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Summary

This thesis presents a framework for image segmentation and 3D reconstruction under
topological constraints, specifically constraints on the connectivity of the reconstructed
object, a problem class that is not yet sufficiently solved by existing methods.
Image segmentation, the partition of an image into meaningful parts, is one of the most
important and well studied problems in Computer Vision. This stems on the one hand
from its high importance for practical applications, often the first step towards a semantic
interpretation of the image data, for example in object detection and classification, or
image based quantification in medical imaging. On the other hand, image segmentation
problems are interesting from a theoretical perspective. Even moderate tasks, for example
segmenting an image into more than two regions, result in problems which remain hard
to solve and require advanced knowledge in mathematical optimization.
Although the field has been studied for decades, existing methods often share a common
drawback. They fail in cases when the object of interest has an elongated and thin shape.
This occurs often in practical applications, for example the segmentation of blood vessels
in medical imaging or in 3D reconstruction, when the object contains thin or small
detailed structures.
In this thesis, we present a framework for image segmentation and 3D reconstruction,
that is specifically successful in these cases of thin and elongated structures and allows
improved results in comparison to existing methods. The framework allows to incorporate
constraints on the topology of the object, specifically on its connectedness. The major
contribution of this thesis is, that the constraints can be formulated as linear constraints
in a convex optimization framework, which allows to solve the resulting optimization
problem to global optimality. In comparison to most prior work, the method is very
efficient both in runtime and memory requirements, which allows applications on large
scale practical problems in medical imaging and 3D reconstruction. Furthermore, an
efficient projection method onto the feasible set is presented, that significantly reduces
the runtime complexity in cases when the connections have to span larger distances.
Additionally, the thesis presents an approach to define a probabilistic model of the da-
ta term used for image segmentation and, based on the uncertainty of the classifier, to
improve the probabilistic model over time by presenting informative queries to the user.
Furthermore, we present two real-time capable approaches: an improvement of our pre-
viously published real-time dense geometry reconstruction method, and a novel approach
for model based object tracking with phase based Time-of-Flight depth cameras.
keywords: image segmentation, 3D reconstruction, convex optimization, topological cons-
traints, connectedness
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Zusammenfassung

Diese Arbeit beschreibt eine einheitliche Formulierung des Problems der Bildsegmentie-
rung und 3D Rekonstruktion, die es erlaubt Nebenbedingungen über die Topologie des
rekonstruierten Objektes zu formulieren, eine Problemstellung die von bisherigen Ansät-
zen nur unzureichend für praktische Anwendungen gelöst wurde.
Die Problemstellung der Bildsegmentierung, der Aufteilung eines Bildes in spezifische
Teilsegmente, ist eines der am längsten und besten untersuchten Teilgebiete des For-
schungsfeldes "Maschinelles Sehen". Dies ist zum einen durch die hohe praktische Relevanz
der Problemstellung gegeben, meist ist die Bildsegmentierung eine Voraussetzung für eine
semantische Analyse von Bilddaten, zum Beispiel für die Objekt-Detektion und Klassi-
fizierung und bei Anwendungen in der medizinischen Bildverarbeitung zur bildbasier-
ten Quantifizierung. Zum anderen sind Bildsegmentierungsprobleme aus algorithmisch-
analytischer Perspektive interessant: Bereits relativ einfache Aufgaben, zum Beispiel die
Segmentierung in mehr als zwei Regionen, resultieren in mathematisch anspruchsvolle
Problemstellungen und erfordern fortgeschrittene Methoden der mathematischen Opti-
mierung.
Obwohl das Aufgabengebiet der Bildsegmentierung bereits seit mehreren Jahrzehnten
erforscht wird, sind existierende Verfahren unzureichend, wenn das zu rekonstruierende
Objekt dünne Strukturen aufweist. Dies ist in der Praxis ein häufig auftretendes Problem,
zum Beispiel bei der Segmentierung von Blutgefäßen in der medizinischen Bildverarbei-
tung.
In dieser Arbeit wird ein Methode zur Bildsegmentierung und 3D Rekonstruktion vorge-
stellt, die insbesondere in solchen Fällen von dünnen Strukturen eine deutliche Verbesse-
rung der Ergebnisse im Vergleich zu existierenden Verfahren erzielt. Der Ansatz erlaubt,
Nebenbedingungen über die Topologie des zu rekonstruierenden Objektes zu formulieren,
insbesondere über die Konnektivität des Objektes. Einer der Hauptbeiträge der Arbeit
ist, dass sich die Nebenbedingungen als lineare Nebenbedingungen in einem Ansatz der
konvexen Optimierung formulieren lassen. Hierdurch ist es möglich, das resultierende
Optimierungsproblem global optimal zu lösen. Im Vergleich zu existierenden Ansätzen
ist das vorgestellte Verfahren sehr effizient im Hinblick auf Laufzeit und Speicher, und
erlaubt daher die praktische Anwendung bei Fragestellungen größerer Komplexität, zum
Beispiel in der medizinischen Bildverarbeitung von dreidimensionalen Datensätzen der
Computertomographie oder der 3D Rekonstruktion von dynamischen Szenen. Darüber-
hinaus wird ein effizientes Projektionsverfahren auf den Lösungsraum vorgestellt, der die
Laufzeit besonders in solchen Fällen signifikant verkürzt, in denen Verbindungen größerer
Distanz zwischen den einzelnen Teilen des Objektes gefunden werden müssen.
Weitere Teile der Arbeit umfassen die Bestimmung eines Modells für den Datenterm des
Segmentierungsmodells mit Hilfe von Gauß-Prozessen, das basierend auf der Unsicherheit
der Klassifikation verbessert wird, indem unsicher klassifizierte Bildbereiche identifiziert
und dem Benutzer zu Begutachtung präsentiert werden. Darüberhinaus enthält diese Ar-
beit zwei echtzeitfähige Verfahren: eine Verbesserung unseres Ansatzes zur Schätzung
von dichten Tiefenkarten aus mehreren Bildern, sowie einen neuartigen Ansatz zur Ob-
jektverfolgung mit Hilfe von phasenmodulierten Tiefenkameras.
Stichworte: Bildsegmentierung, 3D-Rekonstruktion, Konvexe Optimierung, Topologische
Nebenbedingungen, Konnektivität
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Part I: Introduction

1. Introduction

Current state-of-the-art image segmentation methods fail when the object, that should
be segmented, contains thin small scale structures. This is due to the so called shrinking
bias of the commonly used boundary length regularizer: the regularizer favors compact
and round objects, which results in thin structures being removed from the foreground
region.
Segmentation problems with thin, fine-scale details frequently arise in several areas of
computer vision. The most prominent ones are in medical applications, e.g. when seg-
menting the vascular network, which allows biophysical simulations of the blood flow, or
when segmenting neural structures in microscopy images. Another application area is in
satellite imagery, where street networks and rivers should be detected.
We propose to use topological constraints to preserve these thin structures and impose
connectedness of the segmented region, which also acts as a regularizer that suppresses
noise and spurious detections, and furthermore fills and re-connects incomplete areas.
We show that connectivity constraints are well suited for interactive segmentation, by
allowing to extract a single connected component with user interactive definition of ob-
ject parts that should be connected to the foreground component. Also, we show that
connectivity constraints greatly improve current state-of-the-art methods for multiview
3D scene reconstruction, especially when the scene contains thin fine-scaled details. This
allows to reconstruct even very thin object parts, that previously could not be recon-
structed with existing methods.
In Fig. 1.1 we depict several application areas of connectivity constraints in computer
vision. In multiview 3D reconstruction of dynamic scenes, the connectivity constraints
allow to reconstruct thin structures, in this example a rope, which otherwise are very hard
to reconstruct by state-of-the-art approaches. Other application areas include biomedical
image segmentation of 2D data, here blood vessel segmentation in the retina, as well as
of 3D data, in this case 3D CT angiography of the vascular tree in the lung. Especially

Figure 1.1.: Segmentation problems with thin, fine-scale details arise in several areas of computer
vision and medical imaging. Top left: 3D multiview dynamic scene reconstruction. Right: CT
angiography. Bottom Left: Segmentation of the retinal vascular tree.

1. Introduction 3



Part I: Introduction

the 3D angiography example depicts the benefits of the proposed approach: it allows to
remove noise from the data and to fill in missing parts of the foreground.

1.1. Key Contributions

This thesis presents the first practicable approach for connectivity constraints in image
segmentation and 3D reconstruction. These two application domains are covered in
Part II and Part III respectively. Further results include a method for active learning
in image segmentation, a review and extension of our work on real-time dense geometry
reconstruction, and a novel approach for real-time object tracking with a time-of-flight
camera.

Image Segmentation with Connectivity Constraints

In Part II of this thesis, we present a very efficient method for connectivity constraints
in image segmentation. In contrast to previous approaches, that aim to approximate a
solution to the underlying NP hard optimization problem, we propose to reformulate the
connectivity constraint along geodesics in the image domain. The main advantage of
the proposed approach is that the resulting optimization problem is convex, and can be
solved to global optimality. Furthermore, the result is independent of the initialization
and only depends on the chosen root of the geodesics. In contrast to graph-cut based
methods, the proposed approach does not suffer from metrication artifacts. A recent
study of Rempfler et al. [117] evaluates the proposed method in comparison to an exact
global optimal solution and finds no difference regarding F1-measure, precision, and recall
on a medical image segmentation benchmark.

Connectivity Constraints for Image Segmentation The general framework for
connectivity constraints is described in Chapter 5 where we propose to formulate the
constraints along geodesics in the image domain. We include the constraints in a con-
tinuous image segmentation framework and provide a proof of the thresholding theorem,
which states that a thresholded version of a solution to the relaxed problem is an optimal
solution of the original discrete image segmentation problem. The constrained optimiz-
ation problem is convex, and the constraints are included via Legendre-Fenchel duality.
Furthermore, we derive a formulation of the primal-dual hybrid gradient method on the
domain of a discrete graph.

Direct Projection onto the Constraint Set In Chapter 6 we provide an alternative
approach to solve the resulting constrained optimization problem, and present an efficient
projection method that allows a direct projection onto the feasible set. Especially for long
range connections the method is by several orders of magnitudes faster than the approach
based on Legendre-Fenchel duality, reducing the required run-time from hundreds of
seconds to well below 10 seconds for medium problem sizes.

Active Learning for Image Segmentation Chapter 7 describes an active learn-
ing framework to train a classifier for image segmentation. Based on the classification
uncertainty, the method queries additional labels for previously unlabeled regions from
the user and subsequently improves the segmentation. The method is especially useful
for large image datasets, for example satellite imagery and volumetric data in medical

4 1. Introduction
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imaging, where it is unfeasible to manually correct the classification result. We valid-
ate in experiments, that the uncertainty based queries quickly improve the classification
performance.

