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Abstract— 1 Truly autonomous systems require the ability to
monitor and adapt their internal body scheme throughout their
entire lifetime. In this paper, we present an approach allowing
a robot to learn from scratch and maintain a generative model
of its own physical body through self-observation with a single
monocular camera. We represent the robot’s internal model by
a compact Bayesian network consisting of local models that
describe the physical relationships between neighboring body
parts. We introduce a flexible Bayesian framework that allows to
simultaneously select the maximum-likely network structure and
to learn the underlying conditional density functions. Changes in
the robot’s physiology can be detected by identifying mismatches
between model predictions and the self-perception. To quickly
adapt the model to changed situations, we developed an efficient
search heuristic that starts from the structure of the best explai-
ning memorized network and then replaces local components
where necessary.In experiments carried out with a real robot
equipped with a 6-DOF manipulator as well as in simulation, we
show that our system can quickly adapt to changes of the body
physiology in full 3D space, in particular with limited visibility,
noisy and partially missing observations, and without the need
for proprioception.

I. I NTRODUCTION

Autonomous robots deployed in real world environments
have to deal with situations in which components change
their behavior or properties over time. Such changes can for
example come from deformations of robot parts or material
fatigue. Additionally, to make proper use of tools, a robot
should be able to incorporate the tool into its own body scheme
and to adapt the gained knowledge in situations in which the
tool is grabbed differently. Finally, components of the robot
might get exchanged or replaced by newer parts that no longer
comply with the models engineered originally.

Kinematic models are widely used in practice, especially in
the context of robotic manipulation [3, 4]. These models are
generally derived analytically by an engineer [5] and usually
rely heavily on prior knowledge about the robots’ geometry
and kinematic parameters. As robotic systems become more
complex and versatile or are even delivered in a completely
reconfigurable way, there is a growing demand for techniques
allowing a robot to automatically learn body schemes with no
or only minimal human intervention.

1Parts of this work will appear in the following conference proceedings. The
initial work on bootstrapping, convergence behavior, prediction and control
accuracy has been intoduced in [1] using a 2-DOF robotic manipulator. In
a second paper [2], we extend the system towards life-long monitoring and
efficient adapation, and present experiments with a 6-DOF manipulator.

Fig. 1. Upper left: Our 6-DOF robotic manipulator arm learns and monitors
its own body-scheme using an external monocular camera and visual markers.
Upper right: After a different tool is placed in the robot’s end-effector, the
model predictions do not fit the current observations anymore.Bottom: The
current body scheme linking action signalsai and body partsXj using local
models∆j→k. Here, a mismatch between the internal model and recent self-
observation has been detected at∆6→7.

Clearly, such a capability would not only facilitate the de-
ployment and calibration of new robotic systems but also allow
for autonomous re-adaptation when the body scheme changes,
e.g., through regular wear-and-tear over time. Furthermore, the
ability to learn a body scheme is important in the context of
tool use scenarios in which a robot has to identify the effects
of its actions on the tool.

In this paper, we investigate how to equip autonomous
robots with the ability to learn and adapt their own body
schemes and kinematic models using exploratory actions and
self-perception only. We propose an approach to learn a
Bayesian network for the robot’s kinematic structure including
the forward and inverse models relating action commands and
body pose. More precisely, we start with a fully connected
network containing all perceivable body parts and available ac-
tion signals, perform random “motor babbling,” and iteratively
reduce the network complexity by analyzing the perceived
body motion. At the same time, we learn non-parametric
regression models for all dependencies in the network, which
can later be used to predict the body pose when no perception
is available or to allow for gradient-based posture control.

One of the major advantages of the approach presented in



Fig. 2. Continued experiment from Figure 1. The robot samples a local
model as replacement for the mismatching component∆6→7. Left: The first
newly sampled model (∆gp

6→7
) has high uncertainty, because of the missing

dependency on actiona6. Right: The second sampled model (∆gp′

6→7
) is a

more suitable replacement for the mismatching component.

this paper is that it addresses all of the following practical
problems that frequently arise in robotic manipulation tasks
in a single framework:

• Prediction: If both the structure and the CDFs of the
Bayesian network are known, the robot is able to predict
for a given action command the expected resulting body
configuration.

• Control: Conversely, given a target body pose, our ap-
proach is able to generate appropriate action commands
that will lead to this pose.

