of the sensor data. A good exam-
ple are appearance-based approaches. The image transformation can typically be implemented
fast and efficient, making such approaches interesting for real-time vision in mobile robots. Exam-
ples of such approaches were presented in the introduction [21, 10, 9].

• Intermediate complexity preprocessing can for example be found in the class of landmark-based
approaches. Although feature detectors for static landmarks can be implemented efficiently (as in
the case of soccer-playing robots [41]), dynamic landmark detectors (using salient features like
SIFT [18]) are typically computationally more expensive – and are not yet applicable in real-time
reactive mobile robots.

• High-complexity preprocessing and feature extraction can for example be found in (human) pose,
gaze or gesture recognition. In these settings, visual objects not only have to be recognized, but
also their pose and orientation has to be determined yielding much more details. However, for
mobile robot localization these approaches are not (yet) relevant.

Usually, this intermediate feature-space representation is then the primary output of a visual sensor.
In order to derive useful information, the robot has to know how the world state and the sensor percepts
are related.

The concept of sensor models (or observation models) is to express the relationship between the
world state xt and a sensor reading (or observation) zt mathematically. Typically, in addition a map m
of the environment is provided, which allows the formulation of location-independent (or generic) sensor
models.

In a deterministic world this relationship could be expressed directly by a sensor function that maps
a world state to sensor readings: zt = fm(xt). As however all sensor data is inherently subject to noise
under real-world circumstances, a deterministic sensor model is normally insufficient. Therefore, sensors
are commonly described by probabilistic sensor models.

Definition 2. A probabilistic sensor model describes the relation between a world state xt and a sensor
reading zt given an environmental model (or map) m in form of a posterior distribution p (zt|xt,m).

The Dutch Aibo Team uses in fact several maps. The first map is a pre-supplied lookup table used to
convert real colors into color classes in the feature conversion step. The other maps basically contain the
positions of the landmarks; those maps are stored in a pre-cached form such that the sensor model can be
evaluated faster (see fig 2.2).

If the maps are supplied to the robot from an external source, they are called a-priori knowledge.
Manually created maps often increase the performance of an approach, but require human assistance.
Moreover, the robot is strictly bound to the domain where the maps were designed for. A remedy form
approaches that learn the required maps autonomously.

Approaches can be classified as passive or active vision. Passive vision analyzes incoming images
completely from top to bottom – without any memory and/or feedback. Approaches applying active
vision however, dispose of a notion of attentional focus. Such approaches can steer their attention, for
example by tracking an object of interest. This requires the existence of attentional feedback. This
feedback can take place at different places:

• The feedback is generated by the sensor and used only internally in the sensor itself. This means
that the sensor has some kind of memory, where it for example stores the coordinates of tracked
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Figure 2.2: Visualization of the probabilistic sensor models used by the Dutch Aibo Team. The sensor
models expect the their corresponding landmarks within fuzzy probability clouds around their true posi-
tion to explicitly allow for camera (and head motion) noise. The sensor models for different landmark
percepts have been marked with different colors.

objects (maybe even augmented by motion vectors). When a new image arrives, vision can effi-
ciently update those coordinates by a local search without scanning the complete image over and
over again. Active vision can therefore speed up computations enormously. Moreover, as vision
then already integrates over multiple frames, such approaches are much more robust against wrong
percepts. However, this concept is difficult to implement in the 4-Legged league: firstly, the robot’s
head turns rapidly and secondly, the environment is highly dynamic. Therefore, this kind of inter-
frame object tracking would certainly not improve the performance substantially.

• Another possibility is that the robot has some actuators that can be controlled by vision – as
for example in the case of a turnable head camera: when the behavioral layer of the robot decides
to put focus on the ball, vision then can steer the head camera in such a way that the ball is kept
accurately within its view [41]. Due to the limited opening angle of the Aibo head camera, this
kind of active vision is used by almost all teams in the 4-Legged league.

• Moreover, the feedback can have its source outside of vision, like for example in the behavioral
layer. The robot could decide to walk back to its goal and tell vision not to get distracted from an
approaching ball. A promising approach of this type of active vision has been developed by the
Dutch Aibo Team in [20]: here the behavioral layer can specify on which types of objects vision
has to focus. As a result, the performance of the goalkeeper has been increased significantly.

2.3 Localization
Robot localization is the problem of estimating the robot pose relative to a map of the environment.
Several subproblems of the general localization problem exist, and in the following a short overview of
the four main problem classes is given (ranked according to the degree of difficulty):

1. The localization problem in terms of position tracking assumes that both that a map of the en-
vironment is available and the initial position of the robot is known. Of course, the robot cannot
sense its pose directly, but has to use the sensor model to update its beliefs.

2. Global localization starts without prior knowledge of the initial pose. Depending on the map and
the kind of sensors the robot possesses, the robot may have to deal with ambiguities until sufficient
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information from the sensors has been aggregated. As soon as the robot’s beliefs about is pose
converges to a single position, the robot can switch to (simpler) position tracking.

3. In certain applications, it can happen that the robot is – suddenly and unnoticeable to the robot –
transported to a unknown situation. If kidnapping can occur, the robot has to reconsider its global
localization constantly. The robot then needs mechanisms to be able to detect and recover from
suddenly wrong beliefs. In the 4-Legged league, kidnaps for example happen when the referee
decides to remove a robot due to foul play (like pushing a striker or an illegal defense).

4. In a SLAM2 type problem, neither the map nor the initial pose is known a-priori. The robot has
to explore its environment and thereby construct its own map – relative to its origin. As the robot
has to simultaneously estimate its own pose and build the map, both of them become increasingly
inaccurate the further the robot travels. Such errors due to long-term drift can partially be corrected
when the robot detects that it has crossed its own path. Then the robot can apply loop-closing
techniques in order to rectify the map. When multiple robots are used to explore the map, additional
issues such as team coordination and subsequent map merging can be addressed.

Most approaches assume a static environment, meaning that nothing in the map changes over time.
Such an assumption is not always a valid, and serves therefore as an approximation for dynamic envi-
ronments – like the real world. In the soccer domain, moving robots, referees or the audience can change
the appearance significantly by hiding landmarks or producing false positives. The Dutch Aibo Team for
example had at the 2005 championships in Osaka the problem that in some games the goalkeeper lost
completely its orientation. After thorough logfile analysis, it turned out that while some games, a score
board next to the field was activated – and been mistaken as a flag.

Some approaches use active localization (which is the opposite to passive localization) that allows
the robot to move to a location where it can remove ambiguities. Some of the behaviors of the Dutch
Aibo Team soccer robots reflect this principle: for example in the ready-phase3, they look around and try
to establish their localization. If this fails, they turn around with the aim to see additional landmarks.

2.3.1 Belief distributions
Due to the real-world assumption, a robot can never reside be completely certain that it is residing in a
single world state xt. It is more likely, the robot will believe to be close to a estimated world state x̂t
associated with a measure of certainty in a probabilistic manner.

A common way to express this uncertainty is by a belief distribution that associates with a state x
at time t a belief value Belt(x). In such a general belief distribution the robot for example could also
represent when that it is ambivalent about two or more different poses – for example due to prevailing
field symmetries.

The robot can include maximally all its previous sensor readings and issued motion actions in its
belief distribution about the current world state. Statistically, this can be formulated by the following
dependency:

Belt(x) = p(x|zt, ut−1, zt−1, ..., u1, z1, u0, z0) (2.4)

In general, belief distribution are real distributions and are therefore supposed to sum up to 1. Depending
on the further processing, such a constraint can be superfluous. Then Belt(x) becomes a likelihood
distribution. This could be the case when a robot subsequently only is interested in the world state
associated with the strongest belief. The belief representation used by the Dutch Aibo Team is for example
not normalized, and the soccer robots estimate the validity of a certain pose solely relative to their beliefs.

2simultaneous localization and mapping
3In the ready-phase, the soccer robots have to walk on the kick-off positions.
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2.3.2 Bayesian filters
Most probabilistic localization techniques are based on the assumption that both control motion com-
mands (or odometry readings) and sensor measurements are conditionally independent of previous read-
ings, given the current state xt. In this context the localization problem becomes a HMM4 state estima-
tion problem: the hidden state to be estimated is the current pose xt: it is assumed that it depends solely
on the previous state xt−1, the current motion command ut and sensor reading zt.

This approximation is called the Markov assumption: it is assumed that the statistics about what
happened in the past (x0:t−1, z1:t−1, u1:t−1) is already completely summarized in the belief Belt−1 of
the previous state.

Definition 3. Markovian localization filters maintain the robot’s beliefs Belt about the current pose
by some internal representation. Moreover, localization filters contain methods to update these beliefs
corresponding to a control action ut−1 and a sensor reading zt. They apply the motion and sensor models
to estimate the new posterior Belt based on the previous beliefs Belt−1. A Markovian localization filter
is then defined by the posterior distribution Belt(x) = p(x|Belt−1, ut−1, zt).

This belief update is typically split up further, by conditioning firstly solely on the motion command,
and subsequently on the current sensor reading:

Belt(x) = p(x|zt)p(x|Belt−1, ut−1) (2.5)

This is of course requires the additional assumption stating that the sensor readings and motor commands
are mutually independent, which is in practice a valid approximation. The important point about eq.2.5
is that the motion and sensor models now appear separately.

However, the motion and sensor models typically exist only opposite conditionality p(x|Belt−1, ut−1)
and p(zt|x) respectively (see definition 1 and 2). The posteriors as required by (2.5) can be derived by
applying Bayes’ Theorem:

p(x|Belt−1, ut−1) =
p(ut−1|Belt−1, x)p(x)

p(ut−1)
= δt · p(ut−1|Belt−1, x) (2.6)

and

p(x|zt) =
p(zt|x)p(x)

p(zt)
= εt · p(zt|x) (2.7)

The priors for a particular world state p(x), a motion command p(u) and a sensor reading p(z) are
typically not in the focus of interest and therefore they are usually replaced by two normalization constants
δt and εt. When the priors are assumed to be distributed uniformly, then the main effect of these factors
is to ensure that Belt(x) stays a belief distribution (i.e. sums to 1).

In practice, the normalization constants δt and εt are often omitted – especially in the case thatBelt(x)
is only a likelihood distribution (section 2.3.1). The normalization of the belief distribution is then either
not performed at all, or only after the new belief distribution has been computed (which is computationally
more effective than calculating the priors in the first place).

Thereby, the belief distribution becomes computable by the update rules of Bayesian filtering:

1. The robot’s beliefs are updated according to the estimated motion ut. This is accomplished by
propagating the belief distribution from each state through the motion model p(x|Belt−1, ut−1)
(the odometry-corrected, intermediate belief is here indicated with Bel−t (x)):

Bel−t (x) = p(x|Belt−1, ut−1) (2.8)

4hidden Markov model
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2. After that, information from the sensor reading is incorporated into the intermediate belief by ap-
plying the sensor model p(x|zt), using a mixing constant λ:

Belt(x) = λp(x|zt)Bel−t (x) + (1− λ)Bel−t−1(x) (2.9)

The mixing constant λ determines how much weight is put on the new sensor reading p(x|zt). For
example, λ = 0 rejects new sensor readings completely and solely trusts on the earlier (but odometry-
corrected) beliefs, while λ = 1 fully adopts the posterior of the sensor and immediately forgets previous
beliefs.

2.3.3 Solution techniques
In practice, it is not possible to compute the posterior analytically (as stated in (2.5)). Therefore, a number
of approximations exist. In the following, the most common numerical solution techniques applied in
robot soccer will be presented in brief.

The main problem for implementation is that the belief distribution Bel(xt) may stand for any ar-
bitrary probability distribution that is constantly changing over time, which in practice will have to be
approximated in one way or the other. In the following, popular approximations for belief represen-
tation will be introduced briefly. All of them impose additional assumptions or simplifications mostly
concerning the shape of the belief distribution.

These approaches can in general be split into two categories: single-hypothesis trackers and multi-
hypotheses trackers. As they originate from the domain of signal processing, they are also called filters.

Single-hypothesis trackers

Single-hypothesis trackers model the belief distribution Belt in such a way that only a single world state
is captured. This estimate is then associated by a measure of certainty (or variance), allowing the tracker
to broaden (or narrow) the estimated region in the state space.

Kalman filter The most popular single-hypothesis tracker is the so-called Kalman filter (or variance
filter). The idea is to approximate the belief distribution Bel(xt) by a multivariate Gaussian distribution
defined by its mean µt and covariance Σt:

Bel(xt) =
1√

(2π)N |Σ|
exp

(
1
2

(x− µ)T Σ−1 (x− µ)
)

(2.10)

The Kalman filter further assumes that the state transition A, the motion model B and the sensor
model C are linear functions solely depending on the world state or action command, plus a Gaussian
noise model Q:

(a-priori state estimate) x̂−t = Axt−1 +But−1 (2.11)
(a-priori sensor estimate) zt = Cxt−1 (2.12)

(a-priori covariance estimate) P−
t = APt−1A

T +Q (2.13)

The Kalman filter updates its parameters by first computing the Kalman-gain (expressing the dissim-
ilarity between expected and actual sensor readings) and then refining the world state estimate x̂t:

(Kalman gain) K = P−
t C

T
(
CP−

t C
T +R)−1

)
(2.14)

(posterior state estimate) x̂t = x̂t−1 +K
(
yk − Cx̂−k

)
(2.15)

(posterior covariance estimate) Pk =
(
I −KC)P−

k

)
(2.16)
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The typical behavior of a Kalman-type filter might be summarized from a bird’s eye view as follows:
the covariance of the Gaussian belief is initially relatively big. After a while, the belief becomes tightly
focused around a single spot due to the sharpening effect of the sensor model. This process comes to
an end when the sharpening of the sensor model and the blur of the motion model are in balance. The
robot has then reached maximal localization. When the robot is suddenly kidnapped, the predicted sensor
estimates do not match the actual ones any more, which increases the uncertainty of the Gaussian belief
and thereby enlarges the probability cloud of the state estimate. As soon as the observed sensor readings
match well with the estimated ones, the filter will eventually converge again around the new estimate.

The standard Kalman filter forms an optimal solution in the sense that it that it minimizes the mean
of the squared error over time. Another appealing property is that its computational requirements are
minimal (a few matrix multiplications and additions). The linearity assumption is of course difficult
to achieve in many real-life problems, therefore a lot of variations of the original algorithm have been
proposed that can cope with different levels of non-linearity. The class of Kalman-based algorithms still
builds on Gaussian representations of the robot’s belief, but in general it is the aim to approximate the
motion and sensor updates in one way to make them linear again.

The Extended Kalman Filter (EKF) aims to approximate the non-linearity of real-world models
by a first-order linear Taylor approximation. In other words, the motion and sensor models are – for
each time step separately – approximated by a linear projection. The non-linear transition function is
analyzed locally at the current mean of the Gaussian belief for its tangent, yielding a linear projection
matrix that can subsequently be used by the update equations of the linear Kalman filter. Sometimes
the Taylor approximation can be solved analytically in advance; otherwise Monte-Carlo techniques for
efficient estimation can be used.

Instead of using a first-order Taylor approximation of the models, one could also consider a more
complex way of linearization. The Unscented Kalman Filter (UKF) approximates the non-linear func-
tions at each time step by extracting a number of so-called sigma-points from the current Gaussian belief.
These sigma-points (usually 2N + 1 points, where N is the dimensionality) are then projected through
the non-linear model functions (which usually is feasible for a small number of points), and finally trans-
formed back into a Gaussian representation.

The UKF is of course due to the higher dimensionality of the approximation much more precise than
the EKF. However, depending on the kind of non-linearities, it can be hard for both filters to still converge
correctly. This is, however, in practice a minor problem.

A major problem, however, emerges from the representation of the current uncertainty in terms of
covariance Σt. If the robot has no information about the current world state then the covariance becomes
infinite, which easily can result in numerical problems. Moreover, Kalman filters have in the case of
absolute information absence still a current world state estimate x̂t, which is odd from a theoretical point
of view.

Information Filter A better solution are the the so-called Information filters that estimate instead of
the covariance and estimated state the (Fisher) information matrix and information vector respectively.

Information filters have the nice property that Fisher information can simply be added up. This has
additionally the advantage that independent state variables can be tracked separately and subsequently
they can be easily combined – which makes Information Filters particularly interesting for scenarios
where multiple robots have to merge their local information with the information collected by other
robots.

In general, information filters involve a full matrix inversion for each update step. In particular, for
high-dimensional state spaces, this can be numerically instable and moreover, it can be computationally
more expensive than the updates performed by Kalman filters.
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Multi-hypothesis tracking

The biggest shortcoming, however, is that all single-hypothesis trackers fail to model ambiguities ade-
quately: when, for example, in a symmetrical environment (like a soccer field) two robot poses are equally
probable, then the tracker is only be able to track one of them, leaving the other one disregarded.

This restriction is resolved by the class of multi-hypothesis trackers: their representation of Bel(xt)
allows the robot to believe in multiple poses simultaneously, allowing the robot to track and reject dif-
ferent hypotheses independently. As long as ambiguities exist, the multi-hypothesis filters are able to
represent them in an explicit way.

Gaussian multi-hypothesis tracks A classic approach to the aforementioned problem is the multi-
hypothesis tracking filter (MHT) which is a straight-forward extension of the Kalman filter: instead of
representing the belief only by one Gaussian, the MHT filter uses a weighted Gaussian mixture. Each un-
derlying Gaussian distribution is tracked independently. For each new observation that has an ambivalent
interpretation, each of the constituting Gaussians is split up into two or more (depending on the amount
of ambiguity) new child-Gaussians. This of course would lead to an exponentially growing set of Gaus-
sians; therefore, pruning mechanisms can be used to keep the number of distinct tracks computable, by
for example removing all tracks with a mixture weight below a certain threshold.

Direct numerical evaluation The grid localization methods rely on approximating the belief distri-
bution Bel(xt) by a discrete distribution on a finite grid of cells. Each grid cell corresponds to a small
region of the state space, and each cell is associated with a belief value. The updates from the motion
model and sensor model can then be computed directly by applying the update formulas for Bayes filering
(as derived in (2.8) and 2.9). When the grid is fine enough, this method works well.