3D Reconstruction and Tracking

In Part III, we describe several contributions for image based 3D reconstruction, includ-
ing the first method for connectivity constraints in multi-view 3D reconstruction, an
improved version of our real time dense reconstruction method, and a novel approach for
object tracking with a time-of-flight camera.

Connectivity in 3D Reconstruction We present the first method which includes
topological constraints into multi-view 3D reconstruction. By combining a recent method
for dynamic 3D reconstruction with the proposed framework for connectivity constraints,
we can clearly improve the state-of-the-art, especially in case of very thin object parts,
that cannot be sufficiently reconstructed with existing methods.

Real-time Dense 3D Reconstruction We review our seminal work for real-time
dense multi-view 3D reconstruction and extend it by introducing dual variables in the
data term. In contrast to the previously used half-quadratic splitting method, the pro-
posed method allows to compute an exact minimizer of every linearized sub-problem.
Furthermore, we discuss the connection between half quadratic splitting and infimal con-
volution and from these considerations motivate to use the Huber loss in the regularizer
of the depth map.

Raw Time-of-Flight based Tracking We propose a novel approach for model based
object tracking by directly tracking the object in the raw infrared signal of a time-of-
flight camera. The proposed method is able to track and to infer the depth of even
very quickly moving objects, for which the usual approach of first performing a depth
reconstruction and then tracking in the reconstructed depth image fails. In contrast to
the standard approach, the proposed method is not affected by the motion artifacts from
phase unwrapping of the time-of-flight signal. Additionally, we propose an equidistant
exposure timing, which is more suitable for object tracking than the standard exposure
timing of a time-of-flight camera.

1.2. Outline of the Thesis

In Chapter 2 we give an introduction to several concepts from convex optimization which
will be used throughout the thesis, including convex analysis, the convex conjugate,
Lagrange duality, conditions for weak and strong duality, and the primal-dual hybrid
gradient method. In Chapter 3 we describe the total variation of a function, its geometric
interpretation, and how it can be minimized using the mathematical concepts described
in Chapter 2. In Chapter 4 we give an introduction to connectedness, as property of
topological spaces, and in the context of graph theory, which concludes the introductory
material.
The following two parts II and III contain the contributions discussed above, with the
general topic of image segmentation in Part II and 3D reconstruction in Part III. The
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thesis is concluded in Chapter 11 which provides an overview of the achieved results and
discusses possible directions for future research.

1.3. Publications

Most of the work in this thesis appears in the following publications:

[1] J. Stühmer, S. Nowozin, A. Fitzgibbon, R. Szeliski, T. Perry, S. Acharya, D. Cremers,
and J. Shotton. Model-Based Tracking at 300Hz using Raw Time-of-Flight Observa-
tions. In Proc. International Conference on Computer Vision. Santiago, Chile, 2015.

[2] J. Stühmer and D. Cremers. A Fast Projection Method for Connectivity Constraints
in Image Segmentation. In X.-C. Tai, E. Bae, T. F. Chan, and M. Lysaker (Edit-
ors), Proceedings of the International Conference on Energy Minimization Methods
in Computer Vision and Pattern Recognition, LNCS. 2015. (Oral Presentation).

[3] M. R. Oswald, J. Stühmer, and D. Cremers. Generalized Connectivity Constraints
for Spatio-temporal 3D Reconstruction. In Proc. European Conference on Computer
Vision, pages 32–46. 2014.

[4] R. Triebel, J. Stühmer, M. Souiai, and D. Cremers. Active Online Learning for
Interactive Segmentation using Sparse Gaussian Processes. In German Conference
on Pattern Recognition. 2014.

[5] J. Stühmer, P. Schröder, and D. Cremers. Tree Shape Priors with Connectivity
Constraints using Convex Relaxation on General Graphs. In Proc. International
Conference on Computer Vision. Sydney, Australia, 2013. (Oral Presentation).

The following publications contain parts of my Diploma thesis [134] and are the founda-
tion of Chapter 9:

[6] J. Stühmer, S. Gumhold, and D. Cremers. Real-time Dense Geometry from a Hand-
held Camera. In Pattern Recognition (Proc. DAGM), pages 11–20. Darmstadt, Ger-
many, 2010. (Oral Presentation). (Part of Diploma Thesis).

[7] J. Stühmer, S. Gumhold, and D. Cremers. Parallel Generalized Thresholding Scheme
for Live Dense Geometry from a Handheld Camera. In ECCV Workshop on Computer
Vision on GPUs (CVGPU). Heraklion, Greece, 2010. (Oral Presentation). (Part of
Diploma Thesis).

This thesis extends the work from the Diploma thesis by a dual optimization scheme for
the data term and a robust Huber loss for the regularizer.

1.4. Collaborations

The research presented in this thesis was partly conducted as a member of the student
researcher visiting program at the California Institute of Technology, Pasadena, USA,
and the research intern program at Microsoft Research Cambridge, UK.
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1.5. Notation and Mathematical Symbols

α a scalar
x a vector
R the real numbers
R≥0 positive real numbers (including zero)
I an image
Ω the image domain
Σf>µ the upper levelset of a function f thresholded at the value µ
∇ gradient operator
div divergence operator
∂ifj for a function f , defined over the vertices of a graph,

this is the directional derivative along the edge ij
π projection
Π orthogonal projection onto a set
G graph
Ts tree with root vertex s
N neighborhood of a vertex
V vertex set of a graph
E edge set of a graph
ET edge set of the tree T
V volume domain
T time domain
V×T space-time domain
Σ surface
int(Σ) surface interior
ext(Σ) surface exterior
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2. Introductory Material on Convex
Optimization

This chapter gives an introduction to convex optimization methods, which provide a
unifying framework for many of the algorithms derived in this thesis. Throughout the
chapter, we follow the definitions and notation of Boyd and Vandenberghe [17] and Parikh
and Boyd [110] while adding some additional remarks on the equivalence of the Legendre-
Fenchel-transform and Lagrangian multipliers in convex optimization. Furthermore, we
add references to relevant algorithms in the field of computer vision when necessary.

2.1. Convex Analysis

Affine Set We consider the set C ⊂ Rn. Let x and x′ be two distinct points in C. The
set C is called affine if the line through x and x′ lies in C, i.e. if for any x, x′ ∈ C and
θ ∈ R, we have θx+ (1− θ)x′ ∈ C [17].
We extend this concept and consider a set of points x1, . . . , xk and a set of coefficients
θ1, . . . , θk with θ1 + · · ·+θk = 1, i.e. that sum up to one, and call a point θ1x1 + · · ·+θkxk
an affine combination of the points x1, . . . , xk.
The set of all affine combinations of points in a set C ⊂ Rn is called the affine hull of C,
which we denote with aff .

Relative Interior The relative interior of a set C is defined as

relintC = {x ∈ C | B(x, r) ∩ aff C ⊂ C for some r > 0} , (2.1)

where B(x, r) = {y | ‖y − x‖ ≤ r} is a ball of radius r centered at x. The norm ‖·‖ can
be any norm, and all norms define the same relative interior [17].

Convex Set We consider the set C ⊂ Rn. Let x and x′ be two distinct points in C.
The set C is called convex if the line segment between x and x′ lies in C, i.e. if for any
x, x′ ∈ C and θ ∈ R with 0 ≤ θ ≤ 1, it holds that θx+ (1− θ)x′ ∈ C [17].

2.2. Convex Optimization Problem

In mathematical optimization, a convex optimization problem is of the form

minimize f0(x)
s.t. fi(x) ≤ bi, i = 1, . . . ,m ,

(2.2)

where the functions f0, . . . , fm : Rn 7→ R ∪ {+∞} are convex, which means that they
satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y)

2. Introductory Material on Convex Optimization 9
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for all x, y ∈ dom f and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0, and dom fi are
convex sets for i = 0, . . . ,m.
With dom f we denote the effective domain of a function f which is defined as

dom f = {x ∈ Rn|f(x) < +∞} , (2.3)

thus it is the set of points for which f maps to finite values.
Fundamental for this research is the following property:

Theorem 2.2.1. Every locally optimal point of (2.2) is globally optimal.

Proof [17]. To show this, let us assume that x is a locally optimal point of a convex
optimization problem. This means x is feasible and for some R > 0 it holds that

f0(x) = inf{f0(z) | z feasible, ‖z − x‖2 ≤ R}. (2.4)

Let us assume that x is not globally optimal, then there has to exist a feasible y with
f0(y) < f0(x). From (2.4) it follows that ‖y − x‖2 > R, otherwise the globally optimal
point would be within the distance R considered for the locally optimal point.

We consider a point z, a linear combination of x and y

z = (1− θ)x+ θy

for some
0 < θ <

R

‖y − x‖2
such that ‖z − x‖2 < R. From convexity of the feasible set it follows that this point z is
feasible. Because f0 is convex it follows that

f0(z) ≤ (1− θ)f0(x) + θf0(y)

and from θ > 0 and f0(y) < f0(x) that

f0(z) < f0(x)

which contradicts (2.4).

2.3. Convex Conjugate

Let f : Rn 7→ R ∪ {+∞}. The convex conjugate f∗ : Rn 7→ R ∪ {+∞} of the function f
is defined as the supremum

f∗(y) = sup
x∈dom f

(
yTx− f (x)

)
, (2.5)

It is also known as the Legendre-Fenchel transform of f .
The Fenchel bi-conjugate f∗∗ yields the convex envelope, the largest closed convex un-
derapproximation of f [17]. Furthermore, an important property of the bi-conjugate is
that f = f∗∗ iff f is convex and lower semi-continuous, which in finite dimensions holds
for all convex functions with closed epigraph and nonempty domain, where the epigraph
of a convex function f is defined as

epi(f) = {(x, d) ∈ Rn+1 | f(x) ≤ d} . (2.6)
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2.4. Lagrange Duality

Let’s consider the following constrained optimization problem [17]

minimize f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p .
(2.7)

The variable x ∈ Rn is the optimization variable and the function f0 : Rn 7→ R is called
the objective function. The inequalities fi(x) ≤ 0 are called the inequality constraints and
the functions fi(x) : Rn 7→ R are the inequality constraint functions. Correspondingly, the
equations hi(x) = 0 are called the equality constraints and the functions hi(x) : Rn 7→ R
are the equality constraint functions. Because the right hand side of the constraints is 0,
this optimization problem is considered being in standard form. We do not necessarily
assume that the optimization problem is convex.
The associated Lagrangian L : Rn × Rm × Rp 7→ R is defined as

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

µihi(x) . (2.8)