• Model testing: Given both a prediction and an observati-
on of the current body pose, the robot is able to estimate
the accuracy of its own pose predictions. Model accuracy
can, for example, be defined in terms of a distance metric
or a likelihood function.

• Learning: Given a sequence of action signals and the
corresponding body postures, the Bayesian network and
its parameters can be learned from the data.

• Discovering the network structure: When the structure
of the Bayesian network is unknown, the robot is able to
build it from the available local models which are most
consistent with the observed data.

• Failure detection and model adaptation:When the ro-
bot’s physiology changes, e.g., when a joint gets blocked
or is deformed, or a visual marker is changed, this is
efficiently detected so that only the affected local models
of the Bayesian network need to be replaced.

II. RELATED WORK

The problem of learning kinematics of robots has been
investigated heavily in the past. For example, Kolter and
Ng [6] enable a quadruped robot to learn how to follow om-

nidirectional paths using dimensionality reduction techniques
and based on simulations. Their key idea is to use the simulator
for identifying a suitable subspace for policies and then to
learn with the real robot only in this low-dimensional space.
A similar direction has been explored by Deardenet al. [7],
who applied dimensionality reduction techniques to unveilthe
underlying structure of the body scheme. Similar to this work,
their approach is formulated as a model selection problem
between different Bayesian networks. Another instance of
approaches based on dimensionality reduction is the work by
Grimeset al. [8] who applied the principal component analysis
(PCA) in conjunction with Gaussian process regression for
learning walking gaits on a humanoid robot.

Yoshikawaet al. [9] used Hebbian networks to discover the
body scheme from self-occlusion or self-touching sensations.
Later, [10] learned classifiers for body/non-body discrimina-
tion from visual data. Other approaches used for example
nearest-neighbor interpolation [11] or neural networks [12].
Recently, Tinget al. [13] developed a Bayesian parameter
identification method for nonlinear dynamic systems, such as
a robotic arm or a 7-DOF robotic head.

The approach presented in this paper is also related to
the problem of self-calibration which can be understood as
a subproblem of body scheme learning. When the kinematic
model is known up to some parameters, they can in certain
cases be efficiently estimated by maximizing the likelihoodof
the model given the data [14]. Genetic algorithms have been
used by Bongardet al. [15] for parameter optimization when
no closed form is available. To a certain extend, such methods
can also be used to calibrate a robot that is temporarily using
a tool [16]. In contrast to the work presented here, such
approaches require a parameterized kinematic model of the
robot.

To achieve continuous self-modeling, Bongardet al. [17]
recently described a robotic system that continuously learns
its own structure from actuation-sensation relationships. In
three alternating phases (modeling, testing, prediction), their
system generates new structure hypotheses using stochastic
optimization, which are validated by generating actions and
by analyzing the following sensory input. In a more general
context, Bongardet al. [18] studied structure learning in
arbitrary non-linear systems using similar mechanisms.

In contrast to all the approaches described above, we
propose an algorithm that both learns the structure as well
as functional mappings for the individual building blocks.
Furthermore, our model is able to revise its structure and
component models on-the-fly.

III. A B AYESIAN FRAMEWORK FORROBOTIC BODY

SCHEMES

A robotic body scheme describes the relationship bet-
ween available action signals〈a1, . . . , am〉, self-observations
〈Y1, . . . , Yn〉, and the configurations of the robot’s body parts
〈X1, . . . ,Xn〉. In our concrete scenario, in which we consider
the body scheme of a robotic manipulator arm in conjunc-
tion with a stationary, monocular camera, the action signals



Fig. 3. Graphical model for two body partsXi and Xj as well as their
dependent variables.A denotes the set of independent action variables that
cause a local transformation∆i→j . Yi andYj are the observed part locations,
andZi→j is their relative geometric transformation.

ai ∈ R are real-valued variables corresponding to the joint
angles. Whereas theXi ∈ R

6 encode the 6-dimensional poses
(3D Cartesian position and 3D Euler angles) of the body
parts w.r.t. a reference coordinate frame, theYi ∈ R

6 are
generally noisy and potentially missing observations of the
body parts. Throughout this paper, we use capital letters to
denote 6D pose variables to highlight that these also uniquely
define homogeneous transformation matrices, which can be
concatenated and inverted. Note that we do not assume direct
feedback/proprioception telling the robot how well jointi has
approached the requested target angleai.