However, in order to obtain an adequate representation of the state space, a huge grid might be nec-
essary that draws both lots of memory and computation time.

Although over the years many ideas have evolved that can speed up these computations (like model
pre-caching, delayed updates or selective updating to name a few), grid localization is considered to be a
brute-force method that uses processing power in an inefficient way.

Monte Carlo localization A computationally more efficient and even more accurate method is called
Monte Carlo localization (MCL). Similar methods appear also under the names of bootstrap filters,
condensation, sequential Monte Carlo filters, particle filters and survival of the fittest.

The basic idea in Monte Carlo simulation is that a set of weighted samples is used to approximate the
belief distribution [8]. These particles can then be updated efficiently according to the Bayesian motion
update ((2.8)) and sensor update ((2.9).

In the update step, each particle is processed separately. Each particle is put through the probabilistic
motion model, yielding a new (stochastically drawn) particle. Then the likelihood is computed that
assuming this particle as the current pose could have produced the observed sensor readings by evaluating
the sensor model. Finally, the particle set is re-sampled based on the computed likelihoods. A particle
with high likelihood may be re-sampled into multiple particles whereas unlikely particles are completely
removed from the set.

Particle filters solve the global localization problem, but are prone to get stuck in local minima. In
particular, this has the implication that they recover only poorly from sudden kidnappings. This is due to
the fact that, when no particles reside in a region of state space of high likelihood, it can take a long time
before particles rediscover this region.

Different extensions have been developed to liberate particle filters from this limitation. For example,
it is possible to occasionally inject new particles completely at random in the particle set. Most of them
will be directly removed again at the next re-sampling, but some of them may discover the true state faster
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than the re-sampled particles. Technically, this corresponds to the global addition of ambient background
noise to the motion model.

Instead of injecting random particles, it is also possible to sample a small fraction of the particles
directly from the sensor model [17]. In the case of landmark-based sensor models, this means that direct
triangulation can be used to directly derive candidate poses from the latest landmark sights.

Additionally, the size of the sample set can be adapted dynamically. The idea is that the more fo-
cused the particle set becomes (for example by monitoring the Kullback-Leibler distance of the belief
distribution [7]), the less particles are necessary for accurate position tracking.

In practice, it turns out that only few particles are necessary for good localization. For example, the
localization module of the Dutch Aibo Team only uses 70 particles.

2.4 Summary
In this chapter, the basic foundations of probabilistic robotics – concerning motion, sensors and localiza-
tion – have been presented. In the following, the main aspects will be summarized:

Motion The motion apparatus determines how the robot moves. It defines the kinematic equations of
which the robot’s probabilistic motion model can be derived.

Sensors The sensors determine in which way the robot perceives its environment. Mathematically each
sensor can be expressed by its probabilistic sensor model. The raw data from the sensor needs in most
cases to be somehow pre-processed, typically by the conversion into an intermediate feature space. The
computational costs of pre-processing depend on the choice of the feature space, and this implicitly has
effect on the real-time suitability of an approach. A-priori knowledge like color classes or pre-defined
landmarks can facilitate this conversion, but restrict the use to artificial environments. Active vision
allows the robot to focus its sensors on a region of interest, and can significantly increase the information
content of sensor readings.

Localization The general localization problem ranges from pure position tracking up to simultane-
ous localization and mapping problems. Localization filters define how the robot maintains its beliefs
about the current world state which, in turn, determines whether and how the robot is able to represent
uncertainty and ambiguity in its beliefs. Furthermore, localization filters regulate how information from
motion and sensors updates these beliefs. Important properties of localization filters are their computa-
tional effort, robustness against distortions (like slippage, noisy sensor data or kidnaps) and accuracy.
Filters can be designed to be capable of handling dynamic environments by updating their (internal)
map, and be extended to support active localization by for example suggesting disambiguating behav-
iors to the robot.



CHAPTER 2. PROBABILISTIC ROBOTICS 24



Chapter 3

Approach

In this chapter, the visual compass approach will be presented. Robots using the visual compass can
quickly learn the appearance of arbitrary natural environments and subsequently estimate their current
heading (that is additionally associated with a confidence value).

The basic idea behind the visual compass approach is intuitive: as the robot should be able to adapt to
any given environment, a direct approach would be to store a 360o panoramic image of its surroundings
and use it subsequently as a map. Then the robot could match every new incoming image with this map
to estimate its orientation.

This matching is not trivial because the new image (or its feature space equivalent) can be translated,
rotated, stretched and projectively distorted when the robot is not standing at the spot anymore where the
snapshot of the panorama was originally taken. Additionally, regular cameras have a limited field-of-view,
and therefore cannot take panoramic pictures.

The compass approach can be divided into two logical parts. In the first part, the compass sensor is
derived, which a robot can use to determine its current heading from incoming images. In the second part,
a localization filter is described that allows the robot to integrate the raw compass readings over time and
merge its motion data.

Throughout the whole chapter, the complexity classes of all major processing steps will be indicated.

3.1 Compass sensor
In the following, the compass sensor is constructed, which can provide heading information by matching
camera images ft with its map m. The approach is introduced incrementally: it starts by assuming a
single-direction, single-transition sensor and is subsequently extended to full camera images of a robot
heading in an arbitrary direction. Subsequently, it is shown how this approach can be used to estimate
(learn) a map m̂ in an unknown environment. Finally, the sensor model is derived, that a robot can use to
estimate its heading φt from an incoming camera image ft (given a map m).

3.1.1 Heading
The robot has at each point in time a heading φt, which is the rotational part of its pose xt =< φt, τt >.
Its pose (including its heading) changes over time, as long as the robot moves. In probabilistic terms, the
robot would then like to know the likelihood of that a current image ft was taken under a certain rotation
φ (given a map m), which is expressed by the following conditional probability:

p
(
ft
∣∣φ,m) (3.1)

25
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Figure 3.1: A robot is standing at pose xt =< φt, τt >. It measures the frequency patterns zt(φ) in
different directions φ in the current image ft from its camera.

3.1.2 Single transition
The approach is based on the idea that the colors in a natural environment are not equally distributed.
More specifically, the approach exploits the assumption that the occurrence pattern of color class transi-
tions strongly depends on the orientation.

For the moment, it is assumed that a robot has access to a probabilistic sensor that can directly measure
the relative frequency of a transition between two (preliminary fixed) color classes i and j given an
orientation φ. A measurement, taken at time t and under orientation φ will be denoted by zijt (φ). These
assumptions will be relaxed in the following subsections so that finally a regular color camera can be
used.

The relative occurrence frequency of a transition between the two color classes i and j given a di-
rection φ is then modelled by the random variable Zij(φ) (see fig. 3.1.2). Each time the robot takes a
measurement, it reads a slightly different frequency measurement, indicated by the series (zij1 , z

ij
2 , . . .).

For localization purposes, the robot needs to estimate the likelihood that these readings were produced by
the underlying distribution Zij(φ).

In this approach, it has been chosen to approximate Zij(φ) by a histogram distribution, defined by
the absolute frequencies of n logarithmically scaled bins mij

(1)(φ),mij
(2)(φ), . . . ,mij

(n)(φ).

Zij(φ) ∼ H
[
mij

(1)(φ),mij
(2)(φ), . . . ,mij

(n)(φ)
]

(3.2)

This histogram distribution is then defined by the following probability distribution:

p
(
Zij(φ) = zij(φ)

∣∣mij(φ)
)

=
1

n∑
k=1

mij
(k)


mij

(1)(φ) if 2−1 < zij(φ) ≤ 20

mij
(1)(φ) if 2−2 < zij(φ) ≤ 2−1

...
...

mij
(1)(φ) if zij(φ) ≤ 2−(n−1)

(3.3)

The parameters of this distribution mij(φ) = mij
(1)(φ),mij

(2)(φ), . . . ,mij
(n)(φ) can be seen to define

the map mij(φ) – concerning the transition frequency sensor Zij(φ).
If the robot now gets the measurements zijt from its frequency sensor of unknown direction, it can

deduce the conditional probability (or posterior, or likelihood) that this observation was taken under a
certain heading φ – given a map mij – by evaluating

p
(
zij
∣∣φ,mij(φ)

)
(3.4)

using (3.3).



CHAPTER 3. APPROACH 27

ij 1 2 3
1 37% 8% 5%
2 7% 21% 3%
3 5% 1% 15%

Table 3.1: Visualization of a transition pattern. The robot measures in direction φ the relative frequencies
z(φ) of all color class transitions ij for m = 3 color classes. The matrix is not necessarily symmetrical,
because the transitions frequencies are measured in the images in vertical direction (from bottom to top).
The diagonal then corresponds to the relative frequency of occurrence of the color classes themselves.

For a single direction, this evaluation complexity of this expression is linear in the number of his-
togram bins n (p

(
zij
∣∣mij(φ)

)
∈ O (n)).

3.1.3 Transition patterns

The approach so far only relates to the frequencies
(
zij1 (φ), zij2 (φ), . . .

)
of one specific color class tran-

sition ij, given the map mij . This is now generalized by introducing a compound sensor Z(φ) that
measures the relative frequencies of all color class transitions simultaneously:

Z(φ) =

 Z11(φ) · · · Z1n(φ)
...

. . .
...

Zn1(φ) . . . Znn(φ)

 (3.5)

Furthermore, it is assumed that all transition frequency sensors Zij(φ) are mutually independent.
Analogously, a n2-dimensional transition frequency pattern observed under a certain direction φ is

constituted of the measurements of all color classes transitions:

z(φ) =

 z11(φ) · · · z1n(φ)
...

. . .
...

zn1(φ) . . . znn(φ)

 (3.6)

An example of such a pattern z(φ) is given in table 3.1.3.
Nontheless, the elements of the n2-dimensional compound sensor Z(φ) can still be described by the

parameters of the underlying histogram distributions (3.3), thus Z(φ) is parametrized by the generalized
map

m(φ) =

 m11(φ) · · · m1n(φ)
...

. . .
...

mn1(φ) . . . mnn(φ)

 (3.7)

If the robot now reads a measurement z of its sensor, it can compute the posterior of p
(
Z = z

∣∣m(φ)
)

– expressing the likelihood that the robot was facing in direction φ while measuring z – by exploiting the
mutual independency of the individual transition frequency sensors Zij(φ).

p
(
z
∣∣φ,m(φ)

)
=

n∏
i,j

p
(
zij
∣∣φ,mij(φ)

)
(3.8)

The evaluation complexity of this expression grows quadratically with the number of color classes m
(p
(
z
∣∣m(φ)

)
∈ O

(
m2 · n

)
).
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3.1.4 Sampling transition patterns from camera images
Of course a robot typically is not able to directly measure the color class transition frequencies. However,
such a sensor can be easily constructed if the robot is equipped with a camera.

The images a robot perceives when pointing its camera in a direction φ can be denoted by ft(φ).
Without loss of generality, the images are assumed to be aligned horizontally and vertically, have been
cropped in such a way that they include only pixels from above the horizon and moreover it is assumed
that they are continuously sampled, and have the unity length in both dimensions. Then, a particular point
< x, y >∈ [0, 1]× [0, 1] can be evaluated by denoting ft(φ) < x, y >.

In the case of a color camera, the evaluation of a point in the picture will yield a color of a three-
dimensional color space [0, 1]3.

In order to measure the transition frequencies between two color classes, a function g is required that
maps a color c = ft(φ) < x, y > on its color class [c]:

g :∈ [0, 1]3 → (0, . . . ,m) (3.9)
c 7→ g(c) (3.10)

For the moment, it is assumed that the robot somehow has access to such a function (see appendix B).
It was chosen to measure the transition frequencies in vertical direction (from bottom to top). A

transition at < x, y > between i and j then is defined as a change (in vertical direction) of color class in
the image at this point, or mathematically equivalently as

transitionij(< x, y >) = 1⇔ lim
ε→0

g (ft(φ) < x, y − ε >) = i ∧ g (ft(φ) < x, y + ε >) = j (3.11)

With this proposition available, simply the absolute frequencies of a particular color class transition
on the complete image can be counted:

z′ijt (φ) =

1∫
0

1∫
0

transitionij(< x, y >)dxdy (3.12)

These absolute frequencies can be divided by the sum in order to obtain relative frequencies:

zijt (φ) =
1

m∑
i′,j′

z′i
′j′

t (φ)
z′ijt (φ) (3.13)

Now the robot can measure zt(φ) by evaluating an image ft(φ) from its camera by evaluating (3.13).

3.1.5 Refining the resolution
The conversion (3.13) from a camera image into the transition frequencies is rather coarse: the whole
image ft(φ) is sampled into a single frequency measurement zt(φ).

A camera image, however, holds much more information, therefore it is reasonable to measure zt(φ)
with a finer resolution. From now on, it is assumed that the camera points at an angle φ horizontally of
which it takes images ft(φ), while the frequency measurement zt(ψ) takes place within the picture, and
therefore in a slightly different direction ψ + φ.

Because a regular camera has a limited opening angle, a captured image will limit the relative mea-
surement direction ψ to a certain subinterval around the absolute camera direction φ:

ψ ∈ [−FOV/2,+FOV/2] (3.14)
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Figure 3.2: The image is scanned in vertical direction for color class transitions at an angular resolution
of ∆φ by the convolution with a Gaussian stripe.

with FOV being the opening angle of the camera’s field-of-view.
Then, the underlying transition detection can be weighted by a Gaussian kernel (with its mean µ = ψ

in the desired sensor direction and a particular width (or resolution) σ = ∆φ:

z′′ijt (ψ) =
∑

<x,y>∈[0,1]2

transitionij(< x, y >) · 1
∆φ
√

2π
exp

(
− (x− ψ)2

2(∆φ)2

)
(3.15)

expressing the absolute frequency of a color class transition i and j in direction ψ with a certain angular
resolution ∆φ (see fig. 3.1.5). Subsequently (3.12) can be applied to obtain the relative frequencies zt(ψ).

Because the Gaussian kernel with variance ∆φ blurs the underlying image at a certain resolution ∆φ,
it does not make sense (nor does the robot have time) to evaluate zt(ψ) in indefinitely many directions
ψ ∈ [−FOV/2,+FOV/2]. Rather it is more reasonable to sample the transition frequencies zt(ψ) from
the image at a comparable resolution. Therefore, the sample directions can then be reduced to the set

[−FOV/2,+FOV/2] ∩∆φ · N = Φ (3.16)

This implies that now – per camera image ft(φ) – several transition frequencies measurements{
< ψ, zt(φ+ ψ) >

∣∣ψ ∈ [−FOV/2,+FOV/2] ∩∆φ · N
}

in different directionsψ exist. Consequently,
the robot can evaluate all of them simultaneously after it has taken an image ft that was captured in an
unknown direction. Because the measurements lie substantially far away from each other (namely have a
distance of ∆φ), these measurements can be assumed to be independent, and therefore can be denoted in
the following equation:

p
(
ft
∣∣φ,m) = p

({
< ψ, zt(φ+ ψ) >

∣∣ψ ∈ Φ
} ∣∣∣φ,m) (3.17)

=
∏
ψ∈Φ

n∏
i,j

p
(
Zij(φ+ ψ) = zij(φ+ ψ)

∣∣mij(ψ)
)

(3.18)

Additionally, the evaluation complexity of this evaluation of camera images given a map m then
depends on the angular resolution ∆φ reciprocally: (p

(
ft
∣∣φ,m) ∈ O (m2 · n ·∆φ−1

)
).

3.1.6 Map learning
In an unknown environment, the map m is of course not available, and has therefore to be learned by the
robot from the measurement series

(
zij1 (ψ), zij2 (ψ), . . .

)
. The robot can learn the map by estimating its

constituting parameters mij(ψ). The estimated map and the estimated parameters will be denoted by m̂
and m̂ij(φ) respectively.
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Figure 3.3: Visualization of map learning: a robot learns a map m̂ by estimating in each direction φ the
underlying distribution Z(φ) from the observed frequency patterns zt(φ).

As the measurements zijt (ψ) are taken at a certain angular resolution ∆φ, the map can be estimated
at a comparable resolution, and it thereby consists of a finite amount of single-orientation maps m(ψ):

m =
{
< ψ,m(ψ) >

∣∣[0, 2π] ∩∆φ · N
}

(3.19)

Fortunately, histogram distributions are particularly easy to estimate. Their parameters
m̂ij

(1)(ψ), m̂ij
(2)(ψ), . . . , m̂ij

(n)(ψ) are direct estimators, as they are actually representing the absolute fre-
quencies of the corresponding bin.

Each time, a measurement zij(ψ) falls into a certain bin k, its corresponding counter m̂ij
(k) of the map

can be increased by 1

if 2−k ≤ zij(ψ) < 2−(k−1), then m̂ij
(k) ← m̂ij

(k) + 1 (3.20)

to update the map (see figure fig. 3.1.6).
To update the map with a complete image f(φ), the elements < ψ, z > of a taken image f(φ) can

then be used to learn the map m̂ by updating the corresponding counters mij
(k).

The evaluation complexity of learning from a single camera image is then of the same complexity
class as the evaluation of a camera image given a map (m̂t(ft) ∈ O

(
m2 · n ·∆φ−1

)
, see section 3.1.5).

3.2 Localization filter
A localization filter, as defined in def. 3, maintains the robot’s beliefsBelt(x) about its pose x =< φ, τ >
(consisting of its rotation φ and translation τ ). The localization filter updates these beliefs per time step t
by applying the sensor and motion model using Bayesian filtering (section 2.3.2).

In the following two subsections, the corresponding motion and sensor models will be constructed.
Subsequently, the first part of the localization filter is presented that estimates the robot’s heading.

Obviously, a single compass sensor does not yield enough information to additionally estimate the
robot’s translation. The idea is to use multiple compass sensors: if each sensor is trained at a different
spot, the robot can interpolate its (translational) pose by mutually comparing the reported likelihoods.

