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Abstract—?! Truly autonomous systems require the ability to
monitor and adapt their internal body scheme throughout their
entire lifetime. In this paper, we present an approach allowing
a robot to learn from scratch and maintain a generative model
of its own physical body through self-observation with a single
monocular camera. We represent the robot’s internal model by
a compact Bayesian network consisting of local models that
describe the physical relationships between neighboring body
parts. We introduce a flexible Bayesian framework that allows to
simultaneously select the maximum-likely network structure and
to learn the underlying conditional density functions. Changes in
the robot’s physiology can be detected by identifying mismatches
between model predictions and the self-perception. To quickly
adapt the model to changed situations, we developed an efficient
search heuristic that starts from the structure of the best exjai-
ning memorized network and then replaces local components
where necessaryln experiments carried out with a real robot
equipped with a 6-DOF manipulator as well as in simulation we Fig. 1. Upper left: Our 6-DOF robotic manipulator arm learns and monitors
ShOW. that our system can qu'Ckly a_ldapt to'cha_\nges Of. t_h(_a_body itsgown bopdr;-scheme using an external mon%cular camera anal wisukers.
thS'O'Ogy n m” 3D space, In partlc_ular with “m_'ted visibility, Upper right: After a different tool is placed in the robot's end-effecttire
noisy and partially missing observations, and without the need model predictions do not fit the current observations anymettom: The
for proprioception. current body scheme linking action signalsand body partsX; using local

modelsA ;.. Here, a mismatch between the internal model and recent self-
I. INTRODUCTION observation has been detected’as . 7.

Autonomous robots deployed in real world environments

have to deal with situations in which components change lear h i | v facili h
their behavior or properties over time. Such changes can forlearly, such a capability would not only facilitate the de-

example come from deformations of robot parts or materigioyYmentand calibration of new robotic systems but alsosall
fatigue. Additionally, to make proper use of tools, a robdP @utonomous re-adaptation when the body scheme changes,
should be able to incorporate the tool into its own body saherfi-3- through regular wear-and-tear over time. Furtheetoe

and to adapt the gained knowledge in situations in which tR2Ity t0 learn a body scheme is important in the context of
tool is grabbed differently. Finally, components of the abb tool use scenarios in which a robot has to identify the effect

might get exchanged or replaced by newer parts that no IonQérjtS agtions on the t(_)ol. _ .
Comply with the models engineered Originally. In this paper, we Investlgate how to equip autonomous

Kinematic models are widely used in practice, especially fi?P0ts with the ability to learn and adapt their own body
the context of robotic manipulation [3, 4]. These models af¢1emes and kinematic models using exploratory actions and
generally derived analytically by an engineer [5] and uwmself-pe_rceptlon only. We pro?osg an qpproach tq _Iearn a
rely heavily on prior knowledge about the robots’ geomet ayesian network for the robot’s kinematic structure iahg
and kinematic parameters. As robotic systems become motg forward and inverse models relating action commands and
complex and versatile or are even delivered in a completdl¢dy Pose. More precisely, we start with a fully connected
reconfigurable way, there is a growing demand for techniquB§twork containing all perceivable body parts and avasiaiat-

allowing a robot to automatically learn body schemes with " Signals, perform random “motor babbling,” and iteraly
or only minimal human intervention. reduce the network complexity by analyzing the perceived

body motion. At the same time, we learn non-parametric
Lparts of this work will appear in the following conferencegeedings. The regression models for all dependencies in the network, lwhic
initial work on bootstrapping, convergence behavior, fénh and control  can |ater be used to predict the body pose when no perception
accuracy has been intoduced in [1] using a 2-DOF robotic nudetipr. In . . .
is available or to allow for gradient-based posture control

a second paper [2], we extend the system towards life-longitorarg and | )
efficient adapation, and present experiments with a 6-DOF puéator. One of the major advantages of the approach presented in




nidirectional paths using dimensionality reduction teéghes
and based on simulations. Their key idea is to use the siomulat
for identifying a suitable subspace for policies and then to
learn with the real robot only in this low-dimensional space
A similar direction has been explored by Deardsnal. [7],

who applied dimensionality reduction techniques to untresl
underlying structure of the body scheme. Similar to thiskyor
their approach is formulated as a model selection problem
between different Bayesian networks. Another instance of
approaches based on dimensionality reduction is the work by
Grimeset al. [8] who applied the principal component analysis
(PCA) in conjunction with Gaussian process regression for
learning walking gaits on a humanoid robot.