Formally, we seek to learn the probability distribution

p(X1, . . . ,Xn, Y1, . . . , Yn | a1, . . . , am) , (1)

which in this form is intractable for all but the simplest
scenarios. To simplify the problem, it is typically assumed
that each observation variableYi is independent from all other
variables given the true configurationXi of the corresponding
body part and that they can thus be fully characterized by an
observation modelp(Yi | Xi). Furthermore, if the kinematic
structure of the robot was known, a large number of pair-wise
independencies between body parts and action signals could
be assumed, which in turn would lead to the much simpler,
factorized model

p(X1, . . . ,Xn | a1, . . . , am) = (2)
∏

i

p(Xi | parents(Xi)) · p(parents(Xi) | a1, . . . , am).

Here,parents(Xi) denotes the set of locations of body parts,
which are directly connected to body parti.

The main idea behind this work is to make the factorized
structure of the problem explicit by introducing (hidden)
transformation variables∆i→j := X−1

i Xj for all pairs of
body parts(Xi,Xj) as well as their observed counterparts
Zi→j := Y −1

i Yj . Here, we use the 6D pose vectorsX and
Y as their equivalent homogeneous transformation matrices,
which means that∆i→j reflects the (deterministic) relative
transformation between body partsXi and Xj . Figure 3
depicts a local model, which fully defines the relationship
between any two body partsXi and Xj and their dependent
variables, if all other body parts are ignored.

Fig. 4. In an early learning phase, the robot knows only little about its body
structure, i.e., all possible local models need to be considered in parallel. From
the subset of valid local models, a minimal spanning tree can be constructed
which, in turn, forms a Bayesian network. This can subsequently be used as
a body scheme for prediction and control.

Since local models are easily invertible (∆i→j are homoge-
neous transformations), any set ofn − 1 local models which
form a spanning tree over alln body parts defines a model
for the whole kinematic structure.

A. Local Models

The local kinematic models are the central concept in
our body scheme framework. Alocal modelM describes
the geometric relationshippM(Zi→j | Ai→j) between two
observed body partsYi and Yj , given a subset of the action
signalAi→j ⊂ {a1, . . . , an}.

The probability distribution underlying a local model can
be defined in various ways. If an analytic model of the
robot exists from its specifications, it can be used directly
to constructpM(Zi→j | Ai→j). The standard way to describe
a geometric model for robot manipulators is in terms of the
Denavit-Hartenberg parameters [3, 19]. When available, the
advantages of these models are outstanding: they are exact
and efficient in evaluation. When the exact model is not
available a-priori, it needs to be learned from data. On the
real robotic platform used in our experiments, the actionsai

correspond to the target angle requested from jointi and the
observationsYi are obtained by tracking visual markers in
3D space including their 3D orientation [20] (see the top right
image of Figure 1). Note that theYi’s are inherently noisy and
that missing observations are common, for example in the case
of (self-)occlusion. We learn the transformation parameters of
the local models independently using the Gaussian process
model for regression [21].

IV. L EARNING THE NETWORK TOPOLOGY

If no prior knowledge about the robot’s body scheme exists,
we initialize a fully connected network model (see Figure 4),
resulting in a total set of

∑m
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m

k

)

local models.Given
a set of self observations, the robot can determine the validity
of the local models by evaluating the prediction error on a
seperate test set.

From the superset of all valid local modelsMvalid =
{M1, . . .}, we seek to select the minimal subsetM ⊂ Mvalid

that covers all body part variables and simultaneously maximi-
zes the overall model fitq(D | M) :=

∏

M∈M
q(D | M). Here,

we use a model quality measureq(D | M) that is proportional
to both the prediction accuracy and to a penalty term for the



complexity of the model (see [2] for details). It turns out
that M can be found efficiently by computing the minimal
spanning tree ofMvalid taking the model quality measure of
the individual local models as the cost function. Such a body
spanning tree needs to cover all body partsX1, . . . ,Xn but
not necessarily all action components ofa1, . . . , am.

V. EXPERIMENTS

We tested our approach in a series of experiments, both on
a real robot and in simulation. The goal of our experiments
was to verify that

1) model training and selection converges quickly to the
correct kinematic chain,

2) the resulting body scheme can be used for accurate
prediction and control,

3) changes in the robot’s body (blocked joints / deformati-
ons) at a later point are detected confidently , and

4) the body scheme is updated automatically without hu-
man intervention.