3.2.1 Motion model
The motion of the robot is simply assumed to be sufficiently be described by the differential data from
odometry ∆xt. The motion model (as defined in def. 1 then can be written as:

xt = xt−1 + ∆xt (3.21)
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or equivalently, by splitting the pose x =< φ, τ > in its rotational φ and translational τ components

< φt, τt > = < φt−1, τtt− 1 > + < ∆φt,∆τt > (3.22)
= < φt−1 + ∆φt, τtt− 1 + ∆τt > (3.23)

3.2.2 Sensor model
The posterior probability distribution that a compass sensor (given a map m) estimates when supplied
with an image ft has been stated in (3.24). This distribution can directly be used as a sensor model:

p
(
ft
∣∣xt,m) = p

(
ft
∣∣ < φ, τ >,m

)
= p

(
ft
∣∣φ,m) (3.24)

using (3.17). Then the sensor model can express possible ambiguities in a natural way – thanks to the
underlying posterior distribution.

The posterior stated in (3.24) forms the sensor model of the visual compass, by relating the captured
images ft to the world state φ, given a map m. It can subsequently be used by a localization filter
to integrate the likelihoods over time, merge them with data from odometry and eventually select the
orientation with the highest likelihood that can be provided to higher-level layers.

3.2.3 Orientational belief filter
The filter then has to maintain the rotational (or compass) beliefs Bel(φ) of the robot. The belief distri-
bution is represented by a one-dimensional circular grid with an angular resolution of ∆φ′.

At each time step, the beliefs Belt(φ) are updated according to the motion and sensor model, using
the update rules from Bayesian filtering (see (2.8) and (2.8)) and a mixing constant λ:

Bel−t (x) = Belt (x−∆xt) (3.25)
Belt(x) = λp

(
ft
∣∣x,m)Bel−t (x) + (1− λ)Bel−t (x) (3.26)

This belief distribution may in principle have an arbitrary shape. In order to extract an expedient
single rotational estimate that the robot can use (for example for planning and navigation), the belief
distribution can be approximated by a Gaussian distribution with its mean in the estimated heading φ̂t
and a variance σ̂t:

Belt ∼ N
(
φ̂; σ̂

)
(3.27)

or, equivalently

Belt(φ) =
1

σ̂
√

2π
exp

(
− (x− φ̂)2

2σ̂2

)
(3.28)

In fig. 3.2.3, a this process is sketched graphically.
The evaluation complexity of both belief updates is reciprocally linear in the angular resolution ∆φ,

so
{
Bel−t (φ), Belt(φ)

}
⊂ O

(
∆φ−1

)
.

The robots can now estimate its current heading by estimating the Gaussian parameters:

φ̂t = mean
x

BelRt (φ) (3.29)

σ̂t = var
x
BelRt (φ) (3.30)

The orientational belief filter yields per time step t a stable, accurate and odometry-corrected estimate
φ̂ of the robot’s current heading, associated with an estimate of the variance σ̂.
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Figure 3.4: Visualization of the Bayesian filtering process. In the first step, the belief distribution
Belt−1(x) is updated according to the motion model (odometry correction). In the second step, the
sensor model is applied and a new belief distribution Belt(x) becomes available.

3.2.4 Four-spot sensor model
Translational localization is not possible with only a single compass sensor defined by p

(
ft
∣∣x,m). How-

ever, the shape of this posterior probability distribution can be used as an indicator that correlates recip-
rocally with the distance to the original training spot.

If now several (say q = 4) compass sensors were used (for example trained on the corners of a
quadratic area, see fig. 3.2.4), the robot could interpolate its position from the individual likelihoods.

It is assumed that each compass sensor i has its own map m̂(i) learned at a distinct training spot
T (i). Then for each compass sensor, the maximal likelihood in the posterior probability distribution can
be regarded as an indicator of the goodness of the match (which is inversely related to the distance). A
single goodness-of-fit indicator can thus be extracted by extracting the maximum likelihood L(i)

t from
corresponding posterior distribution p

(
ft
∣∣φ, m̂(i)

)
:

L
(i)
t = max

φ
p
(
ft
∣∣φ, m̂(i)

)
(3.31)

From the combined sensor readings z′t (consisting of the indicators of all q compass sensors)

z′t =< L
(1)
t , L

(2)
t , . . . , L

(q)
t > (3.32)

the translation can be estimated from such a reading directly by computing the weighted sum of the
training spots T (1), · · · , T (q) according to the corresponding likelihoods L̂(1), · · · , L̂(m):

τ̂(z′t|m̂(1), . . . , m̂(q)) =
1∑q
i L̂

i
t

q∑
i

L̂itT
i (3.33)

The evaluation complexity of the such a combined compass sensor is in addition linear in the number
of sensors used τ̂(z′t|m̂(1), . . . , m̂(q)) ∈ O

(
q ·m2 · n ·∆φ−1

)
).

A Bayesian filter can subsequently directly use (3.33) as a translational sensor model in its the sensor
belief update step.

3.2.5 Translational belief filter
The translational belief of the robot is expressed by a direct estimate Belt(τ) = τ̂t.

The filtering can subsequently be implemented in the typical Bayesian fashion (see (2.8) and (2.8)).
In each time step, the beliefs are updated first by the motion model (3.21) and the sensor model (3.33),
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Figure 3.5: Visualization of four compass maps created at the different training spots T (i). Due to
projective distortions, each map is slightly different. The translational belief filter exploits this difference
in order to estimate the robot’s translation τ .

using a mixing constant λ:

Bel−t (τ) = Belt (τ −∆τt) (3.34)
Belt(τ) = λτ̂(z′t) + (1− λ)Bel−t (τ)

= λ
1∑n
i L̂

i
t

n∑
i

L̂itT
i + (1− λ)Bel−t (τ) (3.35)

Its complexity class is simply linear in the number q of compass sensors used, so{
Bel−t (τ), Belt(τ)

}
⊂ O (q).

At each time step t, the translational filter outputs a stable translational estimate τ̂t = Belt(τ). To-
gether, the compass filter and localization filter yield per time step t a full estimate of the robots pose:

x̂t =< φ̂t, τ̂t > (3.36)

This estimate can subsequently be used by the robot for planning and navigation.

3.3 Summary
The main contribution of this chapter is the mathematical construction of the compass sensor that can
provide a mobile robot with heading likelihoods for each supplied camera image.

The compass sensor has been constructed incrementally: at first, a model p
(
zij
∣∣φ,mij(φ)

)
has been

described that applies to a single transition frequency sensor Zij , by using a map mij(φ) of
frequency histograms. It has then been extended for a sensor Z(φ) that simultaneously reports
all transition frequencies Z(φ) between every two color classes i and j. Subsequently, it has
been explained how these transition frequencies can be sampled from the robot’s camera images
ft(φ) < x, y >: the frequencies can be measured at arbitrary angular resolution ∆φ by using a
scanning grid < ∆x,∆y >. Finally, an algorithm has been devised that a robot can use to learn
autonomously new maps m̂ in unknown environments. The derived sensor model p

(
ft
∣∣xt,m) can

be used for a robot to determine the likelihood that a taken picture ft(i) originates from a certain
heading φ.

Two localization filters have been introduced that a robot can use to estimate its orientation φ̂ and
translation τ̂ , respectively (forming together the robot’s pose x =< φ, τ >). As a pre-requisite, a
motion model has been defined that the filters can use to update their beliefs according to the data
from odometry. The orientational filter maintains the robots beliefs in form of a circular belief
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buffer Belt(x) at a resolution ∆φ′. It uses the motion and sensor models to update its beliefs – by
applying the update rules of Bayesian belief filters. A mixing constant λ has been introduced that
regulates how much of the robot’s beliefs are replaced by new sensor readings. The translational
filter requires four sensors, and uses the maximal likelihood L(i)

t of the individual sensor posteriors
p
(
ft
∣∣φ, m̂(i)

)
to interpolate the robots translational pose τ̂ .

The approach falls in the category of appearance-based approaches, because the compass sensor
only performs low-complexity preprocessing of the camera images. The compass filter has in particular
been designed for the use in mobile robots equipped with a rotatable camera. No further constraints are
imposed on the environment1. In particular, the visual compass works without artificial landmarks.

1A weak (and implicit) constraint is that the environment is natural. A clinical-white room would certainly violate the assumption
(stated in section 3.1.2) that the colors in a room are never equally distributed.



Chapter 4

Implementation

In this chapter, the implementation of the visual compass approach on a Sony Aibo robot will be de-
scribed. This chapter will follow the lines of the previous chapter, but then focus on the specific issues
inherent to a real robot. Next to the implementation itself, several behaviors will be presented that allow
the robot to autonomously calibrate, learn and localize in natural environments.

All parts of a robot have their particular properties, and therefore a thorough hardware and software
framework analysis was carried out on the Sony Aibo (see appendix A for the details). Several grave
problems like dark corners or camera blur in the images or slipping and inaccuracies in the walking
engine were given special attention in the implementation.

Along with the required adaptions necessary for the implementation, the initial choice of parameters
will be motivated.

4.1 Compass sensor
The compass sensor converts the incoming color images into the feature space (of transition frequency
patterns). This intermediate representation is used both for learning (of the map) and subsequent match-
ing. Finally, it outputs the posterior likelihood distribution p

(
ft
∣∣φ,m).

In order to discretize φ, an angular resolution of ∆φ = 4.5◦ was chosen. The resulting discretization
error of ∆φ/2 = 2.25◦ then corresponds to the measured angular error σφ = 1.5◦ in the estimate
of the camera matrix (see section A.4). This also equals the accuracy of the (classical) landmark-based
localization used by the Dutch Aibo Team [49]. This parameter determines in the first place the resolution
of the transition sensor (see section 4.1.2). This has downward consequences: it is subsequently sufficient
when the map m̂(φ) is learned at the same resolution, and correspondingly the likelihoods have only to
be evaluated at an angular resolution of ∆φ.

4.1.1 Color classes
In section 3.1.4 the existence of a color-to-colorclass mapping function g is assumed (3.10). This map-
ping can be created autonomously by the robot, by sampling colors from camera images and clustering
those (by using an Expectation-Maximization algorithm based on a mixture of Gaussians) into the most
prominent color regions (see fig. 4.1). In the course of this project, an algorithm has been implemented
[44] that can create such a mapping within seconds. As it is not in the direct focus of the thesis, its details
are presented only in the appendix (appendix B) and have been published elsewhere [44]. This mapping
is provided to the robot in the form of a lookup table.

35
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Figure 4.1: Automatic color clustering. Left: Original image. Right: Resulting color class image. The
color classes found by the EM-algorithm are listed at the right border.

The question still remains into how many color classes the color space should be split. As a starting
point, it was chosen to usem = 10 color classes, corresponding to the original number of (artificial) color
classes on the field. As an anticipation of chapter 5, empirical experiments indicated that this number can
be reduced significantly, i.e. that the minimum of two color classes can already be sufficient.

4.1.2 Sampling transition patterns from camera images
Splitting the image into these sectors involves a number of geometrical transformations to compensate
for some of the weaknesses of the vision system as indicated in appendix A. In particular, as the head
is rotatable in three degrees-of-freedom, the horizon is not necessarily horizontal in the images, but may
have any slope. Also the position of the horizon may vary, depending on the viewing direction of the head.
Moreover, the built in CMOS camera uses a rolling shutter. When the Aibo is scanning with its head,
then this results in tilted images (where the horizon is not perpendicular anymore with the up-direction).
Lastly, the Aibo camera shows a strong vignetting effect (darker colors in the image corners).

The images have discrete dimensions < w, h >=< 208, 160 >, and capture the scene with an
opening angle of FOV = 50◦. Instead of convolving the camera image ft < x, y > with a Gaussian
kernel, it has been decided to simply split it up in vertical sectors of ∆φ = 4.5◦ (see fig. 4.3). A
single sector then corresponds a vertical stripe of ∆φ · FOV −1 · w ≈ 19pixels. It should be noted that
by discretizing the sensor readings in sectors of ∆φ = 4.5◦, the implemented compass sensor has an
intrinsic discretization error of approximately half the sector width, or equivalently ∆φ/2 = 2.25◦.

As the images are typically not horizontally aligned, nor is the up-direction perpendicular, it was
necessary to implement a scanning grid that implicitly rectifies the image, while scanning it for color
class transitions. The scanning grid has a parameter called the scanning resolution < ∆x,∆y >. The
scanning algorithm projects the horizon onto the image, and then starts to initialize scan lines extending
from the horizon in up-direction. Each scanned pixel has to be color corrected (because of vignetting)
before it can be mapped on a color class using the pre-computed lookup table. If the scanner then detects
a change in color class, it increases the corresponding absolute frequency counted in z′ijt (φ). Finally, the
relative frequencies are computed by division through the sum of scanned pixels, analogously to (3.13).
The evaluation of the scanning grid has a complexity that is linear in its dimensions < w, h > and
scanning density, or equivalently < ∆x,∆y > (zijt (φ) ∈ O

(
xy · (∆x∆y)−1

)
.

The scanning resolution has initially been chosen to examine every pixel in horizontal direction and
only every 4th pixel in vertical direction (< ∆x,∆y >=< 1, 4 >), yielding a coverage of 25%. Other
resolutions have been tried, and it will be shown in chapter 5 that visual compassing even yields accurate
results with a coverage of less than 1%.



CHAPTER 4. IMPLEMENTATION 37

Figure 4.2: Visualization of the scanning grid at different resolutions. The scanning grid already com-
pensates for the current head posture and motion. The scan points are alternately displayed in white and
gray, visualizing the underlying (even and uneven) sectors. Left: Scanning resolution at 2x2. Middle:
Scanning resolution at 1x4. Right: Scanning resolution at 4x4.

4.1.3 Learning
The map m̂ can be learned efficiently by using the update rule (3.20) stated in section 3.1.6. With each
incoming image, the distribution estimates of color class transitions become more and more accurate. It is
difficult to say how often a single sector has to be seen before the distribution estimate converges, as this
depends on the amount of noise present and the complexity of the scene. Anticipating from the results
section, the time the robot needs to perceive a sector before it can be recognized robustly is about a few
seconds. At a camera frame rate of 30fps, this means that each sector is perceived around 100 times.

A full map m̂ij
(k) is then constituted of 360◦/∆φ ·m2 ·n = 40.000 integers, with an angular resolution

of ∆φ = 4.5◦, m = 10 color classes and n = 5 logarithmically-scaled histogram bins. It fits easily in a
80KB file which the robot stores after successful learning on its memory stick1.

4.2 Localization filter
Two filters have been successfully implemented: the compass filter supplies the robot with a rotational
estimate (including a variance estimate), and the multi-spot localization filter provides translational

1open-r/app/conf/panorama.dat

Figure 4.3: The robot divides virtually in sectors of ∆φ = 4.5◦. Left: Camera image with sector bound-
aries superimposed. The dominant color class transitions were displayed below each sector. Right: Vi-
sualization of a map learned at the UvA Robolab. Per sector, only the most frequent color class transition
is displayed.
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estimates to the robot.

4.2.1 Orientational filter
The orientational filter models the robot’s beliefs in form of a circular belief buffer with an angular
resolution of ∆φ′. This resolution depends on both the resolution of the sensor and the motion model.
While the compass sensor operates at a discrete resolution of ∆φ = 4.5◦, the odometry feedback is
supplied in a continuous form, but a simple computation can help to determine its magnitude. At moderate
speed, the Aibo turns a complete round (360◦) in less than 10s, a differential feedback from odometry of
360◦/ (10s · 30fps) ≈ 1◦ can be expected per frame. Therefore, an angular resolution of ∆φ′ = 1◦ has
been chosen for the belief buffer.

Subsequently, the belief update was implemented according to the update equations 3.25 and 3.26 of
the motion and sensor model, respectively.

For interactive demonstrations, the parameter λ that regulates how much of the beliefs are replaced
by the new sensor information was chosen in such a way that half of the beliefs vanished after 0.3s
((1− λ)0.3s·30fps = 0.5 ). For the compass filter experiments in chapter 5 (where a single experiment
lasted for 5s), λ was chosen much smaller, to let the filter accumulate information over a longer period of
time.

The localization filter requires per time step only the evaluation of its 360 belief cells, which is per-
formed in practically no time.

4.2.2 Translational filter
The implementation of the multi-spot grid filter primarily aimed at providing a homing skill, meaning
that the robot is able to find its way back to the center between the training spots successfully – in order to
provide a proof-of-concept that compass sensors can even be used for position localization. In the basic
setting, four spots in 1m distance around the center were selected for training, and the robot subsequently
walked back to the center after a kidnapping.

Due to the evaluation time of the scanning grid and the compass sensor, per frame only a limited
amount of compass sensors (or maps) can be evaluated simultaneously. Therefore the current imple-
mentation only selects a single training spot T (j) per frame and evaluates the current image ft given the
corresponding map m̂(j). Then the robot cycles through the learned training spots one-by-one and one
per frame.

The update rules as stated in (3.35) remain the same; what changes is that only one sensor model
p
(
ft
∣∣φ, m̂(j)

)
is evaluated at a time, yielding a new value L(h)

t , and leaving the rest untouched:

L
(i)
t =

{
maxφp

(
ft
∣∣φ, m̂(i)

)
if i = j

L
(i)
t−1 otherwise

(4.1)

The compass sensor thus evaluates each map m̂(j) at 30fps/4 = 7.5fps. It should be noted, that this has
no impact on output frame rate; the translational estimate τt is still updated at 30fps.

An identical to the rotational filter mixing parameter λ was chosen; after 0.3s, half of the belief was
replaced by the sensor update ((1− λ)0.3s·30fps = 0.5 ).

4.3 Behaviors
Several behaviors have been implemented that create, test or use the visual compass. Moreover, a but-
ton interface was added that allows the user to quickly activate one of these behaviors (like resetting,
calibrating, learning, localizing or demonstrate visual homing).
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• The calibration behavior activates the preparation phase: then the robot cycles through different
camera settings, and selects the one that is best-suited. After that, the robot starts collecting colors
and finally creates a color table.

• The single-spot learning behavior lets the robot reset its map, and then starts learning by scanning
with its head. After 5 seconds, the robot turns by 45◦, then re-estimates its current position by acti-
vating the localization behavior for 3 seconds. With the newly estimated pose, the robot iteratively
extends the compass map, until it has reached its starting position again. Including walking, the
learning behavior takes approximately 90s for a single spot. To anticipate the results of an experi-
ment in chapter 5, it turned out that the time needed for learning at each step can be reduced to less
than 1s.