Yoshikawaet al.[9] used Hebbian networks to discover the
body scheme from self-occlusion or self-touching seneatio
Later, [10] learned classifiers for body/non-body discnai
tion from visual data. Other approaches used for example

, ) i _ nearest-neighbor interpolation [11] or neural networkg][1
Fig. 2. Continued experiment from Figure 1. The robot samples a loc

model as replacement for the mismatching compodeqt.7. Left: The first ece_n_tly’_nget al. [13] dev_eloped a queSIan parameter

newly sampled model4¢” ) has high uncertainty, because of the missingdentification method for nonlinear dynamic systems, such a

dependency on actioms. Right: The second sampled modagiﬂ isa a robotic arm or a 7-DOF robotic head.

more suitable replacement for the mismatching component. The approach presented in this paper is also related to
the problem of self-calibration which can be understood as

] ) ] ] _a subproblem of body scheme learning. When the kinematic

this paper is that it addresses all of the following prattica,gqe| is known up to some parameters, they can in certain
problems that frequently arise in robotic manipulatiorkeas cases be efficiently estimated by maximizing the likelihod
in a single framework: the model given the data [14]. Genetic algorithms have been

o Prediction: If both the structure and the CDFs of theused by Bongar@t al. [15] for parameter optimization when
Bayesian network are known, the robot is able to predigb closed form is available. To a certain extend, such method
for a given action command the expected resulting bodwn also be used to calibrate a robot that is temporarilygusin
configuration. a tool [16]. In contrast to the work presented here, such

« Control: Conversely, given a target body pose, our ampproaches require a parameterized kinematic model of the
proach is able to generate appropriate action command$ot.
that will lead to this pose. To achieve continuous self-modeling, Bongatdal. [17]

« Model testing: Given both a prediction and an observatirecently described a robotic system that continuouslyniar
on of the current body pose, the robot is able to estimate own structure from actuation-sensation relationships
the accuracy of its own pose predictions. Model accurag@yree alternating phases (modeling, testing, predigtith®ir
can, for example, be defined in terms of a distance metggstem generates new structure hypotheses using stachasti
or a likelihood function. optimization, which are validated by generating actiond an

« Learning: Given a sequence of action signals and thgy analyzing the following sensory input. In a more general
corresponding body postures, the Bayesian network asentext, Bongardet al. [18] studied structure learning in
its parameters can be learned from the data. arbitrary non-linear systems using similar mechanisms.

« Discovering the network structure: When the structure  In contrast to all the approaches described above, we
of the Bayesian network is unknown, the robot is able teropose an algorithm that both learns the structure as well
build it from the available local models which are mosis functional mappings for the individual building blocks.
consistent with the observed data. Furthermore, our model is able to revise its structure and

« Failure detection and model adaptation:When the ro- component models on-the-fly.
bot's physiology changes, e.g., when a joint gets blocked

or is deformed, or a visual marker is changed, this is !ll. A BAYESIAN FRAMEWORK FORROBOTIC BODY
efficiently detected so that only the affected local models SCHEMES
of the Bayesian network need to be replaced. A robotic body scheme describes the relationship bet-
ween available action signala, ..., a,,), self-observations
Il. RELATED WORK (Y1,...,Y,), and the configurations of the robot's body parts
The problem of learning kinematics of robots has beeiXy,..., X,). In our concrete scenario, in which we consider

investigated heavily in the past. For example, Kolter arttie body scheme of a robotic manipulator arm in conjunc-
Ng [6] enable a quadruped robot to learn how to follow ontion with a stationary, monocular camera, the action signal
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Fig. 4. In an early learning phase, the robot knows onlyelitbout its body
structure, i.e., all possible local models need to be consitia parallel. From
the subset of valid local models, a minimal spanning tree carohstaicted

) ) _ _ . which, in turn, forms a Bayesian network. This can subsedydet used as
Fig. 3.  Graphical model for two body parfs; and X; as well as their a body scheme for prediction and control.

dependent variablesd denotes the set of independent action variables that
cause a local transformatiah; . ;. Y; andY; are the observed part locations,
and Z;_.; is their relative geometric transformation.