The robot used to carry out the experiments is equipped
with a 6-DOF manipulator composed of Schunk PowerCube
modules. The total length of the manipulator is around1.20m.
With nominal noise values of (σjoints = 0.02◦), the reported
joint positions of the encoders were considered to be suffi-
ciently accurate to compute the ground truth positions of the
body parts from the known geometrical properties of the robot.
Visual perception was obtained by using a Sony DFW-SX900
FireWire-camera at a resolution of 1280x960 pixels. On top
of the robot’s joints, 7 black-and-white markers were attached
(see Figure 1), that were detectable by the ARToolkit vision
module [20]. Per image, the system perceives the unfiltered
6D poses of all detected markers. The standard deviation of
the camera noise was measured toσmarkers = 44mm in 3D
space, which is acceptable considering that the camera was
located two meters apart from robot.

In order for a local model to be valid, its translational and
rotational error on the test set needed to be below a threshold
of θtrans = 3σtrans = 150mm andθrot = 3σrot = 45◦, with
σtrans and σrot as the standard deviation of the translational
and rotational observation noise, respectively. The prediction
accuracy of each local model was evaluated using a test set
with size |Dtesting | = 5, and new local models were trained
from a (distinct) set of up to|Dtraining | = 30 samples.

A. Evaluation of Model Accuracy

To quantitatively evaluate the accuracy of the kinematic
models learned from scratch as well as the convergence be-
havior of our learning approach, we generated random action
sequences and analyzed the intermediate models using a 2-
DOF robot of which the kinematic model is perfectly known.

Figure 5 gives the absolute errors of prediction and control
after certain numbers of observations have been processed.For
a reference, we also give the average observation noise, i.e.
the absolute localization errors of the visual markers.

As can be seen from the diagram, the body scheme con-
verges robustly within the first 10 observations. After about
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Fig. 5. Prediction and control errors for a kinematic model that is learned
from scratch. Already after 7 samples, the average prediction error is lower
than the average localization error of the visual markers.

15 training samples, the accuracy of the predicted body
part positions even outperformed the accuracy of the direct
observations. The latter is a remarkable result as it means that,
although all local models are learned from noisy observations,
the resulting model is able to blindly predict positions that
are more accurate than immediate perception. The figure also
gives the accuracy of the gradient-based control algorithm.
Here, we used an additional marker for defining a target
location for the robot’s end effector. We learned the full body
scheme model from scratch as in the previous experiment and
used the gradient-based control algorithm to bring the end
effector to the desired target location. The average positioning
error is in the order of the perception noise (approx. 50mm, see
Figure 5), i.e. slightly higher than the prediction error alone.

B. Recovery after Joint stuck

We generated a large sequence of random motor commands
〈a1, . . . , am〉. Before accepting a pose, we checked that the
configuration would not cause any (self-)collisions, and that
the markers of interest (X6 and X7) would potentially be
visible on the camera image.This sequence was sent to the
robot and after each motion command, the observed marker
positions 〈Y1, . . . , Yn〉 were recorded.In the rare case of a
anticipated or a real (self-)collision during execution, the robot
stopped and the sample was rejected. Careful analysis of the
recorded data revealed that, on average, the individual markers
were visible only in86.8% of the time with the initial body
layout. In a second run, we blocked the robot’s end-effector
joint a4, such that it could not move, and again recorded a log-
file. Note that we allow arbitrary 3D motion (just constrained
by the geometry of the manipulator) and thus do not assume
full visibility of the markers.

An automated test procedure was then used to evaluate the
performance and robustness of our approach. For each of the
20 runs, a new data set was sampled from the recorded log-
files, consisting of 4 blocks withN = 100 data samples each.
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Fig. 6. At t = 100, a joint gets blocked, which causes the initial local
model pengineered (Z6→7 | a4) to produce substantially larger prediction
errors. Att = 126, the robot samples a new local modelplearned (∆6 → 7)
as replacement.

The first and the third block were sampled from the initial body
shape, while the second and the fourth block were sampled
from the log-file where the joint got blocked.

Figure 6 shows the prediction error of the local models
predicting the end-effector pose. As expected, the prediction
error of the engineered local model increases significantlyafter
the end-effector joint gets blocked att = 100. After a few
samples, the robot detects a mismatch in its internal model
and starts to learn a new dynamic model (aroundt = 130),
which quickly reaches the same accuracy as the original,
engineered local model. Att = 200, the joint gets repaired
(unblocked). Now the estimated error of the newly learned
local model quickly increases while the estimated error of the
engineered local model decreases rapidly towards its initial
accuracy. Later, att = 300, the joint gets blocked again in the
same position, the accuracy of the previously learned local
model increases significantly, and thus the robot can re-use
this local model instead of having to learn a new one.