The variables λi and µi are called Lagrange multiplier and their vectors λ and µ are
called dual variables.
The Lagrange dual function g : Rm × Rp 7→ R ∪ {−∞} is defined as the minimum value
of the Lagrangian over x:

g(λ, µ) = inf
x
L(x, λ, µ) = inf

x

(
f0(x) +

m∑
i=1

λifi(x) +
p∑
i=1

µihi(x)
)
. (2.9)

For λ ≥ 0 the Lagrange dual yields a lower bound on the optimal value of (2.7). Maxim-
ization of this lower bound leads to the Lagrange dual problem associated to (2.7)

sup
λ,µ

g(λ, µ)

s.t. λ ≥ 0 .
(2.10)

2.4.1. Weak and Strong and Duality

So far we only have the guarantee, that the optimal value of the Lagrange dual problem
(2.10), which we denote with d∗, gives the maximum lower bound on the optimal value
of the original constrained optimization problem (2.7), which we denote with p∗:

d∗ ≤ p∗ (2.11)

This property of the Lagrange dual holds even when the original problem is not convex
and is called weak duality.
When this property holds as equality

d∗ = p∗

we say that strong duality holds. In this case, the optimal duality gap p∗ − d∗ is zero,
and we say that the maximum lower bound retrieved by the Lagrange dual is tight.
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Strong duality holds when special conditions on the constraints are fulfilled, the so called
constraint qualifications.
In case the primal problem is convex, with f0, . . . , fm convex, and h1, . . . , hp affine, one
of these constraint qualifications is Slater’s condition, which holds when there exists an
x in the relative interior of the domain, x ∈ relintD, such that it is strictly feasible:

fi(x) < 0, i = 1, . . . ,m, and hj(x) = 0, j = 1, . . . , p .

When also some of the inequality constraint functions fi are affine, Slater’s condition
can be refined: Let the first k functions f1, . . . , fk be affine, then strong duality holds
provided that there exists an x in the relative interior of the domain with

fi(x) ≤ 0, i = 1, . . . , k, fi(x) < 0, i = k + 1, . . . ,m, and hj(x) = 0, j = 1, . . . , p .

The interesting property of this refined Slater condition is, that Slater’s condition reduces
to feasibility when all of the constraint functions are affine. Thus feasibility of the solution
of a convex optimization problem with affine constraints is already a sufficient condition
for strong duality.

2.4.2. Legendre-Fenchel Transform and the Lagrangian

The Legendre-Fenchel transform and the Lagrangian are closely related. Let us again
consider the constrained optimization problem in standard form (2.7)

minimize f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p .
(2.12)

We define the indicator functions of the inequality constraints as

δ≤0 (fi(x)) =

0 if fi(x) ≤ 0,

+∞ else .
(2.13)

Correspondingly, the indicator functions of the equality constraints are defined as

δ=0 (hi(x)) =

0 if hi(x) = 0,

+∞ else .
(2.14)

Recall that the conjugate, also called the Legendre-Fenchel transform, f∗ : Rn 7→ R ∪
{+∞} of a function f : Rn 7→ R ∪ {+∞} is defined as

f∗(y) = sup
x∈dom f

(
yTx− f (x)

)
. (2.15)

We get as conjugate of the inequality indicator function

δ∗≤0(y) = sup
x

(
yTx− δ≤0 (x)

)
=

0 if y ≥ 0,

+∞ else
(2.16)

= δ≥0(y) . (2.17)
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The bi-conjugate of the inequality indicator function is again the original indicator func-
tion itself

δ∗∗≤0(y) = sup
x

(
yTx− δ∗≤0 (x)

)
(2.18)

= sup
x≥0

(
yTx

)
=

0 if y ≤ 0,

+∞ else
(2.19)

= δ≤0(y) . (2.20)

Accordingly, we get as conjugate of the equality indicator function

δ∗=0(y) = sup
x

(
yTx− δ=0 (x)

)
(2.21)

= 0 ∀y . (2.22)

The bi-conjugate of the equality indicator function again equals the original indicator
function

δ∗∗=0(y) = sup
x

(
yTx− δ∗=0 (x)

)
(2.23)

= sup
x

(
yTx

)
=

0 if y = 0,

+∞ else
(2.24)

= δ=0(y) . (2.25)

Now we can rewrite the constrained optimization problem (2.7) using the indicator func-
tions of the constraints as

inf
x

f0(x) +
m∑
i=1

δ≤0 (fi (x)) +
p∑
i=1

δ=0 (hi (x)) (2.26)

With the bi-conjugate of the indicator functions we get

= inf
x

f0(x) +
m∑
i=1

δ∗∗≤0 (fi (x)) +
p∑
i=1

δ∗∗=0 (hi (x))

= inf
x

f0(x) +
m∑
i=1

sup
λ≥0

(λ fi (x)) +
p∑
i=1

sup
µ

(µhi (x))
(2.27)

We introduce individual variables λi and µi for each constraint function and arrive at
the associated Lagrangian

= inf
x

sup
λi≥0

sup
µi

f0(x) +
m∑
i=1

λi fi (x) +
p∑
i=1

µi hi (x)

= inf
x

sup
λi≥0

sup
µi

L(x, λ, µ) .
(2.28)

Later in this thesis we will use this framework to solve constrained convex optimization
problems with affine inequality constraints. In case of affine constraints, feasibility of a
solution is already sufficient for Slater’s condition and we have strong duality. In this
case above result is equal to the Lagrange dual

= sup
λ≥0

sup
µ

inf
x

L(x, λ, µ) (2.29)

and a feasible solution to the Lagrange dual yields an optimal solution to the primal
problem.
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2.5. Primal-Dual Hybrid Gradient Method

In [24] the authors generalize their algorithm for minimizing total variation regularized
functionals [23, 113, 114] to general optimization problems of the structure

min
x∈X

max
y∈Y

G(x) + 〈Kx, y〉 − F ∗(y) , (2.30)

where X and Y are two finite-dimensional real vector spaces equipped with the inner
product 〈·, ·〉, the map K : X 7→ Y is a continuous linear operator, and G : X 7→ [0,+∞)
and F ∗ : Y 7→ [0,+∞) are proper convex lower-semicontinuous functions.
The authors provide three different variants of an algorithm to solve optimization prob-
lems of this structure. The central idea of the algorithm is to iterate a gradient ascent
in the primal variable and a gradient descent in the dual variable. Because F and G do
not need to be smooth and differentiable, the gradient steps are evaluated using the prox
operator:
The prox-operator of a closed proper convex lower-semicontinuous function f is defined
as

proxλf (v) = arg min
x
f(x) + 1

2λ‖x− v‖
2
2 . (2.31)

The first variant (Algorithm 1 in [24]) can be applied to the most general problem, the
variant 2 allows accelerated convergence when either G or F ∗ are strongly convex, and
algorithm 3 can be applied when both G and F ∗ are strongly convex functions. For the
problems studied in this thesis strong convexity does not hold, thus here we present the
variant for this most general case.

Algorithm 1 Primal Dual Hybrid Gradient method from [24]
1: Initialize with x0, y0 ∈ X × Y and x̄0 = x0.
2: Iterate

yn+1 = proxσF ∗ (yn + σKx̄n) (2.32)

xn+1 = proxτG
(
xn − τK∗yn+1

)
(2.33)

x̄n+1 = xn+1 + θ
(
xn+1 − xn

)
(2.34)

The step sizes τ > 0 and σ > 0 can be chosen by a diagonal preconditioning scheme
as described in [112]. In this case, one gets instead of a unique τ and σ the diagonal
matrices T = diag(τ) and Σ = diag(σ), with

τj = 1
m∑
i=1

K2−α
i,j

, σi = 1
n∑
j=1

Kα
i,j

, (2.35)

with n = dimX and m = dimY for some α ∈ [0, 2].
The primal dual hybrid gradient method can be interpreted as an approximative Douglas-
Rachford splitting [36] on the dual problem which is also equivalent to the alternating
direction method of multipliers (ADMM) [50, 53] on the primal problem. An overview of
proximal algorithms can be found in [110] and a survey about ADMM and its applications
in [16].
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3. Total Variation and its Minimization

With the background material on convex optimization at hand, in this chapter we focus
on a particular optimization problem, the minimization of the total variation of a function
of bounded variation. It turns out that we can formulate the total variation minimization
problem as a convex-concave saddle point problem, that can be optimized with the primal
dual splitting algorithm discussed in the end of the previous chapter. Further information
on the topic, especially in the context of image analysis, can be found in the publications
[23, 24, 113, 114], and the introduction by Chambolle et al. [22].

3.1. Definition of Total Variation

Let Ω be an open subset of Rn. The total variation of a function u : Ωn 7→ R is defined
as

TV (u,Ω) = sup

−
∫
Ω

u(x) divφ(x) dx : φ ∈ C∞c (Ω,Rn), |φ(x)| ≤ 1, ∀x ∈ Ω

 , (3.1)

where |φ(x)| is the `2 norm of the vector valued function φ evaluated at x and C∞c is the
set of arbitrarily often continuously differentiable functions with compact support.
We choose this definition of the norm to clarify that we actually evaluate the `2 norm
of φ(x) point-wise on Ω. In the literature, e.g. [2], the constraint on φ is also defined as
‖φ‖∞ ≤ 1, which denotes the essential supremum norm of φ on Ω. To avoid confusion
with the point-wise supremum norm, we prefer above definition instead.
Indeed, our definition |φ(x)| ≤ 1, ∀x ∈ Ω is equivalent to ‖φ‖∞ ≤ 1, which in [20] is
defined as

‖φ‖∞ = ess sup
x∈Ω

(
n∑
i

|φi(x)|2
) 1

2

(3.2)

This norm takes the maximum over x of the point-wise `2 norm of φ. It is easy to see
that ‖φ‖∞ ≤ 1 exactly holds iff |φ(x)| ≤ 1, ∀x ∈ Ω.
We say that a function u : Ωn 7→ R in L1 has bounded variation on Ω when TV (u,Ω) <
+∞ and we write u ∈ BV.
The function φ can be interpreted as distributional derivative of u. For a differentiable
function u it follows from the divergence theorem that∫

Ω

u(x) divφ(x) dx = −
∫
Ω

∇u(x) · φ(x) dx . (3.3)

We take the supremum over φ with the essential supremum norm ‖·‖∞ ≤ 1. By using
operator duality we get for differentiable functions u

sup
‖φ‖∞≤1

−
∫
Ω

u(x) divφ(x) dx = sup
‖φ‖∞≤1

∫
Ω

∇u(x) · φ(x) dx =
∫
Ω

|∇u(x)| dx , (3.4)

where the last equality holds in the limit when φ(x)→ ∇u
‖∇u‖2

.
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3.2. Minimizing Functionals with Total Variation
Regularizer as Saddle Point Problem

In the previous section we saw that the total variation of a differentiable function is
defined as the supremum over φ. Minimizing the total variation of a differentiable func-
tion u thus leads to the saddle point problem

inf
u

∫
Ω

f(u) + |∇u(x)| dx = inf
u

sup
‖φ‖∞≤1

∫
Ω

f(u)− u(x) divφ(x) dx . (3.5)

On a discrete finite domain Ω and for dom(u) convex this problem can be solved with
the primal dual optimization method introduced in Section 2.5.