Since local models are easily invertibla,(.; are homoge-
neous transformations), any set.f 1 local models which
a; € R are real-valued variables corresponding to the joifisrm a spanning tree over all body parts defines a model
angles. Whereas th&; ¢ R® encode the 6-dimensional posesor the whole kinematic structure.
(3D Cartesian position and 3D Euler angles) of the body
parts w.r.t. a reference coordinate frame, tfiec RS are A. Local Models

generally noisy and potentially missing observations @& th The local kinematic models are the central concept in
body parts. Throughout this paper, we use capital letters d@r pody scheme framework. Aocal model M describes
denote 6D pose variables to highlight that these also ulyiqughe geometric relationship(Zi—; | A;_;) between two
define homogeneous transformation matrices, which can &gserved body part¥; and Y;, given a subset of the action

concatenated and inverted. Note that we do not assume di@@halAHj c{ar,...,an}.
feedback/proprioception telling the robot how well joihas  The probability distribution underlying a local model can
approached the requested target angle be defined in various ways. If an analytic model of the
Formally, we seek to learn the probability distribution  ropot exists from its specifications, it can be used directly
DXty X Yiseo Yo | arse. .y am) 1) to construct(Z;—; | Ai—;). The standard way to describe

a geometric model for robot manipulators is in terms of the
which in this form is intractable for all but the simplestDenavit-Hartenberg parameters [3, 19]. When available, the
scenarios. To simplify the problem, it is typically assumeddvantages of these models are outstanding: they are exact
that each observation variabié is independent from all other and efficient in evaluation. When the exact model is not
variables given the true configuratiofy of the corresponding available a-priori, it needs to be learned from data. On the
body part and that they can thus be fully characterized by g#ul robotic platform used in our experiments, the actions
observation modep(Y; | X;). Furthermore, if the kinematic correspond to the target angle requested from joiabd the
structure of the robot was known, a large number of pair-wigghservationsY; are obtained by tracking visual markers in
independencies between body parts and action signals cagdspace including their 3D orientation [20] (see the tofig
be assumed, which in turn would lead to the much simpléfage of Figure 1). Note that tHé’s are inherently noisy and
factorized model that missing observations are common, for example in the cas

_ of (self-)occlusion. We learn the transformation paramsetd
PG X o, am) = ) the local models independently using the Gaussian process
[ »(Xi | parents(X;)) - p(parents(X;) | a1, ..., am). model for regression [21].

Here,parents(X;) denotes the set of locations of body parts, IV. LEARNING THE NETWORK TOPOLOGY

which are directly connected to body part If no prior knowledge about the robot’'s body scheme exists,
The main idea behind this work is to make the factorizede initialize a fully connected network model (see Figure 4)
structure of the problem explicit by introducing (hiddenjesulting in a total set op_," , (g) (71?) local models.Given
transformation variableg\, .; := X, 'X; for all pairs of a set of self observationthe robot can determine the validity
body parts(X;,X,) as well as their observed counterpartsf the local models by evaluating the prediction error on a
Z;.; = Y; 'Y;. Here, we use the 6D pose vectaksand seperate test set.
Y as their equivalent homogeneous transformation matricesFrom the superset of all valid local modeM,,;;q =
which means that\,_.; reflects the (deterministic) relative { M, ...}, we seek to select the minimal Sub3€tC M, 44
transformation between body parts; and X;. Figure 3 that covers all body part variables and simultaneously maxi
depicts alocal mode] which fully defines the relationship zes the overall model fig(D | M) := [] (e ¢(D | M). Here,
between any two body part¥; and X; and their dependent we use a model quality measuyéD | M) that is proportional
variables, if all other body parts are ignored. to both the prediction accuracy and to a penalty term for the



complexity of the model (see [2] for details). It turns out 300 -
that M can be found efficiently by computing the minimal observation noise e
spanning tree oM, ;4 taking the model quality measure of 250 | prediction error ———
the individual local models as the cost function. Such a body control error

spanning tree needs to cover all body paXis, ..., X, but = 200} 1
not necessarily all action componentsaaf . . . , a,. e
— 150 ¢ 1
V. EXPERIMENTS o