• The multi-spot learning behavior lets the robot walk to each of the 4 training spots by pure
odometry. There the robot waits for 2 seconds in order to allow the user to correct its pose – which
can be off significantly, due to slippage and bad odometry. Then the robot creates a new compass
map and starts learning, using the single-spot learning behavior.

• In the localization behavior, the robot scans with its head and matches incoming images with
one or more compass maps. The localization behavior has been used for most numerical results
presented in the next chapter. For an experiment, the robot flushed its belief distribution, the mixing
(using the mixing constant λ) was completely disabled (so that nothing is forgotten). An experiment
lasted typically 5s, and after this period the robot stores the estimated heading and variance values
in a text file on the memorystick2. Optionally, the raw likelihoods of the sensor model can be
saved3.

• In the case of a single available map, the visual homing behavior lets the robot active localization
and subsequently tries to maintain the former 0◦-direction. By a tip on its back, the robot can also
be taught to maintain a different heading. In the case that four maps are available, then additionally
the translational filter is activated – providing also translational information. The robot then tries
to walk back to the center. The visual homing behavior is well-suited for live demonstrations, as it
shows intuitively the capabilities of the approach.

• Moreover, save and load behaviors have been implemented that automatically save the camera
setting, color table and compass maps to the memorystick; allowing to restart a robot with the same
settings.

4.4 Discussion
The visual compass approach is – when regarded at a higher level – comparable to approaches using
scan matching techniques for a laser scanner: typically, the distances on a full circle around the robot are
measured in steps of 1o[23]. Such a laser scan delivers an ordered set of measurements, consisting of the
distance to obstacles. One distance measure says nothing about the current location, but the complete set
of distance measurements provides a characteristic pattern.

The visual compass makes measurements on a half circle with steps of 4.5o, with as feature the
frequency of color-transitions in that sector. This frequency of color-transitions does not have to be
unique for the room, as long as a complete set of patterns (from a whole image) is unique. From a single
spot, a sector-based map can be derived that can subsequently be used for localization. When the robot
is placed somewhere in the room, it can find the orientation under which the map matches best with the

2open-r/app/conf/console.txt
3open-r/app/conf/rawlog.txt
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pattern of color-transition frequencies – the orientation with the best correspondence is selected. This
consideration indicates that SLAM algorithms that originally were designed to work with laser range
scanners could be modified to work (theoretically) also on visual input.

The visual data from the camera is reduced significantly by a feature space transformation, which
makes processing at a full-frame rate possible even on a computationally weakly-equipped robot like
the Aibo. Another interesting feature of this approach is that partial panoramas can already be used for
localization. The (imprecise) walking engine of the Aibo is therefore already supported by panoramic
localization while the robot is turning (and yet learning) on a training spot.

4.5 Summary
In this chapter, the necessary adaptions to make the compass approach work on a real robot (i.e. the Sony
Aibo) were worked out:

Compass sensor The continuous approach depicted in the previous chapter was discretized in order to
become applicable in an implementation. A few parameters have been chosen as a reference point:
an angular resolution of ∆φ = 4.5◦ was chosen, and the number of color classes was assumed to
m = 10 be a good starting point. Lastly, the scanning grid was chosen to evaluate by default 25%
of the camera image.

Localization filters The orientational filter could be implemented without adaptions. Its circular belief
grid operates at an angular resolution of ∆φ′ = 1◦, and the mixing constant λ was chosen that half
of the beliefs are replaced after 0.3s.

The translational filter uses a grid of 4 training spots to estimate the robot’s position. Due to
the limited processing power of the Aibo, it was decided to update only a single sensor model
p
(
ft
∣∣φ, m̂(j)

)
per frame, and leaving the others as they were. The filter updates its beliefs with the

same mixing rate λ as the orientational filter.

Behaviors Several behaviors have been implemented that allow the robot to calibrate and learn natural
environments autonomously. The learning behavior allows the robot to learn a map in 8 steps of
45◦. Per default, the learning time in each direction is 5s. Additionally, two localization behaviors
were created that can be used to measure and demonstrate the capabilities of the visual compass
approach. A simple button interface was implemented that allows the user to activate the most
important functions.



Chapter 5

Results

In this chapter, the performance of the visual compass approach (as implemented in chapter 4) is analyzed
in a series of empirical experiments.

In the first part, the compass functionality will be validated qualitatively in natural environments.
Additionally, the experiences gathered from public demonstrations will shortly be summarized.

Subsequently in the second part, the quantitative performance of the compass approach will be deter-
mined in a series of lab experiments: the impact of distance on the compass variance will be measured,
and the robustness with respect to controlled illumination changes is evaluated. Subsequently, the param-
eter choices of chapter 4 will be evaluated: the operational range is explored by adapting the parameter
until the compass sensor fails.

In the third part, the performance of the translational filter will be assessed qualitatively and quantita-
tively in a visual homing experiment.

Finally in the fourth part, the effective processing time of compass localization will be measured
empirically on the Sony Aibo.

5.1 Experimental setup
For the empirical experiments, the test behaviors introduced in section 4.3 have been used. The robot
therefore chose a camera setting and created a color table by clustering. Then it learned autonomously
the appearance of a room, incrementally in 8 steps of 45◦, for 5 seconds per direction. After each step,
the robot used the partial map to re-estimate its heading in order to reduce the motion noise while turning
to a minimum1.

The conducted experiments can be activated on the Aibo through its back buttons, and the result of
an experiment is mostly directly visible through the reaction of the robot (by rotating or moving itself
into the target pose). Most of the experiments also produced quantitative output (like rotational estimates,
likelihoods and computation times), that was sent via the wireless network to a connected computer or
optionally was written to the robot’s memory stick. Storing the experimental data on the memory stick
allowed an easy setup for the field experiments.

The rather raw textual output of the robot has then been processed interactively by different programs
to visualize the results in an intuitive way.

1In the earlier experiments (section 5.2), the robot was taught its environment by being aligned manually in 4 different directions
(heading north, west, south, east). For each orientation, the robot learned the panorama by turning its head for 10 seconds. All later
experiments (section 5.2-5.6) have been conducted using autonomous map learning.
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Figure 5.1: Experiment conducted in a ordinary, but brightly lit living room at a private home. The robot
was rotated manually in steps of 5◦. The robot’s heading estimates have been plotted against the true
orientation.

5.2 Orientational filter: qualitative results
The orientational filter aggregates the output of the vision module in a natural way. The orientational
filter accumulates the orientational likelihoods in a buffer consisting of 360 cells, each cell corresponding
to 1◦. In the original implementation for demonstration purposes, the filter slowly replaces old beliefs by
new readings. This has been disabled for the experiments: the buffer is flushed when a new measurement
starts, and all subsequent estimates are added in the same proportion. After the measurement interval of 5
seconds is over, the content of the buffer is evaluated as described in section 4.2.1: the belief distribution
is approximated by a Gaussian, yielding both a heading and variance estimate.

Each of the following subsections corresponds to a single environment. First the environment itself
will be described, including an account of the particular difficulties. Then the results will be presented
and (sometimes) the found curiosities will be pointed out. Finally, the found results will be compared to
what in theory could have been expected, and a brief interpretation will be given.

5.2.1 Home environment: Living room
The first presented experiment was conducted in an ordinary, but brightly lit living room at a private home.
It is ordinary insofar as it contains a variety of colorful objects at different locations. The most central spot
was chosen for map learning, and this had a mean distance of two meters to the surrounding furniture.
Although the room was exceptionally bright lit, the robot configured its camera in the slow shutter time
setting, which probably resulted in somewhat blurred images. In the course of the experiment, the robot
was rotated manually in steps of 5 degree and its estimated rotation was recorded.

In fig. 5.2.1, the error in the estimate is plotted against the true orientation: the robot is never more
off than 2◦ and the standard variance is around 7◦, which is close to the maximal theoretical resolution
∆φ/2 = 2.25◦ of the compass sensor (see section 4.1.2).

5.2.2 Office environment: DECIS Lab
The second experiment was conducted on the first floor in the DECIS Lab, in a typical office environment.
Big windows to both sides bring much daylight to the inside and let the room appear very bright. A long
corridor passes through the open-plan office, with small working islands both to the left and right. Each
working island typically accommodates four work places, one to each side.

The robot was put on the corridor on a relatively central spot, so that it could be moved along the
corridor for approximately 7 meters in both directions. The experiment was conducted in the late morning
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Figure 5.2: The first floor of the DECIS Lab in Delft has typical properties of an office environment.
The robot has been moved along a 14m long corridor passing working islands on both side. While to
the left side (towards the lift), the variance increases steadily, an interesting phenomenon was observed
to the right side: the repetitive patterns of the working islands lead to a decrease of the variance after
approximately 5m – when the robot has reached the next working island.

with the sun shining brightly.
The results have been depicted in fig. 5.2. The rotational error was lower than 10◦ for most measure-

ments. At least for the left side of the diagram, the size of the variance is slowly increasing the further the
robot is moved away. However, to the other side of the corridor, the interval increases slightly, but then
almost reaches its original value.

The reason for this decrease of uncertainty is interesting: the panorama to the right side periodically
looks the same, due to the repetitive patterns of the similarly-looking working islands. So while at first
the panorama becomes slightly distorted as the robot is moved on, the panorama repeats after around 5
meters, where the robot has reached the next working islands. This in turn leads to an decreased variance
in the rotational estimate.

Figure 5.3: Experiment conducted at the Zeeburgia outdoor soccer field in Watergraafsmeer, Amsterdam.
The robot was moved across the whole field on its primary axes. The arrows display the reported heading,
while the blue arcs around the arrow visualize the associated variance. The heading estimates point nicely
in direction of the opponent goal.

5.2.3 Outdoor soccer environment
The third experiment was performed outside on a real soccer field. The soccer field has a size of ap-
proximately 40m x 60m, and has like a typical soccer field a colorful side fence with advertisements. At
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Figure 5.4: Indoor experiment conducted at the Midsize field of the Technical University of Delft. The
results are comparable to the outdoors experiment, but have a much lower variance.

some places, grandstands with seats are installed. Around the field some trees (without leaves, because
conducted in the winter) are visible. Above and behind the trees, also the sky and some clouds can be
seen.

The robot was trained on the center spot, and then was moved along the axes both left/right and
forward/backward across the field. The robot was adjusted at all measurements with the same heading on
visual judgment.

The results are displayed in fig. 5.3. The heading estimate points as expected into the direction of
the opponent goal, while the reported variance is increasing the further the robot is moved away from the
center.

The interesting point about this is that in elongation the arrows meet in a point maybe 30 meters
behind the opponent goal. This actually corresponds to the line of trees behind the field. Such an effect
could certainly be exploited for pose triangulation (as described in appendix C).

5.2.4 Indoor Midsize field
The fourth experiment was conducted on the Midsize field in the Robolab of the Technical University of
Delft (see fig. 5.4).

The heading estimates point nicely in the direction of the opponent’s goal. The variance is much
lower than in the latter outdoor experiment. Again the arrows meet in a point approximately 1m behind
the goal, which could be exploited for pose triangulation.

5.2.5 Indoor 4-Legged field
The fifth experiment of this type was conducted in the Robolab of the Universiteit van Amsterdam. It
is situated in a small room of about 7x7 meters. On one side of the room, there are tables, chairs and
computers. The field itself has a size of 6x4 meters and therefore occupies the major surface of the room.

In principle, the experiment was conducted in the same way as the previous two. The robot was
trained in the center of the rear field half, and then the robot was moved across the field and its rotational
estimates were recorded. However, instead of only measuring along the axes, the robot was moved across
the complete rear half of the field (3m x 3m) at a resolution of approximately 33cm.

The results are displayed in fig. 5.5. All heading estimates point towards the opponent goal. Moreover,
the variances increase the further the robot gets away from the training spot.

Again the imaginary intersection point of all arrows meet in a point on the wall, slightly behind the
opponent goal. This corresponds to what can be expected from the previous two experiments.
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Figure 5.5: Exhaustive compass experiment conducted at the UvA Robolab. The heading estimates point
towards the opponent goal. Close to the training spot, the variance is relatively small, but increases
steadily the further the robot is moved away.

5.2.6 Demonstrations
Demonstrations were given in our Robolab (for example to the Dutch winners of the RoboCup junior
participants or at the Open Dag), demonstrations of panoramic localization were given at international
conventions such as the IK 20062 and at the RoboCup Open Challenge 2006. From these demonstrations,
much additional knowledge was gained about the robustness of the approach.

At the Open Challenge of the 4-Legged League at the RoboCup 2006 competitions in Bremen, the
complete approach was demonstrated within three minutes time: the robot learned autonomously the
panorama of the field. After that, the robot was repeatedly kidnapped, and had to restore its original
heading. Then all landmarks were removed, to demonstrate that the visual compass was independent of
the artificial landmarks. This proved that the compass approach was usable on a 4-Legged field under
the official circumstances as found in 4-Legged soccer competitions. This was recognized by the jury
(constituted by the team leaders), and so our approach was rated 4th out of 25 participating teams (by
which we finally won the 3rd prize of the technical challenges).

Two videos are also available on the internet3. The first one has been recorded in the UvA Library,
and shows the orientational filter. The robot has been trained on one spot of that room in advance, and
the visual homing behavior demonstrates that the robot is able to restore and maintain a certain heading
(after being kidnapped). It is also shown, that the compass does not only work on the training spot,
but also on other places. Furthermore, the robot is taught to orientate in a different directions, that it
subsequently tries to maintain. The second video has been recorded in the 4-Legged Robolab, and shows
the functioning of visual homing with four training spots. The robot is kidnapped repeatedly and finds
confidently its way back to the center. It is also demonstrated that the robot is independent of the soccer
landmarks around the field: first, the landmarks are removed, and later put back in completely wrong
places – with the robot walking confidently back to the center.

5.3 Orientational filter: quantitative results w.r.t. variables
In the previous section, the results of the compass experiments were presented and discussed in qualitative
way. The focus of this section is to assess quantitative measures that describe the performance of the
compass approach with respect to certain variables: the effect of the distance of the robot to its training

2Interdisciplinary College, an annual one-week spring school on Artificial Intelligence held in Günne, Germany (http://
www.ik2006.de)

3http://student.science.uva.nl/˜jsturm/resources.html

http://www.ik2006.de
http://www.ik2006.de
http://student.science.uva.nl/~jsturm/resources.html
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Figure 5.6: Quantitative results of orientation filter experiments. Left: True error and variance plotted
versus the distance from the training spot. Right: The robustness against environment changes has been
tested by switching of so many ceiling spots until compass localization fails.

spot will be investigated, and the influence of controlled illumination changes will be measured. All of
these experiments were conducted at the UvA Robolab.

5.3.1 Variance w.r.t. distance
The results of the compass experiment (presented in section 5.2.5) are displayed in fig. 5.6(left) in nu-
merical representation: the average of the true error in rotational estimate indeed only increases slightly,
and exceeds the 10◦ mark only after the robot is more than 2m away from its training spot. The average
variance crosses approximately at this point the 50◦ mark.

5.3.2 Variance w.r.t. changing environmental conditions
To investigate the robustness of the approach against environmental changes, the spotlights were turned
off one by one after training to see when and how the compass localization would fail.

The results are presented in fig. 5.6(right): under training circumstances, both the rotational estimate
are as exact as they can be, and the variance is rather sharp. Switching off some of the spotlights increases
the variance again only insignificantly. After two third of the lamps have been switched off, the variance
estimates suddenly increase to around 90 degrees, which should probably be interpreted as a mismatch,
because turning off even more lights (until complete darkness) does not make this result any worse.

In theory, it is clear that the algorithm is able to handle a certain proportion of noise. Illumination
changes until a certain degree can then also considered as uniform noise, with no direct influence on the
variance – as all directions are affected in the same way. At a certain point, this noise outbalances, and
localization is not possible anymore.

5.4 Orientational filter: quantitative results w.r.t. parameters
In this section, the influence of the algorithm’s parameters on both the performance as well as the compu-
tation time are investigated. The parameters will be adapted so far that the compass approach is brought
to its limits: the scanning resolution < ∆x,∆y > will be reduced, the number of color classes m will be
lowered and the training time will be shortened as far as possible. The corresponding experiments have
been carried out in the UvA Robolab.
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Figure 5.7: Null hypothesis: the green lines show the measurement curves of the the experiment with
unchanged parameters. For each position, the mean and variance were computed and visualized in the
diagram by the green area.

In each of the following experiments, the robot created autonomously a map at the center of the field
and was then moved along the center line for 3m in 25cm steps. Each single experiment thus consisted of
13 heading and variance measurements. As the heading was already found to be very stable (see fig. 5.6),
in the subsequent experiments the variance is visualized as it gives a good impression of the orientational
filter’s certainty.

5.4.1 Null hypothesis
As every time a slightly different color table is created and the generated maps rely on this color table,
the maps do not even approximate the same underlying distributions. Therefore, a null experiment was
carried out to determine the natural variance of the probabilistic compass approach.

The same experiment was repeated 3 times with 2 different robots (see fig. 5.4.1), yielding 6 mea-
surement curves. Of these curves, the mean and variance was computed and visualized in the image.
All curves look rather similar: variance is lowest at the training spot at the center (around 5◦), and
monotonously increasing to both ends. The variance increases much faster to the left side (≈ 50◦ at
x = −1.50m) than to the right side (≈ 15◦ at x = +1.50m). The reason for this is presumably that in
the Robolab to the right side only a white wall is seen by the robot (yielding good matches resulting in
low variance) while to the left side tables and chairs seemingly disturb the trained panorama the closer
the robot comes.

5.4.2 Variance w.r.t. number of colors
Given this null hypothesis, the influence of the number of color classes m on the variance was evaluated.

From a theoretical point of view, the choice of the number of color classes m has several effects: first
of all, the computation times of many parts of the algorithm strongly depend on this number. Secondly,
the more color classes are used, the more information the model contains, and therefore the bigger the
map gets.

Many experiments with different numbers of color classes were run, but none of them let the compass
filter fail to find the right orientation. Therefore, only the results of the smallest possible number of color
classes (m = 2) is depicted in fig. 5.4.2(top). The measured variances however show certainly that the
reduction of the color classes has an impact on the resulting certainty.