3.3. Geometric Interpretation of the Total Variation

In the following we will see that minimizing the total variation has a geometric inter-
pretation and allows to compute sets of minimal surface. First, we define an indicator
function of a set.
Let S ⊆ Ω ⊂ Rn. The indicator function 1S : Ω 7→ {0, 1} of S is defined as

1S(x) =

1 if x ∈ S,

0 else .
(3.6)

The perimeter of a measurable set S ⊆ Ω ⊂ Rn is defined as Per(S,Ω) = Hn−1(∂S),
the (n − 1)-dimensional Hausdorff measure Hn−1(·) of the boundary ∂S of S. It is a
geometric measure, e.g. for n = 2 it measures the length of the curve outlining the set
S, for n = 3 it measures the surface area of the boundary surface of S.
We will see in the following section that the (n−1)-dimensional Hausdorff measure of the
boundary of a set is equivalent to the total variation TV (1S) of the indicator function of
the set. This allows to measure boundary lengths of subsets in R2 and surface areas of
subsets of R3 by computing the total variation of the indicator function.

3.4. The Coarea Formula

Recall that a convex function needs to have a convex domain. The indicator function
maps to the discrete domain {0, 1}, which is not a convex set. To be able to minimize the
total variation with convex optimization, we therefore often define a relaxed indicator
function u : Ω 7→ [0, 1] of bounded variation, which maps to the continuous interval
between 0 and 1.
A relation between the geometric measure of a perimeter and the total variation of a
continuous BV-function is given by the coarea formula [43, 45]∫

Ω
|∇f(x)| dx =

∫ ∞
−∞

TV (1{f>µ},Ω) dµ =
∫ ∞
−∞

Per({x : f(x) > µ},Ω) dµ . (3.7)

Thus the total variation of the continuous function u is the integral over the length of all
its level lines. Note that whenever we consider functions u whose range is restricted to
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an interval we have to evaluate the integral only on this interval and get∫
Ω
|∇u(x)| dx =

∫ 1

0
Per({x : u(x) > µ},Ω) dµ . (3.8)

It follows from the definition of the perimeter and the definition of functions with bounded
variation that a set has finite perimeter in Ω iff 1S ∈ BV(Ω), i.e. its indicator function
has bounded variation.

3.5. Total Variation as Regularizer in Image Segmentation
and 3D Reconstruction

In image segmentation, the goal is to partition an image into meaningful parts. It is one
of the best studied problems in computer vision, as image segmentation is often the first
step to acquire semantic information from an image. While here we focus on the two
region image segmentation problem and its relaxation by Chan et al. [25], we want to
mention recent research results that allow a convex relaxation of the multi-label image
segmentation problem [54, 92, 113, 115].

Weighted partition with minimum perimeter Let f : Ω 7→ R. We define the
optimal weighted partition with minimum perimeter as the set S ⊆ Ω that minimizes

min
S⊆Ω

∫
S
f(x) dx+ λ Per(S,Ω) , (3.9)

for a given λ ≥ 0. We call the set S the foreground region or object and Ω \ S the back-
ground region. Both sets S and Ω\S define a partition of Ω which we call a segmentation.
Because the function f usually depends on the image data, the first term

∫
S f(x) dx is

called data term.
For λ = 0 above problem is easy to solve, and the optimal solution can be achieved by
choosing the set S = {x : f(x) < 0}. However, in image segmentation often the data
term is disturbed by noise and simple thresholding of the data term would result in an
irregular set. Therefore we regularize the solution by setting λ > 0. The second term in
(3.9) is also called boundary length regularizer and favors a smooth partition.
For λ > 0 we cannot achieve a minimum partition of (3.9) by simple thresholding of
f . Therefore we formulate the minimum weighted partition problem using the convex
relaxation of Chan et al. [25] with a relaxed indicator function u : Ω 7→ [0, 1] of bounded
variation and replace the perimeter of S with the total variation of u and get

min
u∈BV(Ω;[0,1])

∫
Ω
f(x)u(x) dx+ λ TV(u,Ω) . (3.10)

In Section 5.2.3 we will see that by thresholding the solution of (3.10) by choosing the
upper level set {x : u(x) > µ} with a threshold µ ∈ [0, 1) we get an optimal solution of
the minimum weighted partition problem (3.9).

3.6. The Shrinking Bias

The boundary length regularizer achieves good results for segmenting compact objects in
practice. However, this approach fails when the object contains thin structures, as these
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structures have a higher boundary length in comparison to their area than more round,
compact objects.
The regularizer therefore tends to favor compact round objects, while smoothing fine
detailed features of the boundary. This effect is called the shrinking bias which leads to
a shrinking of the foreground region to minimize its boundary length.
To overcome the shrinking bias, researchers have proposed to penalize the curvature
of the boundary instead of its length, e.g. [38, 55, 124, 125, 126]. However, because
curvature is a second order measure of the boundary, this usually leads to higher order
cost functions that are hard to optimize efficiently.
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4. Connectedness as Topological
Property

In this chapter we will give an introduction to a fundamental topological property, the
connectedness of a topological space and the connectedness of graphs. We will study
different properties of connectedness, with a special look on path connectedness, which is
underlying the connectivity constraints developed in this thesis. The following material
follows the introductory literature on topology of [90, 140], and on graph theory of [33].

4.1. Connectedness of Topological Spaces

Given X is a topological space. We say that X is connected if there exists no separation
of X into a pair of nonempty, disjoint, open subsets U, V ⊂ X such that X = U ∪ V .
This is the definition of a connected space, in the following we will study the connectedness
of subsets of a topological space, for which we define the following topology.

Subspace Topology [90] Let A ⊂ X be a subset of the topological space X. The
subspace topology Sa on A is defined as

Sa = {U ⊂ A : U = A ∩ V for some open subset V ⊂ X} , (4.1)

i.e. the open subsets of Sa are the intersections of the open subsets of X with A.
We call a subset A of a topological space X connected on X if A is connected with respect
to the subspace topology Sa .

4.1.1. Path Connectedness

In this section, we will introduce an easier to use sufficient condition for connectedness,
the path connectedness. First let’s consider the connectedness of mappings on a topolo-
gical space.

Theorem 4.1.1. Main Theorem on Connectedness [90] Let X,Y be topological
spaces and let f : X 7→ Y be a continuous map. If X is connected, then f(X) is
connected.

Proof. [90] Let f(X) be not connected, then there exist two open sets U, V ⊂ Y which
intersections with f(X) are nonempty and disjoint and for which f(X) ⊂ U ∪ V . Lets
consider the preimages of those subsets f−1(U) and f−1(V ). It follows immediately that
these provide a separation of X, so X is not connected.

Now we are able to give a definition for path connectedness, which is much simpler than
the definition of connectedness of a space, but yet provides a sufficient condition for its
connectedness.
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Path Connectedness [90] Let X be a topological space and x, x′ ∈ X two points in
X. A path in X from x to x′ is a continuous map Cx′x : [0, 1] 7→ X with Cx′x (0) = x and
Cx
′

x (1) = x′. We say that X is path connected if for every p, q ∈ X, there is a path in X
from p to q.
An important property that we will use in the following is, that path connectedness of a
topological space X implies connectedness of X.
Furthermore, path connectedness is transitive in the sense that if there is a path con-
necting two points a and b and there is a path connecting the points b and c, then there
also exists a path connecting a and c.
This becomes obvious when we define the path Cca : [0, 1] 7→ X from a to c as [140]

Cca(s) =

Cba(2s), if s ∈ [0, 1
2 ],

Ccb (2s− 1), if s ∈ [1
2 , 1] ,

(4.2)

where Cba : [0, 1] 7→ X is the path from a to b and Ccb : [0, 1] 7→ X is the path from b to c.

4.1.2. Simply Connected Topological Space

There are several definitions for simply connectedness, we choose an intuitive definition
that is based on the homotopy of paths. First we provide the definition of a homotopy
in general and then define the homotopy for paths.

Homotopy [90] LetX and Y be topological spaces, and let f, g : X 7→ Y be continuous
maps. A homotopy from f to g is a continuous map H : X × [0, 1] 7→ Y such that

H(x, 0) = f(x); H(x, 1) = g(x) , (4.3)

for all x ∈ X.
Now we study the homotopy of two paths:

Path Homotopy Let X be a topological space and x, x′ ∈ X two points in X. We
consider two paths f and g in X from x to x′. The path homotopy H : [0, 1]× [0, 1] 7→ X
from f to g is a family of paths with fixed endpoints x and x′, i.e. H(0, t) = x and
H(1, t) = x′ for all t ∈ [0, 1], that is a continuous map from f to g, i.e. H(s, 0) = f(s)
and H(s, 1) = g(s) for all s ∈ [0, 1]. We say that f and g are path homotopic, if there
exists a path homotopy between them, and write f ∼ g.
This allows us to formulate the definition of a simply connected topological space:
We call a topological space X simply connected when any two paths in X with the same
initial and terminal points are path homotopic.
Hence all paths with the same initial and terminal points form an equivalence class.
Simply connected in this case means that there is only a single equivalence class of
paths.
This allows an intuitive understanding why a simply connected subset A ⊂ X may not
contain a hole, i.e. may not enclose another subset B ⊂ X which is not in A. In this case
no continuous mapping between any two paths "on different sides of B" exists that does
not leave A.
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4.2. Connectedness of a Graph

While the previous section considered continuous topological spaces, in this section we
provide definitions to work on discrete graphs as topological spaces. We follow the
notation and definitions in [33].
A graph contains of a set of vertices V and edges E ⊂ V × V . We denote the vertex
set of G with V (G) and the edge set of G with E(G). We call a vertex incident with an
edge e if v ∈ e. The edges incident to a vertex v define a local neighborhood of adjacent
vertices or neighbors of v. Two vertices i and j are adjacent, when there exists an edge
ij ∈ E. The number of adjacent vertices is the degree of a vertex.
Let G = (V,E) and G′ = (V ′, E′) be two graphs. If V (G′) ⊂ V (G) and E(G′) ⊂ E(G),
then we call G′ a subgraph of G, and write G′ ⊂ G.
If the subgraph G′ ⊂ G contains all edges in E with both endpoints in V ′, i.e. all
ij ∈ E(G) for i, j ∈ V [G′], then we call G′ an induced subgraph of G. We say that the set
V ′ induces the subgraph G′ in G, and denote the induced subgraph with G′ =: G[V ′].
Thus any set of vertices U ⊂ V induces a subgraph G[U ], which edges are those edges of
G with both endpoints in U .
We define a path in a graph G as a non-empty graph P = (Vp, Ep) with Vp ⊂ V (G) and
Ep ⊂ E(G) and

Vp = {x0, x1, . . . , xk} E = x0x1, x1x2, . . . , xk−1xk (4.4)

where all xi are distinct from other. We call the vertices x0 and xk linked by P .
Let the graph P = x0 . . . xk−1 be a path with k ≥ 3, then we call the graph C :=
P ∪ xk−1x0, i.e. a path where both ends are connected, a cycle.
A connected acyclic graph, which does not contain any cycles, is called a tree. Vertices
of degree 1 in a tree are called leaves or leave vertices. Furthermore, any interior vertex,
i.e. a vertex which is not a leave, of a tree has a degree of at least 2.
We can now define the property of connectedness for a graph [33], which reminds us of
the definition of path-connectedness of a topological space.
A non-empty graph G is called connected if any two of its vertices are linked by a path
in G. If the induced subgraph G[U ] of a subset U ⊂ V (G) is connected, we also call U
itself connected in G.