We tested our approach in a series of experiments, both o 100 r | \ X T
a real robot and in simulation. The goal of our experiments [N b

was to verify that S0 i E
1) model training and selection converges quickly to the o Lol J
correct kinematic chain, 2 4 6 8 10 12 14 16 18 20

2) the resulting body scheme can be used for accurate
prediction and control,

3) changes in the robot’s body (blocked joints / deformatig 5. prediction and control errors for a kinematic modet idearned
ons) at a later point are detected confidently , and  from scratch. Already after 7 samples, the average prediaticor is lower

4) the body scheme is updated automatically without hH\_an the average localization error of the visual markers.
man intervention.

The robot used to carry out the experiments is equipp - .
with a 6-DOF manipulator composed of Schunk PowerCube[(g' training samples, the accuracy of the predicted body

modules. The total length of the manipulator is aroardm part positions even outperformed the accuracy of the direct
With norﬁinal noise values ob 0.02°), the reportéd observations. The latter is a remarkable result as it mewais t
Voints — Y. )

o i, . 1;F\Ithough all local models are learned from noisy obsermatio
joint positions of the encoders were considered to be suffl- . . . . o
the resulting model is able to blindly predict positionsttha

ciently accurate to compute the ground truth positions ef t%re more accurate than immediate perception. The figure also

body parts from the known geometrical properties of the tobQ . . .
. . > . ves the accuracy of the gradient-based control algorithm
Visual perception was obtained by using a Sony DFW-SX9 L .
ere, we used an additional marker for defining a target

FireWire-camera at a resolution of 1280x960 pixels. On tc18cation for the robot's end effector. We learned the fultipo

of the robot’s joints, 7 black-and-white markers were dtest . . .
. . .~. scheme model from scratch as in the previous experiment and
(see Figure 1), that were detectable by the ARToolkit vision . . )
: . .~ used the gradient-based control algorithm to bring the end
module [20]. Per image, the system perceives the unfiltere . .
... @efector to the desired target location. The average ositg
6D poses of all detected markers. The standard deviation Qf ~." . . .
: ) error is in the order of the perception noise (approx. 50nea@, s
the camera noise was measuredstQ,, 1ers = 44mm in 3D _. . . . N
S L ran Figure 5), i.e. slightly higher than the prediction erroore.
space, which is acceptable considering that the camera wa
located two meters apart from robot.

In order for a local model to be valid, its translational an
rotational error on the test set needed to be below a thréshol We generated a large sequence of random motor commands
Of Oprans = 30 trans = 150mm andb,,; = 30,.; = 45°, with (ay,...,a,). Before accepting a pose, we checked that the
Tirans @Nd a,; as the standard deviation of the translation&onfiguration would not cause any (self-)collisions, anat th
and rotational observation noise, respectively. The ptiedti the markers of interest}s and X7) would potentially be

accuracy of each local model was evaluated using a test ¥&tble on the camera imageThis sequence was sent to the
With Size |D;esring| = 5, and new local models were trainedobot and after each motion command, the observed marker

Training samples

53. Recovery after Joint stuck

from a (distinct) set of Up tdDy,qiming| = 30 samples. positions (Y3, ...,Y,) were recordedIn the rare case of a
_ anticipated or a real (self-)collision during executidme tobot
A. Evaluation of Model Accuracy stopped and the sample was rejected. Careful analysis of the

To quantitatively evaluate the accuracy of the kinematiecorded data revealed that, on average, the individudtarsr
models learned from scratch as well as the convergence tuere visible only in86.8% of the time with the initial body
havior of our learning approach, we generated random actieyout. In a second run, we blocked the robot's end-effector
sequences and analyzed the intermediate models using go# a4, such that it could not move, and again recorded a log-
DOF robot of which the kinematic model is perfectly knownfile. Note that we allow arbitrary 3D motion (just constraine

Figure 5 gives the absolute errors of prediction and controy the geometry of the manipulator) and thus do not assume
after certain numbers of observations have been processed.full visibility of the markers.