These results are rather unexpected and seriously call into question both the initial assumption that
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Figure 5.8: Experiments on effect of the number of color classes. Top: The number of color classes was
reduced to smallest possible number m = 2. Although the measurement curves look significantly differ-
ent w.r.t. the null hypothesis, the compass filter successfully found the correct headings. Bottom: To
reduce the sensor model further, only the diagonal of the transition pattern zii(φ) (and the corresponding
diagonal of the map m̂ii) was evaluated. The smallest number of color classes for successful operation of
the visual compass was then found to be m = 3.

several color classes are needed and that the emphasis of the feature space should be placed onto the color
class transitions. Rather, these results indicate that the feature space might have been chosen too big, and
therefore raise the question to how much it can be reduced.

In order to reduce the feature space even further, instead of all transitions patterns zij(φ) only the
frequencies of the individual color classes zii(φ) can be used (which corresponds to the diagonal of the
transition pattern z(φ)). The feature space is thereby reduced by the factor m.

Accordingly, a new sensor model only evaluates the diagonal of the transition pattern zii(φ) and the
diagonal of the map m̂ii(φ).

With this modified sensor model, the experiment was repeated. This time, compass localization failed
with only m = 2 color classes. However, robust localization was already achieved with m = 3 color
classes. The corresponding measurements are presented in Fig. 5.4.2(bottom).

These results are quite amazing and show that the visual compass approach can be scaled down
seriously: the reduction of the number of color classes by a factor of 5 results in a reduction of the com-
putational time for learning and sensor model evaluation by factor 52 = 25 (as p

(
z
∣∣m(φ)

)
∈ O

(
m2 · n

)
,

see section 3.1.3).
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Figure 5.9: In this experiment, the effect of different scanning grid resolutions < ∆x,∆y > was evalu-
ated. From these results, it can be concluded that the original scanning resolution of < 1, 4 > can safely
be increased by factor 16 – corresponding to the evaluation of only 40 pixels per sector.

5.4.3 Variance w.r.t. scanning resolution
Correspondingly, the effect of the scanning resolution on the variance was evaluated. The scanning
resolution determines how much of the raw image is actually scanned in order to create the feature vectors.
The initial chosen parameter < ∆x,∆y >=< 1, 4 > scan of each vertical line every 4th pixel, resulting
in a 25% coverage.

Interestingly, the scanning distance could be enlarged significantly before a change in the variance
measurements became visible (see fig. 5.9). Increasing the scanning resolution by factor 2, 4, 8 and 16
were without impairment of the heading and variance estimates. Compass localization failed for the first
time at a scanning resolution of < ∆x,∆y >=< 16, 8 >.

This means that the scanning grid could – if desired – safely be scaled down by factor 16, speeding
up the grid evaluation by the same factor (zijt (φ) ∈ O

(
xy · (∆x∆y)−1

)
, see section 4.1.2). This proves

that the evaluation of only 40 pixels per sector is sufficient for the visual compass approach to work.

5.4.4 Variance w.r.t. learning time
Finally, the learning time (of originally 5s) was reduced to find the lower bound. Surprisingly, it turned
out that the learning time was of lesser influence than expected: even after it has been reduced by 80% (or
equivalently, to 1s), no significant change in the measurements could be detected (see fig. 5.4.4). Learning
times lower than 1s are not reasonable, because a single head scan of the robot approximately takes 1s.
The robot then perceives every direction of the scene approximately approximately 50◦/230◦ · 30fps =
6.5 times per step and iteratively in total 50◦/360◦ · 30fps = 33 times until learning is complete. With a
different learning behavior, it could even be possible to scale the (total) learning time down even further.

5.5 Orientational filter: computation time
Finally, the relationship between various parameters and the actual computation time of the implemen-
tation was measured. The two major processing steps (transition pattern sampling and sensor model
evaluation) were evaluated separately.

First, the runtime of the transition pattern sampling zijt (φ) from the image has been profiled. Fig. 5.11
shows that the processing time needed depends almost linearly on the number of scanned pixels: using



CHAPTER 5. RESULTS 50

Figure 5.10: The learning time of originally 5s per step was reduced by 80% to 1s. The resulting variance
curve shows no difference compared to the null hypothesis.

all pixels for the conversion takes around 8ms, while in the default setting (25%), only 3ms are spent
to analyze a single image. Much weaker, the feature space conversion also depends on the number of
color classes: the size of the transition pattern depends (quadratic) on the number of color classes, and
therefore takes longer for the robot to access (while clearing and filling). These results correspond to the
theoretical expectations (zijt (φ) ∈ O

(
xy · (∆x∆y)−1

)
, see section 4.1.2).

Then, the time needed for learning the map was experimentally determined. The measured runtimes
are shown in fig. 5.12. It can be seen that the processing time develops quadratic with the number of
color classes. This is also in line with the theoretical expectations (as m̂t(ft) ∈ O

(
m2 · n ·∆φ−1

)
, see

section 3.1.6).
Lastly, the processing time was measured for sensor model evaluation (see also fig. 5.12). The red

curve shows the resulting processing time when the sensor model as defined in (3.24) is fully evaluated.
The time needed for evaluation depends then quadratically on the number of colors (∆φ: (p

(
ft
∣∣φ,m) ∈

O
(
m2 · n ·∆φ−1

)
), see section 3.1.5). However, a huge number of color class transitions is relatively

unlikely and therefore can be evaluated in the sensor model faster by partial map pre-caching 4. The

4These zero-distributions (e.g., distributions with
Pn−1

k=1 mij
(k)

� mij
(n)

) can be pre-cached after learning by a mark in a bit
mask, and subsequently be left out in the evaluation of (3.24) – when the sensor measurement also reports the most infrequent bin

Figure 5.11: Measured computation times of the transition pattern sampling, with respect to the number
of color classes m left image) and the scanning resolution < ∆x,∆y >

(right image).
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Figure 5.12: Measured computation times of map learning m̂(φ) (left image) and sensor model evaluation
p
(
z
∣∣m(φ)

)
(right image).

resulting processing time after this approximation is indicated by the blue line: it can be seen that the
processing time then only rises linearly in the number of colors, which constitutes a great saving.

The computational time needed for the orientational filter turned out to take no time (below 0.1ms),
and is therefore not interesting.

In sum, the total processing time with default parameters averages to about 5ms for learning and
11ms for matching a frame on a standard Sony Aibo. This is fast when compared to the original image
processing module of the Dutch Aibo Team which took around 17ms per frame, and the particle filter
which consumed another 6ms when using the same hardware.

5.6 Translational filter
Finally, experiments were conducted to examine the functionality and performance of the translational
filter.

A visual homing experiment was carried out on the soccer field of our Robolab. The kickoff circle
was chosen as the target spot, and the robot learned the panorama of four orthogonal spots around the
center in the distance of 1 meter autonomously. Although the robot walked to the training spots using the
latest map as in its orientational filter to support odometry, the robot sometimes got a bit astray and then
had to be aligned manually, before the training on the next spot started. Finally, the robot walked back to
the target spot in order to perform a normalization of the individual likelihoods (so that unity likelihoods
L

(i)
t = 1 were reported from all compass sensors at the target spot).

After learning was complete, the robot was kidnapped and placed somewhere randomly on the field
(with random orientation). From there, the robot had to walk back to the center using both the orien-
tational and translational filter, and the position τt where the robot stopped (for longer than 5 seconds)
was marked with a sticker on the carpet. In total, 33 kidnappings have been executed and the reached
positions have been measured.

5.6.1 Qualitative results
The reached positions τt are plotted in fig. 5.13(left).

n (zij(φ) ≤ 2−(n−1)). After evaluation of the product, the c omitted factors can be multiplied as a single approximated factor
2−(n−1)c to the intermediate sensor posterior. The interested reader can inspect this approximation in the DoxyGen documentation
or directly in the source code: http://www.science.uva.nl/˜jsturm/resources.html

http://www.science.uva.nl/~jsturm/resources.html
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Figure 5.13: Experiments of translational filtering. Left: Measured positions in a visual homing experi-
ment. The four training spots are marked with a yellow cross. The blue dots correspond to the positions
where the robot stopped. Right: Reported likelihoods L(i)

t

(
ft
∣∣m(i)

)
when the robot is moved across a

grid with a resolution of 50cm. The robot was trained at a spot T = (100cm 0cm)T .

In most cases the robot stopped close to the target spot. However, it can also be seen that the robot
walked (in average) to a spot slightly behind and right to the center spot. Finally, because not visible in
the graph, it has to be stated that the robot never left the field or stopped on a point outside the displayed
area.

5.6.2 Quantitative results
The measured positions τt of this experiment can also be expressed numerically, by computing their
statistical mean and variance. The average position where the robot stopped can then be expressed as
mean τt =

(
−22cm +12cm

)T
with a variance of var τt =

(
17cm 15cm

)T
A standard derivation in this magnitude is acceptable when compared to other techniques. The Dutch

Aibo Team [49] for example reports a standard derivation of 13.5cm. It should be noted however, that in
the current state of the translational filter, visual homing is only possible to a single (central) spot, while
other localization approaches directly yield a positional estimate for each position of the field.

In order to be able to get more than a qualitative estimate on the current position even for other spots
than the center, it would be necessary to gain more insight in the kind of shape of the likelihoods when
the robot is moved away from the training spot (see fig. 5.13(right)).

It remains a problem to interpret the likelihoods more precisely in order to deduce the robot’s absolute
position. In the figure, a monotonic decrease in all directions exists. However, it is also visible that this
decrease in the likelihoods does not seem to have a linear shape. Therefore, in order to achieve full
translational localization it would be necessary to find ways that link the likelihoods more accurately to
the robot’s distance.

The systematic derivation to the bottom right can be interpreted in such a way that the likelihoods of
the individual sensor models (or maps) do not decrease equally fast; the likelihood normalization on only
a single spot does not seem to be sufficient.

Considering these results, it can be concluded that the visual compass approach can in principle be
used for translational localization. Several aspects remain for further research.
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5.7 Summary
In this chapter, the empirical experiments conducted with the visual compass approach have been de-
scribed and the measured results have been analyzed. Thereby, a good overview of the characteristics of
the approach could be established:

• The qualitative results prove that the visual compass approach can supply a mobile robot with
robust heading estimates. The experiments have been conducted in a broad spectrum of natural
environments (like a living room, a office in daylight and on an outdoor soccer field). Moreover, of
the given demonstrations a certain robustness can even be asserted to the visual compass approach
in dynamic environments.

• Subsequently quantitative results were presented from experiments conducted in the Robolab.
The heading estimates showed an accuracy better than 12◦ ± 5◦, even after the robot was moved
away for more than 2m from the original training spot. Secondly, the influence of illumination
changes was examined under controlled circumstances. The ceiling spotlights were turned off one-
by-one, and only after more than half of the spotlights were switched off, the compass approach
began to fail (indicated by an increased variance).

• Then the parameter choices of chapter 4 were evaluated. First, a null experiment was conducted
to determine the natural variance of the experiment under unchanged conditions. Subsequently,
each parameter was changed so far that the compass approach was brought to its limits. Thereby,
surprising insights were gained: the number of color classes could be seriously reduced. Addition-
ally, a reduction of the coverage by factor 16 still yielded comparable results. Finally, it was shown
that the learning time can also significantly be reduced: the original 5s were stepwise reduced to
the practical lower bound of 1s, and no impact on the variance estimate could be detected.

• The measurements of the required computation times prove the visual compass approach to be
efficient. It runs (with the initial parameter) set easily in real-time on the moderately-equipped Sony
Aibo. The parameters allow the algorithm to be scaled in many directions: so the angular resolution
could be increased if a better camera would be available. Additionally, the empirical parameter
evaluation shows that the computational effort can be reduced in the order of one magnitude.

• Lastly, the translational filter (using 4 training spots at a distance of 1m from the center spot) was
tested in a visual homing experiment. The robot could return in all cases back to the center.
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Chapter 6

Conclusions

In this chapter, the content of the thesis will be summarized and discussed. In particular, this means
that the research question will be revisited and the actually achieved results will be presented in short
propositions along with references to the experiments that validated these propositions. Subsequently, it
will be discussed to which extent my approach can contribute to specific problems in particular and to
the field of mobile robotics in general. After that, the achievements will be put into perspective to other
solutions of related work to point out the novel aspects. Finally, several interesting directions for future
research based on my own research will be motivated.

6.1 The answer to the research question
As stated in the thesis goals in section 1.4, this Master’s thesis project was intended to find an alternative
approach for mobile robot localization particularly applicable in natural environments. The approach was
designed for robots equipped with a (scanning) camera as their main sensor and that have only moderate
hardware resources at their disposal. Additional emphasis was put on the demand that the robot should
be able to learn quickly about new and previously unknown environments and to do so as autonomously
as possible.

In what follows, the most important features of my approach will be summarized in short propositions,
and will be subsequently discussed and related to the validating experiments.

1. The visual compass approach can supply a mobile robot with accurate heading information.

2. Visual compassing is applicable in a vast variety of different environments.

3. The reported heading information is robust to environmental changes.

4. Robots using visual compassing can learn quickly (and almost autonomously) to orientate in new
environments.

5. Multi-compass localization can provide (absolute) positional information.

6. The visual compass algorithm is efficient and economic; it can be executed in real-time on-board a
mobile robot, and even works with low-quality cameras.

Proposition one states that the visual compass approach provides accurate heading information. This
is proven in a two-fold way: on the training spot itself, the algorithm reaches its optimal angular resolution
(living room experiment, section 5.2.1) corresponding to an error of less than 2◦ (or equivalently, half of
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the angular resolution parameter ∆φ). This error subsequently increases only very slightly when the
robot is moved away from the training spot (section 5.3.1): the average rotational error remains below
10◦ even after the robot has been displaced further than 2m away from the training spot. Along with the
rotational estimate, a confidence interval is computed, which is an indicator for the uncertainty (or the
level of mismatch). It increases monotonously the further the robot moves away from its training spot.
Finally, compass information is valuable for a mobile robot; a soccer playing robot could easily shoot the
ball towards the opponent’s goal simply by using the compass estimates as depicted in the magnetic field
diagrams (section 5.2.3, 5.2.4 and 5.2.5).

Proposition two is validated by the fact that the visual compass experiments were conducted in a
variety of different environments, like outdoors on a soccer field, or indoors in human environments like
at home or at an office with either daylight from outside or clean laboratory conditions like in our Robolab.
The measured data of these extraordinarily different locations still yielded comparable results (as far as a
soccer field of 4m width is comparable to an office corridor of 14m length or an outdoor soccer field of
60m width; see section section 5.2.2, 5.2.3 and 5.2.5).

The approach’s robustness as claimed in proposition three has been proven in a two-fold way. On the
one hand, the daylight/outdoor experiments (section section 5.2.2 and 5.2.3) showed that the measure-
ments of the visual compass were robust enough to cope easily with (smaller) changes in illumination due
to a constantly changing angle of incidence of the sunlight and/or moving clouds. On the other hand, the
robustness experiment conducted at the Robolab (section 5.3.2) certainly showed that turning off some
of the lighting or changing the environment by removing the beacons was not of much influence on the
compass accuracy (and its associated confidence).

All of the quantitative results of the visual compass experiments indicated a strong relationship be-
tween the distance of the robot from its training spot and the associated likelihoods (as expressed by
proposition five). In section 5.6 showed how this monotonic increase can be exploited in order to obtain
absolute positional information and to let the robot confidently find its way back to the center spot after a
kidnap (visual homing).

The learning process (as addressed in proposition four) consists of multiple steps, in which the robot
first is prepared to the lighting and color situation, before it starts map learning at one or multiple spots.
The camera and color calibration work in a totally stable and fully autonomous way (taking around 40s
to complete, appendix B), and the subsequent map learning is relatively quick (90s per spot, section 4.3)
and also works without human intervention. A remarkable characteristic is also that a partially learned
map can (and actually is) already used to support (rotational) walking, as turning on four legs is extremely
prone to slippage or even obstruction. For multi-spot localization, the robot has to reach the four training
spots by walking, where it is even more prone to slippage and mostly requires a manual correction of the
robot’s pose (once for each spot). This is why proposition four calls the learning process to be only almost
autonomous. However, if the robot’s body odometry was more robust in the first place, learning could
surely take place fully autonomously. In sum , the robot needs only minimal human assistance when put
into a new environment for learning.

Finally, it has been proven that the hardware requirements necessary for the visual compass algorithm
are relatively low (section 5.5). The Aibos used for testing have only a low-quality webcam and already
outdated processing power. On this hardware, a single camera frame can be processed in less than 4ms for
learning and 13ms for localization. It is obvious that future robots will easily outperform the capabilities
of the Aibo, therefore in many cases it would be possible to equip visually-guided robots with this form
of visual compassing.
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6.2 Applicability of the concept
In this section, the main contributions of this research attained for the field of mobile robotics are summed
up in order to point out to what extent visual compassing can be useful to other researchers or research
fields.

Above all, the visual compass approach is simple and intuitive. Several parameters have been pointed
out that can be used to scale the algorithm to one’s needs. Low hardware requirements make it applicable
to a broad range of mobile robots. The ability to function in natural environments and to rely only on
a scanning camera certainly points in the right direction for future research within the field of mobile
robotics. By learning iteratively new spots, it would even be thinkable that a robot creates a mental map
of even larger areas that allow it safe navigation.

The produced heading information can either be used by robots just for orientation purposes, or could
serve higher developed robots as a low-level intuition about their current heading. The experiments on
multi-compass localization can be regarded as a proof-of-concept that visual compassing can be used
additionally to give robots an indication that a particular spot has already been visited.

The implementation of this approach serves as a practical contribution. Proven to work and already
integrated in the soccer framework used by the Dutch Aibo Team it stands as a promising basis to be
built upon by succeeding projects. In this line, it is interesting to know that a fourth-year project has
already re-used the camera and color calibration part of my approach with the aim to make manual color
calibration for playing soccer superfluous [44]. Finally, my implementation has already been published
according to the open source agreement of the 4-Legged league meaning that it can be easily adapted by
others. Especially the teams building upon the German Team code (like the Italian, Turkish, and Chinese
teams) can seamlessly adopt the visual compass algorithm into their existing source code.