4.2.1. k-Connected Graph

We will use a special type of connectedness of graphs, the k-connectedness, sometimes
called k-vertex-connectedness.
A graph G = (V,E) is called k-connected for k ∈ N if |V | > k and G[V \X] is connected
for every set X ⊆ V with |X| < k. Thus, G is connected when less than k vertices are
removed from its vertex set. In case G is 2-connected, we also call G biconnected. The
greatest integer k for which G is k-connected is the connectivity of G.
In this thesis, the term connectivity constraint refers to a constraint which imposes con-
nectedness in image partition problems by requiring a certain connectivity of a subgraph
induced by the partition, thus sometimes we use the terms connectivity and connectedness
synonymously. First, we describe a constraint on a tree which preserves the connectivity
of 1 for the tree. In Chapter 8 we extend this constraint to loop preserving constraints,
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which are defined on a biconnected graph. Thus we use the terms 1-connectivity con-
straint and 2-connectivity constraint respectively.
In this chapter we provided definitions of connectedness as a topological property of a
continuous space and on the discrete topology of a graph. This chapter also concludes
the introductory material. In the following we will see how the mathematical tools
described so far can be used to solve image partition problems with the constraint, that
the foreground partition is connected.
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5. Connectivity Constraints for the
Segmentation of 2D and 3D Images

In this chapter, we present one of the first practicable methods to include connectivity
constraints into image segmentation and 3D reconstruction. We propose to reformulate
the connectivity constraint along geodesics, which in the discrete domain results in a fixed
topology of a discrete graph, in this case a geodesic shortest path tree. While solving the
original problem is NP-hard, the reformulated problem can be efficiently solved to global
optimality. We show how a-priori information about the geometry of the structure of
interest can be included when constructing the shortest path tree. To solve the resulting
labeling problem, we generalize a recent primal-dual algorithm for continuous convex
optimization to an arbitrary graph. Part of the results presented in this chapter have
been published in [139], here we extend this work by a proof of the thresholding theorem
for the image segmentation model with connectivity constraint.
The chapter is organized as follows: first, we give an overview on related work on topo-
logical constraints in image segmentation. Then we describe how the geodesic shortest
path tree is constructed with a distance measure that is related to the image data and
the bending energy of each path in the tree. We show how to formulate a global con-
nectivity prior as a local constraint on this tree. The connectivity constraint results in
a linear constraint on the labeling function and thus preserves convexity of the image
segmentation problem. This allows to compute a globally optimal solution. In the end
of the chapter we present results on data from medical imaging in angiography, retinal
blood vessel segmentation and user interactive image segmentation.

5.1. Introduction

The task of image segmentation, the separation of an image into meaningful parts, is
one of the most important and well studied problems in image processing and computer
vision. While state-of-the art segmentation methods [18, 59, 147] perform well for seg-
menting compact objects, their performance on thin and elongated structures is often
not satisfying. The commonly used length regularizer suppresses small structures and
the correct topology cannot be reconstructed.
To overcome this shrinking bias, recently two different approaches have been suggested in
the literature. First, curvature based measures have attracted the interest of researchers
in computer vision to include them in image segmentation frameworks [38, 55, 126].
However, introducing these regularizers into segmentation algorithms lead to higher order
cost functions, which are hard to optimize.
Another way to preserve thin structures is to use topological constraints. A special
subclass of these constraints are connectivity constraints, which ensure the connectedness
of a labeled region and therefore allow that thin connections between foreground regions
are preserved in the final segmentation result. To overcome the limitation of topology
preserving level set methods [63], that only locally optimal solutions can be achieved,

5. Connectivity Constraints for Image Segmentation 25



Part II: Image Segmentation

Figure 5.1.: By modeling the object of interest as a connected tree, the method is well suited
for medical image segmentation tasks, in this case the segmentation of a blood vessel tree in
angiography. Left image and top right: Lung vessel tree segmented with the proposed method.
Bottom right: Segmentation result without connectivity constraint.
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recent approaches include topological constraints in random field models [27, 104, 150].
So far, these methods only allow to compute an approximate solution of the global
optimization problem.

5.1.1. Related Work

Topology preserving constraints have been recently proposed for different algorithmic
frameworks. For the graph cut [19] framework, Zeng et al. [160] present an extension,
that allows to preserve the topology of the result with respect to an initial segmentation.
Beginning on a coarse scale, their method preserves the topology of the initial segmenta-
tion during refinement. A similar approach was proposed by Han et al. [63] for the level
set framework. The drawback of both methods is that they depend on the initialization
and therefore only reach a local optimum.
Vicente et al. [150] introduce a connectivity prior into interactive segmentation in a
Markov random field framework and enforce connectivity to user given seed points. The
authors show that the original problem is NP-hard and propose a greedy approximation
scheme consisting of a Dijkstra algorithm where in every expansion step a graph cut
needs to be solved. Their method also only reaches a local optimum.
Chen et al. [27] propose to alternatingly solve a graph cut and modify the unary terms
based on a level-set representation until predefined topological constraints are fulfilled.
However, they do not find minimal connections, for which the integral along the curve
is minimized, instead they minimize the value of the maximum penalty along the curve
which can lead to undesired results if this penalty is very high, as the path cost does not
depend on the values of the data term at other positions than the maximum. Further-
more, the runtime complexity of this method prevents to use it for large scale problems.
Recently, methods that aim to reach a global optimum were proposed by different authors.
First, Nowozin and Lampert [104] propose to formulate the image segmentation problem
with topological constraints as a linear program relaxation. However, even for small
image sizes the runtime complexity of the method does not scale well and the relaxation
is not tight. In contrast to the method presented in this publication, their method is not
suitable for large scale problems in 3D segmentation.
In a recent study, Rempfler et al. [117] propose a specifically adapted constraint gener-
ation scheme to solve the underlying discrete optimization problem, the minimum cost
connected subgraph (MCCS) problem, in an integer linear programming framework. The
reported median runtime of 500 s on images of the DRIVE benchmark prevents to use
their method in practice, but the results can serve as ground truth solution for the bench-
mark. They compared their exact results with the results obtained with the geodesic
shortest path method proposed in this chapter, and found no statistical significant dif-
ference between both methods. Further details on the comparison are described in the
experimental section below.
Gulshan et al. [61] introduce a geodesic star shape prior into the graph-cut framework.
The solution of the segmentation is restricted to the shape of a geodesic star around an
input seed, while the geodesic distance depends on the image gradient. If multiple input
seeds are given, the foreground segment takes the form of a geodesic forest, the union
of the geodesic stars for every seed. A drawback of their method is that because they
solve for the boundary length regularizer using the graph-cut framework their method is
affected by a metrication error that depends on the discretization of the pixel neighbor-
hood.
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One application field of methods that preserve thin structures is in angiography, where
the object of interest that should be segmented are blood vessels. Some of the most
prominent existing methods for this special task are based on geodesic shortest paths.
By using a local anisotropic metric and modeling the segmentation task as a path search
problem with varying radius, of circles for 2D images [10] and spheres for 3D data [9],
such methods are well suited for the special case of tubular structures like blood vessels,
but at the same time are restricted to this specific task. Instead of modeling the objects
that should be segmented explicitly as connected paths some authors propose to first pre-
process the image data with filters that show a strong response in areas were elongated
structures are present [47, 84]. In the recent work of Bauer et al. [8] a similar approach
leads to an explicit model of short tubular segments that are in a second step connected to
a whole tree of branching tubular structures. Therefore a connection confidence measure
to join adjacent tube segments is defined, that depends on the distance and joining angle
of the segments. The resulting minimization problem is solved by using the graph cut
algorithm [19]. For a review on recent work in the particular application domain of blood
vessel segmentation see [93].
Instead of optimizing over the boundary as proposed by Kass et al. [76] or using a
level set formulation [26, 63], we introduce our connectivity constraints for the convex
image segmentation framework of Chan et al. [25]. This has the benefit that, because
the constraint can be formulated as linear constraints, the whole image segmentation
problem with connectivity constraints remains a convex optimization problem, and thus
allows to be solved to global optimality. In comparison to image segmentation methods
that are based on the graph cut framework [19, 27], our methods does not suffer from
discretization artifacts and instead measures the Euclidean norm of the boundary length.

5.1.2. Problem Formulation

Given an image I with the domain Ω, a bounded connected subset of Rm, we wish to
solve the constrained optimization problem

min
l:Ω 7→{0,1}

∫
Ω

f(x) l(x) dx+ λ Per(Σl,Ω) (5.1)

s.t. ∀x, x′ ∈ Σl : ∃Cx′x , ∀t ∈ [0, 1], Cx′x (t) ∈ Σl , (C0)

where Σl ⊆ Ω is the foreground segment, the part of the image which is labeled by the
labeling function l : Ω 7→ {0, 1} with the label 1,

Σl = {x ∈ Ω : l(x) = 1} . (5.2)

We assume that we are given a probabilistic model for every x ∈ Ω, i.e. pixel of a 2D
image or voxel of a 3D image, that depends on the image data and describes the likelihood
for foreground and background

f(x) = log
(
P (I(x)|l(x) = 0)
P (I(x)|l(x) = 1)

)
, (5.3)

where P (I(x)|l(x) = 1) describes the probability of x being in the foreground region and
P (I(x)|l(x) = 0) of x being in the background respectively. The second term Per(Σl,Ω)
is the perimeter of the foreground segment Σl, the m− 1 dimensional Hausdorff measure
of its boundary, details can be found in the introduction in Section 3.3. With Cx

′
x we

formalize a connected trajectory from x to x′ as a continuous function Cx′x : [0, 1] 7→ Ω
with Cx′x (0) = x and Cx′x (1) = x′.
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Figure 5.2.: Without the boundary length regularizer (λ = 0), the foreground segment is defined
by the sign of the data term f . Obviously, in this case it holds for the data term f along the path
connecting two unconnected parts of the foreground that f > 0.