The results for 20 reruns of this experiment are given in
Figure 7.The hand-tuned initial geometrical model evaluates
to an averaged error at the end-effector of approx.37mm.
After the joint gets blocked att = 100, the error in prediction
increases rapidly. Aftert = 115, a single new local models
gets sampled, which already is enough to bring down the over-
all error of the combined kinematic model to approximately
51mm. Training of the new local model is completed at around
t = 135.

Later att = 200, when the joint gets un-blocked, the error
estimate of the combined kinematic model increases slightly,
but returns much faster to its typical accuracy: switching back
to an already known local model requires much fewer data
samples than learning a new model (see Table I). At t = 300,
the same quick adaption can be observed when the joint gets
blocked again.
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Fig. 7. The absolute prediction error of the combined kinematic model
p(Z1→7 | a1, . . . , a4) of our 6-DOF manipulator. This model is composed of
6 individual local models of which one is replaced by a newly learned model
at t = 126 (cmp. Figure 6). As can be seen from the plot, the prediction
accuracy recovers quickly after each of the three external events.

C. Recovery from a Deformed limb

In a second experiment2, we changed the end-effector limb
length and orientation and applied the same evaluation proce-
dure as in the previous subsection. This was accomplished by
placing a tool with an attached marker in the robot’s gripper
at different locations (see Figure 1).

Although the overall result closely resembles the case of a
blocked joint, there are a few interesting differences. After the
tool gets displaced att = 100, on average two local models
need to be sampled because the first one is not sufficient.

Also note that it takes much more training samples for the
GPs to learn and validate the underlying probability distribu-
tion p(Z6→7 | a4) (see Table I). The prediction accuracy of
the whole system closely resembles the levels as in the case
of the blocked joint: On average, we measured after recovery
an accuracy of47mm.

D. Controlling a Deformed Robot

Finally, we ran a series of experiments to verify that dy-
namically maintained body schemes can be used for accurate

2A demonstration video of this experiment can be found on the in-
ternet at http://www.informatik.uni-freiburg.de/ ˜ sturm/
media/resources/public/zora-7dof-demo.avi

TABLE I

EVALUATION OF THE RECOVERY TIME REQUIRED AFTER BEING EXPOSED

TO DIFFERENT TYPES OF FAILURES. IN EACH OF THE4 × 20 RUNS, FULL

RECOVERY WAS AFTER EACH EVENT ROBUSTLY ACHIEVED.

Visibility Failure Recovery time after
rate type failure repair same failure

91.9% Joint blocked 16.50 0.45 0.65
± 1.20 ± 0.86 ± 1.15

79.0% Limb deformed 20.20 11.10 12.10
±1.96 ± 0.83 ± 1.64



Fig. 8. The manipulator robot with a deformed limb has to followsthe blue
target trajectory. With a static body model, it suffers from strong derivation
(red trajectory). By using our approach, the body scheme is dynamically
adapted, and the trajectory is very well approached (green trajectory).

positioning and control. The experiments were executed on a
6-DOF manipulator in simulation.

We defined a 3D trajectory consisting of 30 way-points
that the manipulator should approach by inverse kinematics
using its current body scheme, see Figure 8. When the initial
geometric model was used to follow the trajectory by using
the undamaged manipulator, a positioning accuracy of7.03mm
was measured. When the middle limb was deformed by 45◦,
the manipulator with a static body scheme was significantly
off course, leading to an average positioning accuracy of
189.35mm. With dynamic adaptation enabled, the precision
settled at15.24mm. This shows that dynamic model adaption
enables a robot to maintain a high positioning accuracy after
substantial changes to its body physiology.

VI. CONCLUSION

In this paper, we presented a novel approach to life-long
body scheme adaptation for a robotic manipulation system.
Our central idea is to continuously learn a large set of
local kinematic models using non-parametric regression and to
search for the best arrangement of these models to represent
the full system.

In experiments carried out with a real robot and in simu-
lation, we demonstrated that our system is able to deal with
missing and noisy observations, operates in full 3D space, and
is able to perform relevant tasks like prediction, control,and
online adaptation after failures. Challenging topics for further
investigation include developing an active exploration strategy,
learning from marker-less observations, point-like features, or
range observations and learning for fully unobservable parts
of the robot.
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