To summarize, the presented approach for a visual compass has been proven to be a lightweight and
yet powerful approach to localization. The applicability has been validated by numerous experiments.
The availability of a reference implementation makes it attractive for succeeding projects to further ex-
plore this class of approaches.

6.3 Discussion
The way how the visual compass approach derives heading information is relatively unique. Of course
there are approaches that have certain similarities with my approach, but they differ in other aspects.
Therefore it is quite difficult to compare the results directly with the work of others.

In this subsection, the visual compass approach will be discussed comprehensively. The approach will
be discussed along the similarities (and dissimilarities) with respect to some of the approaches already
presented in chapter 1.

In what follows now, the characteristics of the visual compass (as summarized in the answer to the
research question, section 6.1) will be compared to several existing approaches which already have been
presented in section 1.3.

First of all, a natural comparison is the original soccer localization module [49] of the Dutch Aibo
Team itself. Of course it relies both on artificial landmarks as well as manual color calibration, and there-
fore can be categorized as a class of feature-based approaches (and thus is opposite to the visual compass
approach). However, the resulting performance turns out to be comparable: the rotational accuracy of the
Dutch Aibo Team soccer code was measured to be around 5◦ , while its positional accuracy was within
13.5cm. The relatively complex algorithm resulted in a reduced frame rate of (sub-optimal) 17.2fps.
All in all, and neglecting all the differences between both approaches, the resulting accuracies are of
comparable magnitude.
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The subsequently presented approaches use panoramic cameras, and therefore allow the robot to take
360◦-panorama pictures.

The visual compass as described in [14, 15] yields comparable results (error below 10◦), but shows a
long-term drift as it for each time only compares the two previous images from the camera. Interesting
about this research is the comparison in accuracy with a traditional magnetic compass that was easily
outperformed by their method: magnetic compasses rendered to be useless in their indoor experiments,
and to be comparable with their results from outdoors. Therefore, the conclusion can be drawn that
my form a visual compassing also outperforms a traditional magnetic compass. Moreover, the prosed
distance measure is computationally very expensive, and so the visual compass could only be evaluated
at 2fps.

Another approach is described in [shopping-assistant]. Incoming images from a panoramic camera
are split into sectors. Only the sector’s average color is subsequently used for learning and matching1.
However, instead of relying on a single (or small number) of training spot(s), they used a set of thousands
of training images associated with the true pose, that were shot beforehand on long tours through the
test environment (a small supermarket). The achieved accuracy was relatively low, namely never better
than 31cm, but on average the localization error was around 50cm. Although their approach is probably
lightweight enough to be used in real-time on a mobile robot, the evaluation was done offline (using the
datasets).

To finalize this matter, two novel approaches coming from the 4-Legged league will be discussed.
Both of them have been demonstrated at the open challenge of the RoboCup 2006 competitions, but for
both no technical reports have yet been published. Tsinghua Hephaestus from China demonstrated that
their robots could localize on only the field lines and the blue and yellow goals, while Wright Eagle (also
from China) presented an approach where the robots could localize on a totally symmetrical field with two
yellow goals. The robots removed ambiguity collaboratively by seeing each other, communicating their
positions and fuzzy reasoning. Although these approaches build upon the localization of field lines (and
teammates), they show that different teams in the 4-Legged league independently developed techniques
applicable to landmark-free localization in the near future of the RoboCup competitions.

6.4 Future research
In this final subsection, possible directions for future research will be proposed. As there are already
two officially announced succeeding projects that build on the visual compass approach, they will be
described first. Then several extensions will be proposed to the visual compassing approach.

The two announced projects are:

• A DOAS project group 2 is supposed to start in January 2007 to adapt the soccer code of 2007 such
that it complies with the new 4-Legged field rules (only two flags instead of four). Half of the group
will focus on how to adapt the original code, whereas the other half will evaluate to what extent a
full switch to compass localization is possible.

• The proposal for a Master’s project 3 aims at combining the visual compass approach with the
technique of manifolds from the SLAM domain (i.e. the RoboCup Virtual Robot league). A mobile
robot that explores a new environment could use a visual compass to stabilize its heading estimate.
After the the variance in the estimate increases, the robot could decide to learn a new map (or a

1Note that this in a way corresponds to the case when my approach uses instead of transition frequencies only the frequencies
of plain colors (see section 5.4.2)

2Project related to the master course ”Design and Organization of Autonomous Systems given at the UvA, http://www.
science.uva.nl/˜arnoud/education/DOAS/

3with the title ”Panoramic Localization, http://www.science.uva.nl/research/ias/masterProjects/
PanoramicManifold.html

http://www.science.uva.nl/~arnoud/education/DOAS/
http://www.science.uva.nl/~arnoud/education/DOAS/
http://www.science.uva.nl/research/ias/masterProjects/PanoramicManifold.html
http://www.science.uva.nl/research/ias/masterProjects/PanoramicManifold.html
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so-called patch of a manifold). It would even be thinkable to mutually compute distances between
the stored manifolds, to detect circles on the path and to close loops. In this way, a topological map
could be created that would allow a visually-guided robot to explore and navigate through large
environments.

Beyond these proposals, other interesting trajectories seem promising:

• For one thing, the environment is assumed to be static. However, natural environments tend to
change over time and therefore have to be considered to be dynamic. In this sense, it would be a
challenge to think about ways how a robot could update its correspondingly maps in a dynamical
fashion. Of course the robot should not be mistaken when updating the map, which could for
example be guaranteed by monitoring the likelihood values before and after the frame that is chosen
to be used for an update. Anyhow, it is probable that through constant updates, the map will ”wash
out after a while, so attention must be paid towards mechanisms to occasionally sharpen the map
by somehow increasing the contrast. Maybe the primary map has to be kept in the background to
avoid rotationally drift in the long run.

The grid localization experiment has shown that visual compassing can indeed even be used for po-
sitional localization. However, for other applications like playing soccer, the availability of absolute
localization is mandatory. Some ideas for extensions are:

• Instead of the simple grid filter, typical approaches like Kalman or particle filters could be used
for localization. Those approaches also incorporate odometry information, and therefore integrate
sensor and body readings better over time. Each training spot can simply be considered as another
percept where classical filters can be attached to. With these filters, it also becomes easier to
integrate other percepts. Particularly in the robot soccer domain field lines are interesting: they
are easy to detect, as they are realized as clear white stripes on a green floor. Several teams of the
4-Legged league have developed approaches to localization that can even extract different types
of field lines, like crossings and corners, which can also serve well as an extra feature. These
approaches can be combined with the visual compass approach to either remove ambiguities or
even help with (qualitative) positional estimation.

• A totally different idea has been sketched in appendix C: this approach exploits further the projec-
tive distortions that occur (small) rooms. The only prerequisites are two training spots that have
a known distance, and because the visual compasses then would report slightly different heading
estimates (due to different projective distortions in the learned maps), the robot could triangulate
its position from this angular disparity directly. The idea seems simple and promising, so it could
be an interesting project for further elaboration. An implementation could prove the validity of this
approach in a series of empirical experiments.

• While the aforementioned proposition aims at establishing absolute localization either by better
interpolation or a finer grid, it could also be attractive to focus more on goal-driven behavior and
therefore experiment with direct navigation (which then falls in the category of active localization).
The basis of this idea is the insight that in most practical cases absolute localization is only an
intermediate requirement for the purpose of navigating a robot towards a certain target pose. For
example in the case of a soccer playing robot, from a task-dependent point of view, only absolute
localization is necessary for a small set of points on the field: the goal-keeper for example has to be
able to position himself as central as possible in the goal, while the striker needs to position himself
behind the kickoff circle before the game starts. Moreover, both robots need a rough estimate of
how far away they are from their target point (the goal-keeper should not leave his goal box too
much while interacting with an attacking robot, and the striker should not leave the soccer field
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while looking for the ball). They could detect this from the likelihoods. Sometimes the robots then
can actively decide to walk back to their target point (the keeper could reposition himself after ball
interaction, and the striker could decide to walk back to the center if he has looked for the ball too
long). This approach, would integrate two distinct research areas (localization and navigation) with
the aim to create a holomonic solution with a new problem factorization in mobile robotics.

With a working implementation at one’s fingertips, many of the suggested directions for future re-
search on visual compassing can be explored with low effort. However, a complete re-implementation
would maybe also reveal legacies and streamline the approach further. Anyhow, I can say that I am very
curious whether new ideas and projects will arise from this approach.
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Appendix A

The Sony Aibo as a platform for
robotics research

A preliminary step is to find a suitable robot platform for which the new approach can be designed and on
which it can be implemented. A natural choice is to use the Sony Aibo, which has been used successfully
for years in the 4-legged soccer competitions.

In this chapter, the Sony Aibo robot is thoroughly evaluated as a robotic platform. Its hardware
equipment is itemized, and the available software frameworks are examined. The body motion is tested,
in order to get an estimate of the accuracy of both walking and turning. A close look is taken at the
pictures captured by the Aibo’s internal camera, and the specific problems arising from the fact that the
camera is installed in the robot’s nose are illustrated. Moreover, some preliminary experiments were
conducted to get an impression of the computational power of the Aibo in practice.

Moreover, aspects like the availability and the existence of experience is examined at the end of this
chapter.

A.1 The Sony Aibo robot
The Aibo is an entertainment robot developed and sold by Sony since the late 90’s. The design and
equipment of the Aibo has changed over the years, but the underlying idea stayed the same: the Aibo
is a entertainment dog, originally intended as a playing companion for children. The newest model is
the ERS7-3M. Unfortunately, the production of new Aibos (and all other robotic research) has been
abandoned by Sony in January 2006.

A standing Aibo is both around 30 centimeters tall and long and weights around 2 kilogram. Twenty
step motors allow the Aibo to perform a broad spectrum of motions. Next to the main servos in its legs
and the neck, the Aibo is able to open its mouth, waggle its tail and its ears. Its face contains an array of
colored LEDs that are used by the original software to express emotions. Sensors in the servos allow the
Aibo to detect when it gets stuck (or is being held too tightly by a child) such that it can protect itself by
disengaging its actuators.

The Aibo has lots of other sensors: next to the camera installed in its nose that the Aibo uses for
finding its ball and toy bone, it has stereo microphones in its ears for voice commands or playing games
with its owner. Acceleration sensors reveal the configuration of the Aibo’s head and allow it for example
to look parallel to the ground. Two distance sensors (one in the robot’s chest and one in its head) are used
by the original software to prevent the Aibo from falling off a table. After all, the Aibo is still intended
for a home environment which – in general – can be dangerous for a robot. Furthermore, the Aibo can
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Figure A.1: Sony’s Aibo entertainment robot, series ERS7. Left: The Aibo’s default software (Aibo
Mind) lets the Aibo play with its pink bone. Right: Soccer playing Aibos of the Dutch Aibo Team
(picture taken at the Cinekids Festival 2005, Amsterdam).

feel whether there is ground under its feet. Buttons in its head and on its back can be used for simple user
interaction.

Moreover, in its waist, the Aibo carries a fully equipped (once) state-of-the-art internal computer: a
64-bit RISC processor with 567 MHz with 64 MB of RAM. The program is supplied on a 8, 16 or 32 MB
memory stick. An integrated 802.11b wireless card provides network connectivity with other robots or a
PC in a simple way using the TCP/IP protocol.

At a price of around 2000 Euro, the Aibo as a toy has only been attractive for a small group of wealthy
parents and their children. However, the technical equipment of an Aibo permits for much more: in 2001,
Sony released the OPEN-R software development kit to the general public, which opened the Aibo as
general playground platform for robotic scientists. Since then, the Aibo gained a growing interest from
many research groups. The advantages of buying a ready-made robot dominate the benefits of developing
own robots by far: Aibos are easy to acquire and maintain (by the implied warranty and the existence of
several repair centers all over the world), particularly robust (because of its design as a toy), and contain
a variety of sensors and actuators.

A.2 The software framework
On the Aibo Sony uses a multitasking operating system called Aperios. The OPEN-R software develop-
ment kit contains a set of libraries that allow the user-space programs to issue system calls that access
the robot’s sensors and actuators. The data from and to the robot is at this level completely raw and
unprocessed. For example, conversion algorithms are necessary to translate the control values (and the
feedback PID values of the motors) into angles and vice versa. Furthermore, it is necessary to carefully
obey certain acceleration limits, in order not to demolish the motors.

Although programming directly on this level of the operating system is possible, the development
time can be reduced significantly by using one of the available frameworks that already come with certain
abstractions.

The popular Tekkotsu framework is an event-driven extension for the OPEN-R libraries that already
contains a lot of basic functions. The event model encourages the development of small behavioral
modules, and already contains a number of primitive modules that can be combined with own modules.
For example, Tekkotsu already contains modules that can segment incoming images into blobs. Primary
movements, such as walking and turning, are already available. With these functions at hand, it is easy to,
for example, let the Aibo follow an orange ball. It is therefore a preferred basis for educational projects,
as the learning curve is rather steep, and in very little time impressive programs can be written. However,
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the debugging possibilities of Tekkotsu are rather limited.
Debugging facilities are crucial to robotic software development. Writing these (offline) test routines

for all developed algorithms on the PC requires a lot of extra time. In most cases, it is also necessary
to test the implemented algorithms after successful dry-runs directly on the robot. For such online tests,
it is useful when the robot can be monitored and controlled remotely in an convenient way. Particularly
difficult are bugs due to which the Aibo crashes in one way or the other. As soon as interprocess or
eventually the wireless communication breaks down, it is hard to guess where a fatal error originated
from. Such errors can have many reasons, infinite loops, buffer overflows, or other exceptions (such as a
division by zero). In some cases, only good guessing or special developer’s tools (like a serial cable) can
help out.

The Tekkotsu framework does not contain inherent possibilities for local and remote debugging. It is
therefore necessary to develop particular test programs on a PC in parallel. The same holds for monitoring
and control applications that have to be programmed alongside the code for the Aibo. Typically, Tekkotsu
developers implement Java control interfaces for this purpose. The Software Project 1 2006 in Utrecht
used Tekkotsu for the implementation of the new goal challenge in 2006.

The featured framework of the Dutch Aibo Team is based on the code release by the German Team
in 2004. The framework contains hardware abstraction layers for both a PC and the Aibo, which means
that the code can transparently run on both systems, making it possible to debug the Aibo code on a PC
in a simple manner. While the code running on the Aibo controls directly its sensors and actuators, the
same code – when executed on a PC – is attached to a simulated body in a simulated environment. The
front-end application for the PC side is called RobotControl, and it integrates both the simulator as well
as the control over remotely connected robots in a consistent manner.

A.2.1 Robot software
The soccer software for the robot is organized into independent processes which are executed by the
operating system quasi-parallel. The motion process produces a continuous series of motion commands
for the robot’s joints at a frame rate of approximately 120 Hz. The cognition process starts a new
processing cycle for each incoming camera image and therefore runs at around 30 Hz (or less). The
logplayer process takes care of the asynchronous communication with the PC and other robots. The
processes communicate through message channels that are provided by the operating system.

The major processes (like motion and cognition) are split up into smaller components, called modules.
Each module is assigned a specific task with corresponding interfaces for data in- and output. In this
context, a module refers to an empty slot in the architecture where an actual solution can be selected
and activated. For most modules, multiple solutions are available. This software factorization facilitates
collaboration between different programmers, research groups and universities.

This makes it possible for different universities and institutes to collaborate in the same framework
by developing different solutions for a single module.

The modules communicate among each other using shared memory. Hierarchically, this can be seen
as a data flow from top to bottom (and in very few cases vice versa). Figure A.2.1 shows the complete
architecture of both the cognition and motion process. Processing takes place from top to bottom; arrows
indicate the data flow between the modules. In the top row, the incoming sensor data is displayed, like
images from the camera and tactile and acceleration data. The data is processed by different modules into
intermediate abstraction levels. In the center layer, the behavior module decides on the current strategy
and intermediate goals. These are finally processed by the walking engine into motion output commands.

1a half-year BSc project for computer science students at the University of Utrecht
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Figure A.2: Architecture overview of the robot soccer software used by the Dutch Aibo Team. Arrows
indicate the data flow (ellipses) between the modules (rectangles).
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A.2.2 Simulator
The robot software can both be executed on the robot and on the PC. The PC-side creates a simulated
environment for the robot that allows much easier debugging.

The simulator maintains a three-dimensional representation of the world (i.e. the soccer field). The
map itself is static; the only moveable parts are the simulated Aibo’s on the field.

Per motion frame, the simulated joints are adjusted according to the motion commands, and then
the resulting position of all body parts is computed. Paws touching the ground experience friction, and
thereby move the robot through the simulated world. The motion simulation is not yet very elaborate:
no motion noise is present, and the robots cannot interact (or modify) the environment; so for example
playing with the ball or pushing other players is not possible; the players slide through each other as
if they were ghosts. Still, this motion simulation allows the programmer to efficiently test and debug
motion solutions; for example the walking engine of the Aibo, or watch the robot performing higher-level
behaviors.

The three-dimensional world map allows the simulator also to visualize the scene and the robot.
The scene description contains the soccer field, including the colored flags, goals, and other robots. In
principle, other objects like the audience or a referee could also be described. The simulator is not bound
to a robot soccer specific scene, but by far nobody took the trouble to sketch something other than the
regular field and the robots. Objects are described by a list of colored polygons, marked by lists of
three-dimensional points. The simulator allows an arbitrary point of view, so for example the robot can
be watched from the side or from above. Moreover, it is possible to move and turn the robot with the
mouse to put it into a certain pose. Next to this three-dimensional view, the field is plotted from above in
a simplified two-dimensional representation that allows the overlay of various debug drawings (like the
perceived ball position, obstacles or other players, etc).

After the evaluation of the robot configuration, the position and direction of the robot’s nose camera
also becomes available. This information is used by the simulator to create a simulated camera image for
the robot. No noise or clutter is added, so the images are as clean as the scene is described. Still this is
useful to test image processing algorithms under perfect circumstances, and provides the opportunity for
step-wise debugging.

The motion and camera modeling forms the basis for executing most tests within the simulator itself.
Special library functions allow the creation of a variety of debug output: next to a text console, modules
may send images back for display to the main application, or augment the field plot by debug drawings
(lines, circles, etc).