The solution of the optimization problem should satisfy the connectivity constraint (C0):
For each pair of points x, x′ ∈ Ω that belong to the foreground Σl there must exist a
connected path from x to x′ such that all p ∈ Cx′x ⊂ Ω in the path between x and x′ belong
to the foreground.
This constraint is equivalent to the definition of path connectedness (Section 4.1.1) of Σl

and ensures that the foreground segment is connected. Unfortunately even for the special
case λ = 0, minimizing Eq. (5.1) with (C0) is NP-hard because the minimum Steiner
tree problem can be reduced to this problem [150]. We will see in the following, how to
reformulate the problem such that it becomes feasible to solve.

5.2. The Continuous Case: Connectivity Along Geodesics

To approximate a solution to Eq. (5.1) we propose to reformulate the connectivity
constraint along the geodesics from each point x ∈ Σl inside the foreground segment to a
specific point s ∈ Σl inside the foreground segment. In general, we call the connectivity
requirement along geodesics g-connectivity, and here study the special case that these
geodesics pass through the point s ∈ Σl, which we call rooted g-connectivity. The point
s takes the role of a root, from which all the geodesics originate from, and specifying s
and the local metric tensor g uniquely defines the topology of the geodesics.

5.2.1. An Image Depending Geodesic Topology

The geodesic shortest path topology is inspired by image segmentation methods based
on geodesic distances, that depend on an image depending local metric. Such approaches
have been successfully applied to medical image segmentation [9] as well as general image
segmentation [5, 29]. In this context, we will show how to define this image depending
local metric and how to additionally incorporate a-priori knowledge about the geometry
of the object of interest.
First we have to choose an appropriate local metric. We propose to use the non negative
cost function f+ = max(0, f(x)). This is motivated by the following: Lets consider the
special case λ = 0, then the labeling function l(x) takes on the value 1 for f(x) < 0 and 0
for f(x) > 0. We leave out the special case f(x) = 0 as it does not occur in practice. For
all xp ∈ Ω that do not belong to the foreground but need to be added to the foreground
to satisfy the connectivity constraint obviously l(xp) = 0 and therefore f(xp) ≥ 0. This
is also illustrated in Fig. 5.2. The optimal cost of the connecting path between a fixed s
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and any x in the region that should be connected on Gs is then given by

C̄xs = min
Cxs

∫ 1

0
f+(C(t)) dt , (5.4)

which motivates our choice of f+ as image depending metric.

5.2.2. Connectivity Constraint as Monotonicity Constraint

We formalize the segmentation model with rooted g-connectivity constraint as

min
l:Ω 7→{0,1}

∫
Ω

f(x) l(x) dx+ λ Per(Σl,Ω) (P1)

s.t. ∀x ∈ Σl : ∃C̄xs ∈ Gs, ∀t ∈ [0, 1], C̄xs (t) ∈ Σl , (C1)

where Gs is the set of all geodesics through s and C̄xs is the geodesic from s to x.
In contrast to the original image segmentation problem, we will show in the following
that this constraint can be introduced as a linear constraint in a convex optimization
framework and therefore allows the computation of an optimal solution.
We follow the convex relaxation approach of Chan et al. [25] and relax the discrete
labeling function l : Ω 7→ {0, 1} by introducing a continuously differentiable function
u : Ω 7→ [0, 1] of bounded variation. The perimeter of the foreground region is replaced
by the total variation of the continuous labeling function. Further details on the relation
between the total variation and the perimeter of a set are given in the introduction
in Section 3.3. Now the connectivity constraint can be expressed as constraint on the
directional derivative of u along a geodesic.

min
u:Ω7→[0,1]

∫
Ω

f(x)u(x) + λ |∇u| dx (P2)

s.t. ∀x ∈ Ω, ∃C̄xs ∈ Gs,∇C̄xs u(t) ≤ 0, t ∈ [0, 1) (C2)

where∇C̄xs u(t) is the directional derivative of u at t along the geodesic C̄xs , in the direction
of increasing distance from s, defined as

∇C̄xs u(t) = lim
h→0

u
(
C̄xs (t+ h)

)
− u

(
C̄xs (t)

)
h

. (5.5)

In fact, we can solve the discrete labeling problem by computing a thresholded solution of
the problem with continuous co-domain. A proof for this relation is given in the following
section.

5.2.3. The Thresholding Theorem

In the following we show that every thresholded version of the optimal solution of the
relaxed optimization problem (P2) provides a minimizer for the original binary labeling
problem (P1). We show optimality of the thresholded version using the thresholding
theorem of [25], which holds for almost every threshold and was extended to hold for
every threshold by [12]. What is left to show is feasibility of the thresholded version:
that every continuous solution which is feasible regarding the connectivity constraints in
(P2) is connected in the discrete case of (P1).
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First we reproduce the more concise version of the proof of Chan et al. that appeared
in [81]. We consider the image segmentation problem without connectivity constraints
and formulate the functional of the labeling problem with discrete indicator function
l : Ω 7→ {0, 1} as

Ê(l) =
∫
Ω

f(x) l(x) dx+ λ Per(Σl,Ω) . (5.6)

We introduce a continuously differentiable function u : Ω 7→ [0, 1] of bounded variation
and replace the perimeter with the total variation of u.

E(u) =
∫
Ω

f(x)u(x) + λ |∇u| dx (5.7)

The thresholding theorem now states the following:

Theorem 5.2.1. [81] Let u∗ : Rn 7→ [0, 1] be a global minimizer of (5.7). Then the upper
level sets of u∗

Σ{u∗>µ} = {x ∈ Rn |u∗(x) > µ}, µ ∈ (0, 1) , (5.8)

thresholded at µ, are minimizers of the original binary labeling problem (5.6), for almost
every threshold µ.

Proof. [81] We use the layer cake representation of the function u∗ : Rn 7→ [0, 1]:

u∗(x) =
∫ 1

0
1{u∗>µ}(x) dµ , (5.9)

and rewrite the first term in the functional (5.7) as∫
Rn
fu∗ dx =

∫
Rn
f

(∫ 1

0
1{u∗>µ} dµ

)
dx =

∫ 1

0

∫
Σ{u∗>µ}

f(x) dx dµ . (5.10)

The functional (5.7) then can be written as

E(u∗) =
∫ 1

0

{∫
Σ{u∗>µ}

f(x) dx+
∣∣∣∂Σ{u∗>µ}

∣∣∣} dµ ≡
∫ 1

0
Ê
(
Σ{u∗>µ}

)
dµ, (5.11)

where the total variation norm in (5.7) is written as the integral over the length of all
level lines of u by using the coarea formula (see Section 3.4)∫

Ω
|∇u(x)| dx =

∫ ∞
−∞
Hn−1(u−1(t)) dt . (5.12)

We see that the functional (5.11) can be expressed as an integral of the original binary
labeling problem Ê evaluated on the upper level sets of u∗.
Assume that theorem 5.2.1 does not hold for some threshold value µ̃ ∈ (0, 1), i.e. there
exists a minimizer Σ∗ of the binary labeling problem with smaller energy

Ê(Σ∗) < Ê(Σµ̃,u∗). (5.13)

Then for the indicator function 1Σ∗ of the set Σ∗ we get

E(1Σ∗) =
∫ 1

0
Ê(Σ∗) dµ <

∫ 1

0
Ê(Σ{u∗>µ}) dµ = E(u∗), (5.14)

which contradicts the assumption that u∗ was a global minimizer of (5.7).
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We now show that every thresholded version of a feasible minimizer of u∗ (P2) is a feasible
minimizer of (P1):

Theorem 5.2.2. Let u∗ : Rn 7→ [0, 1] be a global minimizer of (P2) that is feasible with
respect to the constraints (C2). Then all upper level sets, i.e. the thresholded versions

Σ{u∗>µ} = {x ∈ Rn |u∗(x) > µ}, µ ∈ (0, 1), (5.15)

of u∗ are minimizers of the original binary labeling problem (P1), are connected and thus
feasible with respect to the constraint (C1).

Proof. Optimality of a thresholded version of a minimizer of (P2) for the binary labeling
problem (P1) follows from Theorem 5.2.1. What is left to show is feasibility of the
thresholded solution with respect to (C1). We show this by contradiction.
Let u∗ be feasible with respect to (C2). Let’s assume that the constraint (C1) does not
hold, i.e. there exists an x ∈ Σ{u∗>µ}, thus u∗(x) > µ for some µ, and we have a geodesic
C̄xs ∈ Gs with C̄xs (0) = s and C̄xs (1) = x for which it does not hold for all t ∈ [0, 1] that
C̄xs (t) ∈ Σ{u∗>µ}, i.e. it exists a t∗ ∈ [0, 1) for which u∗

(
C̄xs (t∗)

)
≤ µ.

But it holds that
u∗(x) = u∗

(
C̄xs (1)

)
> µ ,

and thus
u∗
(
C̄xs (1)

)
> u∗

(
C̄xs (t∗)

)
,

for some 0 ≤ t∗ < 1 which violates the monotonicity constraint (C2) along C̄xs . This
concludes the proof.

We therefore have shown that by thresholding a feasible minimizer of the continuous
optimization problem (C2) we obtain a binary solution of the original binary labeling
problem which is optimal and feasible with respect to the original discrete optimization
problem (C1).

5.3. Image Segmentation on the Discrete Domain of a
Weighted Graph

Before we can solve the optimization problem numerically, we have to find a suitable
discretization of the domain. Often, the image segmentation problem with total variation
regularizer is discretized on the image grid, and the gradient and the divergence operator
are realized using finite differences. Another common approach is to to interpreted the
pixel grid as a graph, with a vertex for every pixel coordinate x ∈ Ω.
A well known approach for image segmentation on the discrete domain of a graph is the
graph-cut framework [19]. In this framework, the optimal subset with minimum boundary
length problem is solved by computing a minimum cut through a discrete graph, which
is equivalent to computing a maximum flow through the graph, a duality given by the
max-flow min-cut theorem [39, 46]. Modern efficient algorithms exist to compute this
maximum flow [18], which has led to a widespread application of the min-cut framework.
However, a major drawback of this approach is that the boundary length is measured as
a discretized quantity: it amounts to the sum of the weights of edges belonging to the
cut, which results in a metrication error and leads to discretization artifacts.
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When using the total variation regularizer, this metrication error can be avoided: as
discussed in the introduction in Section 3.3, the total variation of the labeling function
measures the accumulated Euclidean boundary length of the function’s level lines. Here,
we show instead how to define a regularizer on a discrete graph that is equivalent to the
total variation regularizer. This allows, as shown in the following section, to also formu-
late the connectivity constraint on this discrete graph. First, we define the correspond-
ing operators on a discrete graph and derive a local variation regularized segmentation
model as theoretically sound equivalent to the continuous total variation model. As a
consequence, the labeling problem on the weighted graph can be solved efficiently using
a recent algorithm for continuous convex optimization [24]. We validate via experiments
that, when choosing the `2 vector norm for the dual variable, the proposed method does
not suffer the metrication artifacts of the graph cut framework. Furthermore we show
that the metrication errors of the graph-cut framework can be reproduced when taking
the `∞ norm of the dual variable.