a reference, we also give the average observation noise, i.eAn automated test procedure was then used to evaluate the
the absolute localization errors of the visual markers. performance and robustness of our approach. For each of the

As can be seen from the diagram, the body scheme c@® runs, a new data set was sampled from the recorded log-
verges robustly within the first 10 observations. After abotiles, consisting of 4 blocks witlv = 100 data samples each.
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Fig. 6. At ¢t = 100, a joint gets blocked, which causes the initial localFig. 7. The absolute prediction error of the combined kinematic model

model pengineered (Z6—7 | a4) to produce substantially larger predictionp(Z1_.7 | a1,. .., as) of our 6-DOF manipulator. This model is composed of
errors. Att = 126, the robot samples a new local mogegly, s (A6 — 7) 6 individual local models of which one is replaced by a newbrteed model
as replacement. at ¢ = 126 (cmp. Figure 6). As can be seen from the plot, the prediction

accuracy recovers quickly after each of the three extevets.

The first and the third block were sampled from the initialpodC. Recovery from a Deformed limb

shape, while _the second a_nq the fourth block were sampleo|n a second experimehtwe changed the end-effector limb
from the log-file where the joint got blocked. length and orientation and applied the same evaluationeproc
Figure 6 shows the prediction error of the local modelgure as in the previous subsection. This was accomplished by
predicting the end-effector pose. As expected, the priedict placing a tool with an attached marker in the robot’s gripper
error of the engineered local model increases significaityr  at different locations (see Figure 1).
the end-effector joint gets blocked at= 100. After a few  Although the overall result closely resembles the case of a
samples, the robot detects a mismatch in its internal modgbcked joint, there are a few interesting differenceseAthe
and starts to learn a new dynamic model (around 130), tool gets displaced at = 100, on average two local models
which quickly reaches the same accuracy as the originaked to be sampled because the first one is not sufficient.
engineered local model. At = 200, the joint gets repaired  Also note that it takes much more training samples for the
(unblocked). Now the estimated error of the newly learnedps to learn and validate the underlying probability distri
local model quickly increases while the estimated errohef ttion p(Zs_; | a4) (see Table I). The prediction accuracy of
engineered local model decreases rapidly towards itsainitthe whole system closely resembles the levels as in the case

accuracy. Later, at= 300, the joint gets blocked again in theof the blocked joint: On average, we measured after recovery
same position, the accuracy of the previously learned locgh accuracy oft7mm.

model increases significantly, and thus the robot can re-use i
this local model instead of having to learn a new one. D. Controlling a Deformed Robot

The results for 20 reruns of this experiment are given in Finally, we ran a series of experiments to verify that dy-
Figure 7.The hand-tuned initial geometrical model evaluatgdmically maintained body schemes can be used for accurate
to an avgrgged error at the end-effector of ,appmr,n' 2A demonstration video of this experiment can be found on the in-
After the joint gets blocked at= 100, the error in prediction temet at http://www.informatik.uni-freiburg.de/ ~ sturm/
increases rapidly. Aftet = 115, a single new local models media/resources/public/zora-7dof-demo.avi
gets sampled, which already is enough to bring down the over-

all error of the combined kinematic model to approximately TABLE |
51mm. Training of the new local model is completed at arounga yarion oF THE RECOVERY TIME REQUIRED AFTER BEING EXPOSED
t= ]-35 TO DIFFERENT TYPES OF FAILURESIN EACH OF THE4 X 20 RUNS, FULL
Later att = 200, when the joint gets un-blocked, the error RECOVERY WAS AFTER EACH EVENT ROBUSTLY ACHIEVED

estimate of the combined kinematic model increases sjightl = _ .
but ret h faster to its tvpical . itchiaalkb Visibility Failure Recovery time after

ut returns much faster to its typical accuracy: switchiag rate type failure | repair | same failure
to an already known local model requires much fewer dafa 91.9% | Joint blocked | 16.50 0.45 0.65
samples than learning a new modsé¢ Table ) At ¢t = 300, _ +£120| +£086| +115

. f .. 79.0% Limb deformed| 20.20 11.10 12.10

the same quick adaption can be observed when the joint gets 1196 083! %164

blocked again.
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