The execution time of the simulated robots is much higher than that of the real robot. So for example,
usually only two frames per second are reached on a normal computer (versus 30 on a real robot). When
time and space (or processing power) is plentiful, then even multiple robots can be simulated at the
same time. The Software Project 2005 in Utrecht used the simulator to test whether both teams each
consisting of four robots finally could reach the correct kickoff positions on the field. Even though this
simulation took more than an hour on a regular computer, but eventually it could be shown that the
complete processing cycle from the image processing, over the localization, behavior creation and finally
the walking engine worked fine at least under perfect circumstances.

A.2.3 Remote debugging
It is also possible to remotely tap into the information flow between the modules running on an Aibo to
inspect and modify values there in real-time. For example, camera images can be sent to the computer
for inspection, extracted landmark and object information can be shown or the estimated world state can
be visualized by the main application. Solutions for modules can be switched over while the Aibo is
playing soccer. Moreover, some modules even allow the online modification of certain parameters. So,
for example, the image processor can be supplied with an updated color table, the locator module accepts



APPENDIX A. THE SONY AIBO AS A PLATFORM FOR ROBOTICS RESEARCH 70

new parameter values for the particle filter in real time, and the behavior module allows the manual
activation of a behavior or the modification of behavioral output symbols next to the real-time inspection
of the activated behavioral paths.

A.2.4 Debugging by playback
However, all of this does not help when a certain solution contains a bug that only appears in combination
with real-world data. Therefore, incoming debug stream can also be stored in a file and subsequently be
played back to a certain module of a simulated robot. Then a regular debugger on the PC can be used to
track down the error in the code, on data that originally came from the robot.

Most programming errors can be resolved this way. When one is interested in high detail on what is
going on inside one or more modules in slow motion on real-world data, this is probably a nice way to
do so. However, bugs that only appear very occasionally (and harmful data for playback is difficult to
acquire) or problems that only occur in combination with other robots (teamplay), it is still necessary to
fall back on slower debugging techniques.

A.3 Body odometry
The task of the walking engine is to maneuver the robot from the current pose into a given target pose.
In order to do so, the robot has to move its legs in a coordinated fashion; or to put it more technically, it
has to generate a continuous motion sequence and to send it to its joints. As there are only 6 degrees-of-
freedom in both the original pose and the target pose together, but already 12 degrees-of-freedom for all
four legs at each time step (that need to be updated at 120fps), it is obvious that many motion sequences
can lead from one body pose to another. A particular way of moving the legs in order to get along is also
called a walking style, and the selection of a certain walking style is necessary to keep the generation of
the required motion sequence computationally feasible.

The walking engine of the DT2005 is based on the omni-directional walk developed by [32] in 2004
(and originally invented by rUNSWift from Sydney under the name pWalk in 2000 [11]). The main
idea here is to treat the robot’s legs as if they were omni-directional wheels. Each wheel can move in
an arbitrary direction at an arbitrary speed (see fig. A.3(left)). By this level of abstraction, the difficult
problem of walking on four legs is transformed into a problem of driving on four wheels – for which
standard solutions (and controllers) exist.

Although, in theory, this approach looks very straight-forward, it turns out that the 12 joints in the
robot’s legs make it necessary to find a appropriate parameter set for the walking engine – due to incalcu-
lability of these parameters and robot-specific individualities. In 2004, the German Team used a genetic
algorithm to find a (locally) optimal parameter set, but during the preparations for the RoboCup 2005 it
turned out that all of the robots of the Dutch Aibo Team had a strong drift to the right when they actually
should walk in a straight line. We corrected this in Osaka by a simple counter-rotation of the odometry
feedback to the left [ref techreport2005], to at least ensure that walking requests on straight walking really
resulted in a straight walk. This was particularly important for robots which had to approach the ball in a
straight line: the actual drift to the right was perceived as a displacement of the ball to the left for which
the robot corrected its movements, and so the robot’s estimation on its heading (and the heading towards
the opponent’s goal) was confused.

However, by this simple correction, we have only shifted the errors in odometry estimation: the
turning and sideward movements still yielded very incorrect odometry values. In order to test some basic
features of the walking engine, a test behavior was implemented that let the robot walk blindly in a
straight line 2m forward, then turn by 90 degrees to the left, then walk back sideward 2m to the original
spot and finally turn back 90 to the right, purely based on their own odometry estimations. In this way, the
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Figure A.3: Left: The walking engine of the Dutch Aibo Team treats every leg of the Aibo as an
independently steerable wheel. Right: Walking on four legs is extremely prone to slippage and other
motion noise. In this experiment, the robot should walk 2m in a straight line, then turn by 90◦ left, and
walk sidewards back to the origin. Walking straight works fine, but turning and sideward movements
show significant deviations.

odometry error of straight walking, sideward walking and left/right turning could be evaluated graphically
by the resulting path. In the optimal case, when following this behavior, the robot should end up at the
same place and with the same heading in which the robot started. Practical tests however revealed that
actual paths differ from the desired walk significantly. Fig. A.3(right) displays the desired (control) path
in black, and the actual traces of two robots (two runs on each robot, first robot in blue, second in red).

It can be seen that the straight walking works relatively well for robots, although it can clearly be seen
that the motion traces of each robot have their particular characteristics. Furthermore it can be stated that
turning requests fundamentally do not let the robots rotate far enough (neither to the left nor to the right).
Finally, the sideward movements are particularly incorrect as they the robots actually moved in a circle
of approximately 2m radius – especially under consideration that the field dimensions are 6x4m.

A.4 Head odometry
In order to correctly interpret images from the camera, it is necessary to know where the camera points at
or equivalently which part of the world the robot perceives. In technical terms, the corresponding camera
matrix has to be determined, for example to project the horizon into the image and to know in which
direction the image is orientated (up-vector).

The correct estimate of the current body pose is only half one half of the solution. As the camera of
an Aibo is installed in the point of its nose, the camera matrix additionally also depends strongly on the
current pose of its head.

The head has (with respect to the body pose) three additional degrees of freedom: firstly, the Aibo
may raise or lower its neck, secondly, it may raise or lower its head (which is attached upon the neck),
and thirdly, may turn its head to the left or right.

Because of this flexibility of the neck and the fact that the opening angle of the Aibo’s camera is
only around 50 degrees, it became common practice in the 4-legged league to let the robot constantly
look around in order to see more of its surroundings. With its three degrees of freedom, it is possible to
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Figure A.4: The visual field of the Aibo can be greatly extended when the robot scans with its head from
left to right. By doing so, additional motion noise is introduced in the camera matrix. In this experiment,
this head motion noise has been measured empirically.

produce a scanning behavior that enables the robot to perceive more than 230 degrees of its surroundings
in horizontal direction.

As the head scans approximately once per second from left to right and back again, it is reasonable
to give some attention to the additional noise that is introduced in the camera matrix by the continuous
scanning of the head. This turns out to be even more problematic when the robot is walking or running
(and thereby shaking its head even more). Hereby it is important to know that we observed that some
robots seem to be more prone to shaking with their heads than others when walking across the field. For
the RoboCup world championships, we explicitly selected robots with accurate body odometry and low
head shaking for the competition games.

To test the head motion under perfect circumstances, a still-standing robot was placed on the center
of the sideline (see fig. A.4). It could see both the centerline (when looking straight ahead) as well as the
sideline (to its left and right when scanning with its head). Two well-visible spots have been selected for
the analysis and compared with the expected position: the intersection of the midline with the horizon,
and the intersection of the left part of the sideline with the horizon. For these points, the expected pixel
position has been marked (back-projected) into the camera images, and subsequently the derivation was
measured (in pixels).

Table A.1 gives the results of the head-odometry experiment. The distances are displayed both in
pixels and degrees for easier interpretation. It can be seen that the mean values differ somewhat between
the different measurement series: there are differences in the magnitude of a few degrees between them.

One observation can clearly be made: the variances of both series are of the same magnitude; around
1.5 degrees. This is the angular error introduced by the camera motion and hence is always present in the
estimate of the camera matrix.
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Figure A.5: Radial distortion occurs naturally in most optical systems. Left: The wide-angle field camera
of the UvA Robolab shows extreme radial distortion. Right: Empirically measured [41] radial distortion
of the Aibo’s camera.

A.5 Camera Quality
A lot can be said about the quality of the internal camera of the Aibo. In fact, it suffers from most well
known problems related to especially (but not only) cheap cameras: radial distortion, natural vignetting,
color fault, motion blur and readout latency. In the following subsection, the major aspects of image
deformation will be presented briefly and an explanation will be given of the countermeasures which can
or already are taken to compensate for them.

Radial distortion occurs when the lens does not magnify the image uniformly, but the level of magni-
fication depends on the distance from the image center. Some radial distortion is inherent in most optical
systems, but usually better lenses (or better mounting) can diminish its effects significantly. The effects
of radial distortion can usually be described by a polynomial of low order; its coefficients need only to be
estimated once. Subsequently, the distortion of a pixel can quickly be removed. Fortunately, it turns out
that all Aibo cameras have exactly the same radial distortion to a great extend, which means it is suffi-
cient to calibrate these parameters once and use them for all Aibos. Fig. A.5(left) shows for example the
wide-angle view of the ceiling camera of our Robolab that suffers obviously of extreme radial distortion.

Although the German Team laid the basis for the radial distortion correction in the base code of
the Dutch Aibo Team, it is doubtful whether this correction is really necessary for the Aibo’s camera.
Fig. A.5(right) shows the original correction table for the Sony Aibo. Each circle stands for 0.5 pixels
that the image is off due to radial distortion. It can be seen that no pixel is off more than three pixels, large
parts of the picture even less than a single pixel. Compared to the noise of the head motion, the effects of
radial distortion are comparatively negligible.

Natural vignetting (or illumination falloff) is also a typical property of the lens system and is, like the
radial distortion, stronger marked with bad lenses, but inherent to this kind of projection. When thinking
about pin-hole cameras the effect of natural vignetting can easily be understood: as the projection screen

Derivation Horizontally Vertically
mean sigma mean sigma

Heading 0 ˚ (in front of robot) 4.7pix 6.2pix 8.2pix 4.0pix
or equivalently 1.1 ˚ 1.5 ˚ 2.0 ˚ 1.0 ˚

Heading 90 ˚ (left of robot) 16.7pix 7.3pix 1.5pix 4.7pix
or equivalently 4.0 ˚ 1.8 ˚ 0.4 ˚ 1.1 ˚

Table A.1: Camera odometry when robot is scanning with its head.
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Figure A.6: Vignetting is another typical problem of (cheap) cameras. Left: Empirically measured
[41] vignetting of the Aibo Camera. The Aibo looked at a constantly-illuminated white surface, but the
reported Y-values significantly decrease in direction of the corners. Right: Pictures taken by the Aibo
also exhibit strong vignetting.

is planar, the corners of the image per area unit are comparably less illuminated by the scene than the
center region. Although this effect can be interesting in some cases for the ambitious photographer, it
poses additional problems for automatic color classification: depending on the strength, countermeasures
are inevitable.

When an Aibo looks at a uniformly white environment, the camera should report a uniform color
on all pixels. However, the perceived color by the Aibo camera strongly depends on its distance from
the center. Fig. A.6(left) shows the Y-channel when the Aibo looks at a white paper. Its color system
actually already de-correlates the color values into YCrCb (brightness-red-blue), but as it can be seen all
three channels suffer from the illumination falloff (which already indicates that the de-correlation is only
partial). In order to correct such a distortion, a white-reference like the above (or generalization of it)
can be and actually is used for normalization. However, normalizing every pixel using a lookup table is
quite time consuming (cf. Processing Power). In practice (and the DT2005 code), color correction is only
performed right before the color class lookup – by doing so, only a small percentage of every image has
actually to be corrected.

The camera exposes the image sensor to the scene for a period of time (called the exposure time),
before the accumulated electrical charge of a cell is read out. The exposure time is inversely related to the
shutter speed. Objects in front of the camera that change their position significantly within the exposure
time get blurred by this motion. Therefore, the shutter speed is usually chosen as fast as possible, to
diminish the unwanted effects of motion blur. However, as fast shutter speeds result in small exposure
times, less-exposed images are intrinsically darker. High-speed cameras therefore need to be especially
light-sensitive.

Unfortunately, the Aibo camera is neither particularly light-sensitive nor is the shutter speed eligible
from a broad range. Even with the highest camera sensitivity (also referred to as high gain) and the shutter
speed set to high (and thereby satisfying both requests), the images appear both relatively dark on one
side and the motion blur is still visible on the other side on pictures taken from the UvA Robolab.

With these preliminaries, it became necessary for the 4-Legged league to impose that the official
soccer field is illuminated at 1000 lux (which is comparable to the illumination in a TV studio; even a
bright office environment is lit by approximately only 400 lux). In the UvA Robolab, six spots each of
300W are used to illuminate the field which is sufficient2.

The Aibo’s camera consists of a CMOS imager. CMOS imagers are commonly used for webcams,
and are the cheap alternative to CCD imagers as all electronics can directly be integrated in the image

26 · 300W · (17lux/W )/(6m · 4m) ≈ 850lux
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Figure A.7: The constantly scanning head motion of the Aibo leads to distorted images due to the rolling
shutter of the Aibo’s internal CMOS camera. The Aibo is scanning with its head at normal velocity from
left to right (left), stops (middle) and scans back in the opposite direction (right).

sensor. In both cases, the sensor chip consists of a light sensitive pixel grid that converts incident light
into electrical charge.

In CCD imagers, the light-sensitive matrix is exposed for the length of the shutter time, and then the
electric charge is typically transferred quickly into a second analog buffer from where it is read out and
digitized sequentially. The buffer ensures that the pixel cells are no longer exposed to the scene (and
so preventing readout smear or the necessity for a mechanical shutter). This kind of exposure is also
referred to as uniform shuttering, as the complete image is transferred into the buffer at the same time.
The disadvantage of this approach is that the buffer covers for technical reasons part of the CCD surface
and thus reduces the light-efficiency by the half.

CMOS pixel cells (as used in the Aibo) on the other hand digitize the electrical charge right away,
and so the extra buffer becomes superfluous – at the price that uniform shuttering has to be given up:
the synchronization of the individual cells would require extra transistors and therefore reduce again the
surface for the light-sensitive cells. Although CMOS cameras with uniform shuttering exist, commonly
shuttering is implemented using a rolling shutter: each pixel is exposed, read out, and reset individually in
a sequential way, one after another. The disadvantage of this method is that moving objects (or a moving
camera) result in distorted images.

As the Aibo is scanning continuously with its head, the complete scene is in motion, resulting in a
uniformly distorted image. Fig. A.5 show examples of three snapshots while the robot was scanning with
its head to the right, standing still, and scanning back to the left again. It can be seen that the horizon and
the flag are only perpendicular in the middle image when the head was standing still. In the other images,
the lower scan lines have been read-out a few milliseconds after the upper scan lines, when the head was
already rotated further and therefore pointing in a different direction.

As the current head orientation can simply be approximated between two frames by linear interpola-
tion for each scan line, it is easy to correct for this distortion. Either the orientation of world horizontal
and vertical scan lines can be computed, or pixel coordinates can be corrected and mapped onto world
coordinates by a simple linear correction.

A.6 Processing power
The processing power of the Aibo is defined by its 64-bit RISC processor of the MIPSEL family. It is
clocked at 567 MHz, which was a reasonable speed for a mobile computer in the year 2001 when the
latest Aibo model ERS7 was released.

As the processing power has to be shared by several processes running simultaneously (like motion
planning, wireless communication and image processing), a reasonable experiment is to measure the
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Function Processing time
Image copy (memcpy of 192KB) 7ms
Image color correction 8ms
Image convert (uint8 to double) 18ms
Gaussian convolution (anisotropic)

smoothing (0th order Gaussian) 67ms
derivation (1st order Gaussian, steered filter) 78ms

Convert to magnitude image (M =
√
Y 2 + Cr2 + Cb2) 146ms

Threshold magnitude image (edge detect) 11ms
Image convert (double to uint8) 21ms
Time between two camera frames 33ms
Maximal processing time for image processing 20ms-25ms

Table A.2: Measured processing times of Sony Aibo ERS7

execution time of typical operations. This can already indicate what kinds of algorithms are feasible on
this platform and which are not.

In the first prototype of my approach, a new solution for the image processor was implemented. It
turned out to run very slowly on the Aibo (around 2fps), and triggered this intermediate research on the
actual processing power of the robot. Simple functions like copying an image, converting it to double,
or convolving it with a Gaussian (for smoothing and derivation) were executed and their execution time
was measured. The results showed that even the simplest image processing steps (like ”memcpy-ing
the image) already took an alarming amount of time (see table A.6). Converting it to double, or even
computing its first derivative already exceeded the small timeslot available for image processing – at least
when processing at the full Aibo frame rate is desired.

Given these measurements, a few conclusions can be drawn – concerning the approach and its im-
plementation. Firstly, converting the image to double is completely out of the question – which means
that color-invariant approaches are neither applicable. Secondly, even if the derivatives were computed
directly on the integer image, its computational effort would have exceeded the available time for image
processing by far. Image rotation or rectification is computationally at least as complex as computing the
derivative, and therefore infeasible.

At this point, an important design decision of other teams of the 4-Legged league (see section 1.3)
becomes comprehensible: either the complete image is processed, for example by merging pixels of the
same color class to blobs and finally into rectangular bounding boxes (ignoring the orientation of the
image), or only parts of the image are scanned, but then along a grid of scan lines (that are for example
aligned parallel to the ground or to standing objects in the world).

Certainly when developing an image processing algorithm, it is wise to constantly keep an eye on
its execution time, as even simple operations can take a dangerously long time. For the development
of the main algorithm, constant attention has been paid to the execution time, to make sure that image
processing is definitely possible in real-time on the Aibo.

A.7 Availability of Aibos
A simple, but necessary constraint is the question for the availability and popularity of Aibos itself,
especially after Sony announced in March 2006 to discontinue the production of new Aibos and abandon
the development of its potential successor, the QRIO. Fortunately, there are at least still 11 Aibos in the
Netherlands for academic research (8.5 of them functional), three of which belonging to the Universiteit
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van Amsterdam. In the international comparison, there have been 28 teams participating at the yearly
competitions of the 4-Legged league, and considering the amount of published articles about the Aibo in
general (also in research directions of the Aibo as a social companion), this definitely proves that Aibos
are (and have been) used by a broad academic community.