5.3.1. Gradient and Divergence Operators on Weighted Graphs

Let G = (V,E,W ) be a graph with the set of vertices V with |V | = n, a set of edges
E ⊂ V × V and a positive n × n weight matrix W that assigns a weight to every edge
of the graph. We define the gradient and divergence operators on the graph following
[66] and [15, 40]. Let f : V 7→ R be a function of H(V ), the Hilbert space of real-valued
functions on the vertices of G that is equipped with the inner product 〈f, g〉H(V ) =∑
v∈V f(v) g(v). We define the difference operator d : H(V ) 7→ H(E) of f on an edge

(i, j) ∈ E as
( df)(eij) = √wij(f(j)− f(i)). (5.16)

This difference operator can be interpreted as the directional derivative ∂ifj := ( df)(eij)
of a function f at a vertex i along the edge to vertex j.
The weighted gradient operator is the vector operator ∇if = (∂ifj : (i, j) ∈ E)T . The `2
norm of this vector is the local variation of f at v

|∇if | :=
√∑
ij∈E

(∂ifj)2 (5.17)

=
√∑
ij∈E

wij(fj − fi)2 (5.18)

Equivalently, let p : E 7→ R be a function of H(E), the Hilbert space of real-valued
functions on the edges of G, that is equipped with the inner product 〈f, g〉H(E) =∑

(i,j)∈E f(i, j) g(i, j). The adjoint d∗ : H(E) 7→ H(V ) of the difference operator is
given by

〈 df, p〉H(E) = 〈f, d∗p〉H(V ). (5.19)

Following the definitions of the inner products, the divergence operator of p at a node i
is

divi p = −d∗(p)i (5.20)
=

∑
ji∈E

√
wjipji −

∑
ij∈E

√
wijpij . (5.21)

With the directional derivative, the gradient, and the divergence operator, we have all
required operators to formulate the total variation regularized image segmentation model
on a weighted graph.
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5.3.2. The Segmentation Model in the Weighted Graph Framework

In this section we derive our image segmentation algorithm in the weighted graph frame-
work, which results in a highly adaptive and expressive model similar to the non-local
TV model proposed by Gilboa and Osher [52].
In the following we denote with u : V 7→ [0, 1] the relaxed labeling function which assigns
a value to every vertex, thus u is a function of H(V ). With f : V 7→ R we denote the
term that depends on the conditional probabilities for foreground and background at
every vertex, defined as f(i) = − logPF (xi) + logPB(xi). As a short hand we write fi
for the value of f at a vertex i, and ui for the value of u at a vertex i. The dual function
p : E 7→ R is defined over the edges of the graph and belongs to H(E). As a shorthand
we write pij for the value of p on the edge ij. Also, we will use the notation xi to refer
to the position xi ∈ Ω associated to the vertex i in the graph.
Given above definitions, we are able to formulate an image segmentation model with local
variation regularization on a weighted graph

min
u:V 7→[0,1]

∑
i∈V

{
fiui + λ |∇iu|

}
. (5.22)

By comparing this term with the definition of the local variation Eq. (5.18) we observe
that the weight of the regularizer λ ∈ R+ corresponds to taking the edge weight wij = λ2

for every edge ij ∈ E.
Taking different weights wij allows to define a local metric that measures the boundary
length. How those weights are chosen strongly depends on the application, e.g. in image
segmentation one can choose weights that depend on the gradient of the image to fa-
vor object boundaries at strong image gradients. Furthermore, the presented framework
can be used to process 2-manifolds represented as discrete meshes. In [15, 40] the au-
thors propose to apply the framework for surface denoising by smoothing over the vertex
coordinates in R3.

5.3.3. A Primal-Dual Method for Vertex Labeling

The definition of the weighted gradient and weighted divergence operators allows to
formulate Eq. (5.22) as saddle-point problem on a weighted graph

min
u

max
p

〈f, u〉H(V ) + 〈u,div p〉H(V ) (5.23)

s.t. ∀i ∈ V, ui ∈ [0, 1], |pi| ≤ 1 , (5.24)

where |pi| is the `2 norm of p defined over the edges incident with the vertex i

|pi| =
√∑
ij∈E

p2
ij . (5.25)

The update equations for the segmentation problem on a weighted graph can be derived
following [24, 114]. As described in the introduction in section Section 2.5, the update
steps in Algorithm 1 in [24] are computed using the prox-operator, which for a proper
convex lower-semicontinuous function f is defined as

proxλF (v) = arg min
x
F (x) + 1

2λ‖x− v‖
2
2 . (5.26)

34 5. Connectivity Constraints for Image Segmentation



Part II: Image Segmentation

(a) 4-conn. (b) 8-conn. (c) 16-conn. (d) 4-conn. (e) 8-conn. (f) 16-conn.
graph cut graph cut graph cut (`∞ norm) (`∞ norm) (`∞ norm)

Figure 5.3.: The use of the `∞ norm for the dual variable p results in metrication artifacts similar
to those of the graph-cut algorithm. Graph cut results reprinted from [80] with kind permission
of Maria Klodt.

For our optimization problem, the prox-operator can be decomposed for the values of ui
for each vertex i ∈ V and for the values of pij for each edge ij ∈ E. Because of operator
duality of ∇i and divi, the update equations are given by

pk+1
ij = proxσF ∗

(
pkij + σ ∂iū

k
j

)
uk+1
i = proxτG

(
uki + τ divi pk+1

)
ūk+1
i = uk+1

i + θ
(
uk+1
i − uki

)
.

(5.27)

With F ∗(p) = δ≤1(|pi|), the indicator function of the unit ball constraints on p, and
G(ui) = fiui, the image based data term, we evaluate the prox-operators in closed form
and get the update equations

pk+1
ij = π|pi|≤1

(
pkij + σ ∂iū

k
j

)
uk+1
i = uki + τ divi pk+1 − τfi
ūk+1
i = uk+1

i + θ
(
uk+1
i − uki

)
,

(5.28)

with step sizes τ and σ, that are determined using the diagonal precondition method
described in [112]. The projection π|pi|≤1(·) projects the values of pk+1

ij onto the unit ball
defined over the edges ij ∈ E incident to i ∈ V such that constraint (5.25) is fulfilled.
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5.3.4. Comparison of the Primal Dual Algorithm on a Graph and the
Graph-Cut Framework

In the previous section, we have shown how to discretize a model for image segmentation
with a total variation regularizer on the discrete domain of a graph. As norm over the
dual variable of all edges incident to a vertex we define the `2 norm in Eq. (5.25). The
choice of the `2 norm follows from the definition of the total variation (see Section 3.1).
As shown with the co-area formula, this allows to measure the Euclidean length of the
level lines of u, which is a major advantage in comparison to the graph-cut framework,
that is affected by metrication errors. Those metrication errors originate from the discrete
nature of how the boundary length is defined in the discrete graph-cut framework: the
boundary of a set is measured by computing the weight of a cut through the weighted
graph, which is the sum of the weights of edges belonging to the cut.
Here we will show that by choosing a different norm for the dual variable p, we can
reproduce the metrication artifacts that occur when using the graph-cut framework. In
the graph-cut framework, the discrete representation of the boundary by measuring the
sum over all edges belonging to a cut corresponds to measuring the `1 norm of the
gradient of the labeling function. The dual of the `1 norm is the `∞ norm, also called
essential supremum norm. We apply the essential supremum norm on the dual variable
pi, defined as

‖pi‖∞ = max
ij∈E
|pij | . (5.29)

Thus the constraint ‖pi‖∞ ≤ 1 results in a point-wise projection of the values of pij onto
the interval [−1,+1] independently for every edge. As depicted in Fig. 5.3 the constraint
on pi with this `∞ norm results in metrication artifacts similar to those of the graph-cut
framework.
A comparison of segmentation results for the `2 and the `∞ norm is provided in Fig. 5.4.
Like in the graph-cut framework, the metrication error of the model with the `∞ norm
can be reduced by extending the neighborhood of the grid. However, for the model
with the `2 norm extending the neighborhood has no effect: the Euclidean length of the
boundary is already correctly measured on a 4-grid.

5.4. The Connectivity Constraint on a Discrete Domain

In this section, we describe how the connectivity constraint along geodesics can be for-
mulated on a discrete domain. First we introduce shortest paths as the equivalent to
geodesics on the discrete domain. The shortest paths form a directed graph, the shortest
path tree, and we show how the connectivity constraint, a monotonicity constraint along
the shortest paths, can be formulated on this tree.

5.4.1. Discrete Geodesics

Shortest Path Tree On the discrete graph, a geodesic from the root s to a point x
amounts to the shortest path between s and x. The edges of all those shortest paths
originating in s form a tree which is rooted in s. Because we want to compute shortest
paths in the graph that are equivalent to the geodesics in the continuous domain described
in Section 5.2.1, we compute shortest paths in the metric defined by the positive part of
the data term f+. Further details are given below.
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(a) 4-conn. (b) 8-conn. (c) 16-conn. (d) 4-conn. (e) 8-conn. (f) 16-conn.
(`∞ norm) (`∞ norm) (`∞ norm) (`2 norm) (`2 norm) (`2 norm)

Figure 5.4.: Comparison of different neighborhood connectivities on the cameraman test image
using the `∞- and `2-norm for the dual variable p. The use of the `∞-norm results in metrication
artifacts similar to those of the graph cut framework (Compare to Fig. 5.3). The `2-norm allows
to measure the Euclidean norm of the boundary length instead.
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ei 

ei-1 

xi-1 

xi+1 

Figure 5.5.: Discretized neighborhood on the pixel grid that is used for the shortest path search.
The bending energy depends on the two edges ei−1 and ei joining at a node xi.