A.8 Experience at the UvA and in the Dutch Aibo Team
The experience that has been built up over the years in and around the Dutch Aibo Team both about the
Aibos and about programming frameworks can be of great advantage compared with starting from scratch
under a new framework or a new robot platform. Demonstrations, symposia and team meetings initiate
the information exchange and stimulate helpful personal links between the Dutch universities.

As the Dutch Aibo Team is participating regularly in several international competitions (like the
German Open/Dutch Open and the world championships), contact with other groups is available and
discussions about new approaches can yield interesting insights. The software written by the Dutch Aibo
Team is compatible not only with the German Team (from which it originally descends), but also all
other descendants, like SPQR (Italy), Wright Eagle (China), sharPKUngfu (China), and also two German
spin-off projects of the original German team, namely the Microsoft Hellhounds and the Hamburg Dog
Bots.

A.9 RoboCup competitions
The technical challenges of the 4-Legged league offer the playground to show new approaches in science
and technique in international comparison. Within this frame, we presented the compass function at the
Open Challenge this year at the world championship in Bremen. The idea itself could also be presented
in the poster session of the RoboCup symposium, along with a live presentation with the Aibo orientating
on a table in the conference hall, opening discussions with other researchers.

A.10 Summary
In this chapter, the Sony Aibo is examined carefully with the aim to rate its suitability as platform for
robotic research.

1. Important aspects of the Aibo’s hardware have been evaluated empirically; like the accuracy of
body and head motion, but also the characteristics of its internal camera and its computational
power.

2. The software framework as used by the Dutch Aibo Team has been analyzed and described in
detail. It forms a good framework for robotic soccer as it already contains the soccer functionality.
The existence of a simulator and remote-debugging tools facilitate software development, and the
good modularity allows the incorporation of own solutions in a stable and well-defined way.

3. Finally, aspects such as the availability of enough Aibos, experience within the Dutch Aibo Team
and the 4-Legged league in general have been discussed. Moreover, RoboCup constitutes a stimu-
lating forum for both exchange and international competition.
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Appendix B

Camera calibration and preparation

Before the compass sensor can go into work, the robot has to set up its internal camera and establish a
meaningful color-to-colorclass mapping. This is done in the preparation step, shortly after the robot has
been activated.

B.1 Auto-Shutter
The first parameter to be determined is the right adjustment of the Aibo’s camera. While there is no need
to set the white balance (as the most important colors are found by clustering in the next step anyway),
the camera gain and the camera gain and the shutter time influence greatly the quality of the images.
Too dark images contain mostly noise in all three channels, while too bright images tend to saturate and
therefore loose information at the upper end.

Choosing the right setting is always a compromise. The images should be well-balanced and the
brightness distribution should use as much as possible of the available range. As the Aibo camera is
known to be light-insensitive, this means in particular that – with camera default – the images tend to be
too dark and require extra brightening. To a certain extend, this can be compensated by increasing the
camera gain, but beyond that we have to increase the shutter time. However, this leads to more motion
blur in the images and therefore decreases the sharpness. Table B.1 lists the camera options though that
the Aibo cycles while searching for an appropriate setting.

A good indicator of the dimensions of the color space is to evaluate the dynamic range of the channels;

Figure B.1: The camera needs to be set up depending on the illumination conditions. Left: Example of a
well-illuminated image from the Aibo camera. Right: Corresponding histogram (Y-channel).
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Figure B.2: Before the visual compass can go into work, a color-to-colorclass mapping has to be estab-
lished. This mapping can be created by the Aibo automatically by using an Expectation-Maximization
clustering algorithm. Left: Typical raw image as captured by the robot while turning on the spot. The
robot extracts in total 100.000 color samples. Middle: Visualization of the collected color samples in the
color space, prepared for clustering. Right: The found clusters are used to segment incoming images.

and both the shutter speed and the camera gain mainly influence the brightness, it seems sufficient to
measure the dynamic range of the Y-channel only. The underlying assumption is that the brightness as
well as the other two channels have lower noise when the image is well illuminated.

Usually, the dynamic range is defined as the ration between the smallest and the largest possible value
of a data source. However, as the camera data contains noise and outliers, it is reasonable to measure the
dynamic range as the distance between the 15-percentile and the 85-percentile of the distribution of the
Y-channel (see fig. B.1).

When the autoshutter behavior is activated, the robot iterates through all camera settings and computes
respectively the dynamic range. As it takes a while before the camera stabilizes on new settings, the
autoshutter waits for 15 frames before it captures and analyzes a picture. Therefore the whole autoshutter
process takes a few seconds to complete.

B.2 Color clustering
In order to create the color class lookup table (see fig. B.2), the Aibo starts by turning on the spot and
collecting a big number of color samples (around 100.000). Only colors above the horizon are taken into
account, as panoramic localization later on likewise only learns color class transitions from above the
horizon.

The clustering process uses an Expectation-Maximization (EM) algorithm on a Gaussian mixture

Shutter speed Camera gain Comments
fast low Outdoor sunlight.
fast medium Outdoor shadow or

indoor sunlight (behind a window).
fast high Outdoor cloudy or

indoor soccer lighting.
medium high Indoor office lighting.

Some motion blur.
slow high Indoor normal lighting.

Strong motion blur.

Table B.1: Expedient camera settings probed by the auto-shutter.
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model. Considering the relatively low computational power of the Aibo processor, it was necessary to
reduce the sample set significantly but in such a way that the important (and characteristic) color samples
do not get lost (by the overwhelming amount of background gray samples).

To achieve this, a color space histogram is created on the fly with the aim to delete color samples
from crowded regions. This is achieved with a Monte-Carlo filter. When the corresponding color cube
of a color C has the frequency of occurrence P (cubeC), then the probability that this color is used for
clustering is equivalent to Puse(C) = 1/P (cubeC).

The reduced sample set has then still captures the shape of the color space well enough, and can be
fed into an Expectation-Maximization algorithm [34] with an underlying Gaussian mixture model. A
single color class is therefore is represented in the color space by a Gaussian distribution defined by its
weight π, mean µ and covariance Σ.

The algorithm expects a fixed number of clusters, which should be chosen carefully. A too small
number might result in only finding the background colors, while a too large number would increase
the number of color transitions distributions enormously. Additionally the computation time of the EM
algorithm increases with the number of clusters. Experimentally I found ten color clusters leave on one
hand enough room also for small clusters to emerge and on the other hand keep the panorama model
sufficiently small. However, this number is adjustable and is given further analysis in chapter 5.

The EM algorithm initializes the Gaussian with the mean positioned on existing samples and equal
weights and covariance matrices. Then it iteratively estimates the likelihood of all sample points with
respect to the current Gaussians in the expectation step:

qns ← p(s|xn) =
πsp(x; θs)∑
s′
p(x; θs′)

=
πsN (x;µs,Σs)∑
s′
N (x;µs′ ,Σs′)

(B.1)

and then maximizes these likelihoods by re-estimating the Gaussian parameters in the maximization
step:

πs ← 1
N

N∑
n=1

qns (B.2)

µs ← 1
Nπs

N∑
n=1

qnsxn (B.3)

Σs ← 1
Nπs

N∑
n=1

qns (xn − µs) (xn − µs)T (B.4)

These steps have in principle to be iterated until the parameters stabilize – in practice the clusters converge
already after a few iterations, and the current implementation simply applies the above iteration 10 times.

With the found parameters, it is possible to determine the color class of a given color by finding
the maximum-likelihood cluster. This is however very time consuming, as it involves for each source
color the evaluation of 10 (inverse) Gaussians in order to determine its target class. Therefore, after the
clustering process, a lookup table for faster access is created. The lookup table is a pre-computed array
containing the color classes of all colors. Each of its three indexes (one for each color channel) is six bit
wide; therefore the color table has a total size of 262KB.

At each iteration step, the algorithm evaluates recursively the eight corners of the current color cube.
When all corners have the same color class, then the complete cube is considered to be uniform and all
color cells are assigned to this color class. When however, the color classes of the corners differ, the
current cube is split up into 8 sub-cubes (by splitting it in each dimension into two parts), and each sub-
cube is evaluated recursively in the same way. To ensure that small clusters are unlikely to be overlooked,
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only cubes below a certain size are allowed to be filled uniformly (starting from the third iteration turned
out to be effective).

This technique proves to be most effective; the resulting color table slightly differs from the fully
evaluated version, for example because the round edges of the Gaussians are likely to be pruned when
touching a neighboring cube only in the middle. However, experimental comparisons have shown no
significant difference, but the advantage in processing time is enormous: the color table based on 10
clusters is usually built within less than 2.500ms, corresponding to a speedup of factor 20. The time
needed for color calibration then sums up to 9 seconds (for turning the Aibo a complete round on the
spot) and another 4.5 seconds for clustering and building the color table.

The color-to-colorclass mapping is used by the compass sensor (section 3.1), but it has also been
shown this approach can be used for automatic color learning with normal landmarks [44]. Together with
the autoshutter step, the complete vision system calibrates itself fully autonomously within less than 20
seconds.

B.3 Summary
The auto-shutter enables the robot to set up its camera in a wide range of illumination circumstances. A
robot can use the automatic color calibration to create fully autonomously a color-to-colorclass lookup
table that is perfectly suited for the current environment. For this purpose, an expectation-Maximization
clustering algorithm is applied on large number of color samples taken from the robot’s surroundings.



Appendix C

Direct pose triangulation

A totally different (but not implemented) approach would be to exploit the projective distortions that
occur naturally in particular in small rooms. Imagine that a robot has two compass sensors that have
been trained on two different spots with a fixed distance that is known to the robot (see fig. C.1(left)).
Imagine further that the robot is then placed in the center after learning is complete, and looks into a
certain direction – of which it evaluates both visual compasses by matching the incoming camera frame
with both compass maps.

As the wall and the furniture do not have infinite distance from the robot, the two rotational estimates
R(1) and R(2) will be slightly different, and the angular disparity ∆R = R(1)−R(2) can be used just like
in stereo vision to estimate the depth of the room in a particular direction. Once a depth model (or map)
of a room is available, a sensor model p(R(1), R(2)

∣∣x,m(1),m(2)) can be formulated that assigns to each
reading z =< R(1), R(2) > a likelihood (given the robot pose x, and the two maps m(1),m(2))).

This approach directly builds upon the primary output of the visual compass which is in a way con-
ceptually better than relying upon the variance estimates – as multi-spot localization does. The results of
compass experiments where the robot has been moved (see fig. C.1(right)) strongly suggest that deriving
the distance to the wall or equivalently estimating the robot’s position should be possible. To translate
this approach in a working implementation is certainly an interesting trajectory for future research.

C.1 Approach
The idea is to exploit the angular disparity between the estimates of two compass sensors, trained at two
different spots T (1) and T (2) respectively:

∆R̂t = R̂
(1)
t − R̂

(2)
t (C.1)

As the distance d =
∥∥∥T (1)

t − T (2)
t

∥∥∥ between the training spots is known, the distances d(1) and d(2) from

training spots T (1) and T (2) respectively to intersection pointA on the wall can be estimated. The distance
from the training spots towards the intersection point on the wall are denoted by d(1) =

∥∥∥T (1)
t −A

∥∥∥ and

d(2) =
∥∥∥T (2)

t −A
∥∥∥ respectively.

To start with, the following trigonometric relation holds concerning the height h of the triangle

83
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Figure C.1: Motivation of a direct triangulation filter, by using two compass sensors. Left: Sketch how
two visual compasses could be combined for direct triangulation. When the distance d between two
training spots is known, then the robot can triangulate its distance to the wall (from the angular disparity
of the two compasses). Right: Heading and variance estimates of a visual sensor as reported by the
compass filter in an experiment indicate strongly that such an approach could work.

(
T (1), T (2), A

)
:

cosR(1) =
h

d(1)
(C.2)

cosR(2) =
h

d(2)
(C.3)

⇒ d(1) cosR(1) = d(2) cosR(2) (C.4)

The triangle
(
T (1), T (2), A

)
can be split into two rectangular triangles (by splitting at the height) into

two parts d =
(
T (1)B

)
+
(
BT (2)

)
= d′ + d′′. Then for the new sides d′ and d′′ it holds by geometric

inference:

sinR(1) =
d′

d(1)
(C.5)

sinR(2) =
d′′

d(2)
(C.6)

(C.7)

From these equations, it becomes possible to compute the distances d(1) and d(2) from the training
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spot to the intersection point on the wall:

d = d′ + d′′ (C.8)
d = d(1) sinR(1) + d(2) sinR(2) (C.9)

d = d(1) sinR(1) +
(
d(1) cosR(1)

cosR(2)

)
sinR(2) (C.10)

d = d(1) sinR(1) + d(1) cosR(1) sinR(2)

cosR(2)
(C.11)

⇒ d(1) =
d

sinR(1) + cosR(1) sinR(2)

cosR(2)

(C.12)

⇒ d(2) =
d

sinR(2) + cosR(2) sinR(1)

cosR(1)

(C.13)

C.2 Map learning

From such distance estimates d̂(i), the robot could easily create corresponding depth maps m̂(i)
depth. This

could be done for example by collecting a few samples
(
d̂
(i)
1 (φ), d̂(i)

2 (φ), . . .
)

in each direction φ, and

then computing the mean or median to a depth value for m̂(i)
depth(φ).

C.3 Sensor model
If the robot has now a distance mapm(i)depth at its disposal (for example after it has been learned m̂(i)

depth

or it has been supplied from outside), the robot can reason about the expected angular disparity ∆R(x)
given a particular pose x =< φ, τ >: it can evaluate the distance map in a certain direction in order to
determine the expected intersection point with the wall A. Then the expected angle from a training spot
T (i) to this intersection point A can be computed:

R(i) = arctan
(
T (i) −A

)
(C.14)

(C.15)

The expected angles R(i) can now be compared with the measured (estimated) angles R̂(i). By
assuming Gaussian noise in the measurements (C.16), a sensor model is constructed in (C.17):

R̂(i) = R(i) + ε, with ε ∼ N (0, σ) (C.16)

p
(
R(i)

∣∣x,m(i)
depth

)
=

1
σ
√

2π
exp

(
− (R(i) − R̂(i))2

2σ2

)
(C.17)

which subsequently can be used by a Monte-Carlo localization method (like a particle filter) to evaluate
the likelihood of a pose sample x =< R,T >.

Please note that in this form the sensor model only addresses a single visual compass (augmented
by the corresponding distance map m(i)

depth). A single-spot sensor model p
(
R(i)

∣∣x,m(i)depth
)

therefore
contains intrinsically ambiguities. These ambiguities can be removed when two or more such sensor
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models are jointly evaluated:

p
(
R(1), R(2), . . .

∣∣x,m(i)
depth,m

(i)
depth, . . .

)
=

∏
i

p
(
R(i)

∣∣x,m(i)
depth

)
(C.18)

=
1

σ
√

2π
exp

(
− (R(i) − R̂(i))2

2σ2

)
(C.19)

If two (or more) underlying sensor models are used, the resulting likelihood distribution is free of ambi-
guity.

C.4 Discussion
The approach shows interesting parallels to approaches known from stereo vision: there, robots are typi-
cally equipped with two (or more) cameras. The images are correlated, and the disparity of a correlation
can be used to estimate the depth in this direction.

Here, a stereo map is created by the robot by learning individual maps m̂(i) at different training spots
T (i). Two of these maps are sufficient (corresponding to the stereo vision case) to estimate the depth of a
room – for example in order to learn a depth map m̂(i)

depth.

C.5 Summary
In this chapter, a promising approach to pose estimation is elaborated that can be used with two (or more)
underlying compass sensors. It exploits the natural projective distortions occurring especially in small
rooms. The derived sensor model (C.18) assigns likelihoods to a pose given the rotational estimates of
the underlying compass sensors. These likelihoods can then in turn directly be used to update the belief
distributions of a localization filter.



Appendix D

RoboCup: UvA achievements

Several teams from the Universiteit van Amsterdam participated over the years in different RoboCup
leagues (see table D.1). Emiel Corten participated with his Windmill Wanderers at the second RoboCup
competitions in 1998 and won the third prize. Two years later, Matthijs Spaans and Bas Terwijn were
members of the national Dutch Midsize team called Clockwork Orange. Here Nomad robots were used.
In 2003, Jelle Kok [13] won the Simulation league competitions during the second year of his PhD re-
search. Arnoud Visser supervised several RoboCup soccer tournaments [45] and rescue [6, 22] projects.
In 2006, two third places were won: one in the newly established RoboCub Rescue 3D simulation league
(by Bayu Slamet en Max Pfingsthorn) and another one in the Technical Challenges of the 4-Legged
League (with 27 competing teams). Here the Visual Compass as presented in this thesis was demon-
strated.

Outside of the university context, Peter Lith1 since 2005, has been organizing the Dutch RoboCup
Junior competitions (with the leagues Dance, Rescue and Soccer) for kids and teenagers.

1entrepreneur and guest lecturer at the Universiteit van Amsterdam since 1999
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Year Team League Place Prize
1998 Paris, France

Windmill Wanderers Simulation 3rd 3rd prize
2001 Seatle, USA

Clockwork Orange Midsize 7th
UvA Trilearn Soccer simulation 4th

2002 Fukuoka, Japan
UvA Trilearn Soccer simulation 4th

2003 Padova, Italy
UvA Trilearn Soccer simulation 1st 1st prize
UvA Zeppelin Rescue robot
C2003 Rescue simulation 16th

2004 Lisboa, Portugal
UvA Trilearn Soccer simulation 7th
Dutch Aibo Team Four-legged 15th

2005 Osaka, Japan
UvA Trilearn Soccer simulation 10th
Dutch Aibo Team Four-legged 9th

2006 Bremen, Germany
Dutch Aibo Team Four-legged 6th 3rd place (Technical Challenge)
UvA ResQ Rescue 3D simulation 3rd 3rd place

Table D.1: Past and current RoboCup activities of the IAS group at the UvA in RoboCup World Cham-
pionships
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