Bending Energy Prior Additional a-priori information about the geometry of the
object that should be segmented can be included in the framework, however this part
is optional. For the special case of blood vessel segmentation in medical imaging it is a
reasonable assumption, that a blood vessel in a stress free state minimizes its bending
energy Ebend.
To compute the bending energy in a discretized framework we use the discretized bending
energy of Bergou et al. [11] that can be applied for curves in 2D as well as spacecurves
in 3D. It is expressed using the curvature binormal

(κb)i = 2ei−1 × ei

|ei−1| |ei|+ ei−1 · ei
(5.30)

with ei = xi+1−xi and ei−1 = xi−xi−1. Because this is an integrated quantity, dividing
it by the length of the domain of integration, in this case half the length of the edges
joining at xi, gives the discretized version of the bending energy

Ebend(xi) = 1
2α
(

(κb)i
l̄i/2

)2
l̄i
2 = α(κb)2

i

l̄i
. (5.31)

Note that the curvature binormal (κb)i depends not only on the position xi but also on
the positions of the neighboring nodes xi+1 and xi−1.

Computing the Shortest Path Tree Finally, the combination of the non negative
data term and the bending energy prior leads to the (discretized) geodesic shortest path
problem

min
sPx

n(P )∑
i=1

f+
ε (P (i)) + Ebend(P (i)) , (5.32)

where with sPx we denote a path from s to x of length n(P ) in the discretized domain and
P (i) returns the i-th vertex in P . For numerical stability of the shortest path algorithm,
we use the function f+

ε (i) = max(ε, f(xi)).
Note that this is not a usual geodesic measure, because the bending energy term de-
pends on the angle between the incoming and outgoing edge. Thus, standard first-order
techniques [128, 144] can’t be used. Instead, such cost functions can be minimized by
computing a shortest path on a higher order graph, which contains a node for every
edge in the original graph [3]. However, this approach results in a search problem of
high complexity. To achieve a feasible runtime also for large datasets, we approximate
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the minimal path by using a greedy optimization scheme, in this case Dijkstra’s shortest
path algorithm [34] on the pixel grid, using the extended pixel neighborhood depicted
in Fig. 5.5. At every expansion step of Dijkstra’s algorithm the value of (5.32) for the
candidate nodes xi+1 is computed by taking the predecessor xi−1 in the current shortest
path to xi. Thus this approximation does not take into account different incoming dir-
ections to the node xi but assumes the incoming directions to be fixed by xi−1. The
result of Dijkstra’s shortest path algorithm is a geodesic shortest path tree, that spans
the whole image, and defines a unique path from the source to every pixel in the image.
In the continuous setting, we formulated the connectivity constraint as monotonicity
constraint along geodesics. As discussed in the previous Section 5.4.1, on the discrete
domain, a geodesic from the root s to a point x amounts to the shortest path between s
and x. Thus, the connectivity constraint corresponds to a monotonicity constraint along
shortest paths. All the shortest paths originating from s form a shortest path tree Ts
with root vertex s, and the shortest path from s to x in the discretized image domain is
a connected path in Ts. Thus, the connectivity constraint along shortest paths can be
formulated on the edges of Ts as follows.
On the shortest path tree Ts, the connectivity constraint is equivalent to the constraint
that the label ui of a node i is always greater or equal than the label of a neighboring
node j with a larger distance d(j) to the root node: d(i) < d(j)⇒ ui ≥ uj . Because the
graph structure is a shortest path tree, the condition d(i) < d(j) is satisfied for all nodes
i and their child nodes j. The constraint ui ≥ uj then implies ∂iuj ≤ 0 ∀ij ∈ E(Ts).
This constraint is linear in u, which preserves convexity of Eq. (5.22) and allows for an
optimal solution.
The image segmentation problem with connectivity constraints defined over the edges of
the tree Ts thus becomes

min
u:V 7→[0,1]

∑
i∈V

{
fiui + λ |∇iu|

}
(5.33)

s.t. ∀ij ∈ E(Ts), ∂iuj ≤ 0 , (5.34)

where we define the gradient operator∇i on a regular grid and the connectivity constraint
over the edges of Ts.
Also for this discretized domain, we can show that every thresholded version of a feas-
ible minimizer of (5.33) is feasible with respect to the constraints (C1) of the original
optimization problem (P1).

Theorem 5.4.1. Let u∗ be a feasible minimizer of (5.33). Let Ts = (ET , VT ) denote the
directed graph of the connectivity constraints, i. e. for each inequality constraint u∗i ≥ u∗j
there exists a directed edge (i, j) ∈ E. Then every upper level set Σ{u∗>µ} of u∗ is a
connected subset on G.

Proof. Assume that Σ{u∗>µ} is not connected on Ts. Then there has to exist a node
j ∈ VT , for which the parent i ∈ VT with (i, j) ∈ ET is not in Σ{u∗>µ}.

i /∈ Σ{u∗>µ} =⇒ u∗i ≤ µ ,
j ∈ Σ{u∗>µ} =⇒ u∗j > µ ,

(5.35)

and therefore u∗i < u∗j .

This contradicts the connectivity constraint (i, j) ∈ ET ⇐⇒ u∗i ≥ u∗j .
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5.4.2. Legendre-Fenchel Duality

Note that the connectivity constraints (5.34) of the optimization problem (5.33) are linear
constraints. Thus Slater’s condition holds and we have strong duality (see Section 2.4.1
for further details).
We include the connectivity constraint by adding the indicator function

δ≤0(∂iuj) =

 0 if ∂iuj ≤ 0,

∞ else.
(5.36)

to the segmentation model and get

min
u:V 7→[0,1]

∑
i∈V

{
fiui + λ |∇iu|

}
+

∑
ij∈E(Ts)

δ≤0(∂iuj) . (5.37)

As we have seen in Section 2.4.2, the indicator function of the inequality constraints
in Eq. (5.37) can be included in the primal-dual framework by replacing it with its
bi-conjugate

δ∗∗≤0(∂iuj) = sup
αij≥0

αij ∂iuj , (5.38)

where αij are dual variables defined over the edges ij ∈ E(Ts) of the constraint graph.
We optimize also in these dual variables αij and get as final update equations with
connectivity constraints

pk+1
ij = π|pi|≤1

(
pkij + σ ∂iū

k
j

)
αk+1
ij = π|·|≥0

(
αkij + ν ∂iū

k
j

)
uk+1
i = uki + τ divi pk+1 + τ divTsi αk+1 − τfi
ūk+1
i = uk+1

i + θ
(
uk+1
i − uki

)
,

(5.39)

where divTs is evaluated on the edges of the constraint graph.
Also in this case, we determine the step sizes τ , σ, and ν using the diagonal precondition
method described in [112].

5.5. Experimental Results

We applied our method to different types of image data. Figure 5.1 shows the strong
capabilities of our segmentation algorithm for the task of blood vessel segmentation in
three dimensional CT angiography data1. With the tree shape prior, even the small
distal tips of the blood vessels are preserved in the final segmentation, while image noise
that does not belong to the connected foreground region is successfully suppressed. To
segment the whole volume of size 512×512×355 voxels our algorithm needs 330 seconds
on a single threaded 2.27 GHZ Intel Xeon architecture, which is less than 1 second per
512× 512 volume slice.
Furthermore, the connectivity prior is also a useful extension in an interactive segment-
ation framework. Figure 5.6 shows an input image with additional user scribbles, that

1 CT dataset taken from the Vessel Segmentation in the Lung 2012 Grand Challenge
http://vessel12.grand-challenge.org.
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(a) Input image (b) Result from [150]

(c) Without connectivity prior (d) With connectivity prior

(e) Input image (f) Result from [150]

(g) Without connectivity prior (h) With connectivity prior

Figure 5.6.: Results for user interactive segmentation. For comparison we show the results on
an image from [150]. (a) and (e) Input image with user scribbles. The red scribble is the source
foreground region of the geodesic shortest path tree, green scribbles are foreground regions that
should be connected and red scribbles are background regions. (b) and (f) Segmentation results
from [150]. (c) and (g) Segmentation without connectivity prior. (d) and (h) Segmentation result
with the proposed connectivity prior.
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Accuracy Sensitivity Specificity
2nd Observer 94,73%
Connectivity Prior
w Bending Energy 94,57% 84,50% 95,83%
w/o Bending Energy 94,56% 84,65% 95,79%
Staal 94,42%

Figure 5.7.: Quantitative evaluation results of the proposed method on the DRIVE data-
base [131]. A combination of the connectivity prior with the method of Staal leads to the most
accurate method on this dataset, almost reaching the performance of a second human observer.

provide hard constraints for foreground and background regions. With these scribbles
the user can describe how the shortest path tree is constructed. One foreground region
acts as the root node of the shortest path tree. Additional foreground regions can be
added via brush strokes that should be connected to the root region.
In all our experiments, we estimate the probability density functions for foreground and
background from user scribbles using a Parzen window estimator, with a Gaussian kernel
kσ(I(x)− Is) centered at every image value Is of the user scribbles.
We quantitatively evaluated the method on the DRIVE database [131] of digital retinal
images for vessel extraction. Because the main contribution in this work is the connec-
tivity prior and not the design of a special data term for retinal blood vessel detection,
the performance of the tree shape prior was evaluated by using the method of Staal [131]
as data term. This is the currently best performing method in the benchmark with an
accuracy of 94,42%. By combining this method with the proposed connectivity prior the
accuracy can be increased to 94,57%. Therefore this is the highest accuracy reported
for this database, almost reaching the accuracy of a human observer (94,73%). Includ-
ing the bending energy term leads to an increased specificity and a slightly increased
accuracy, while the sensitivity is slightly decreased. Overall, the number of true positive
classified pixels is increased and the number of true negatives is decreased, and in some
cases topological ambiguities are solved (Fig. 5.9). On average, the runtime until con-
vergence on a single threaded 2.27 GHz Intel Xeon architecture was 71.65 s per image,
with a standard deviation of 31.56 s. To determine the runtime needed for convergence
we first computed a solution using a relatively large number of iterations (e.g. 10.000),
restarted the algorithm and stopped when the difference between both results reached a
value below 10−4.
In a recent study, Rempfler et al. [117] propose a constraint generation scheme in an
integer linear programming framework to solve the minimum cost connected subgraph
(MCCS) problem, which corresponds to the original discrete optimization problem (5.1)
without the boundary length regularizer. They are able to solve 12 out of 20 problem
instances from the DRIVE benchmark to global optimality with a median runtime of 500 s
per image. They compare the optimal solution of the MCCS problem with the solution
obtained with the geodesic tree shape prior presented here, and found no difference
regarding F1-score, precision, and recall. In all solvable cases, the geodesic tree shape
prior result matched the exact result within a relative difference of 10−4.
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Input image with root s marked in green Ground truth

Result from [131] With connectivity prior

Figure 5.8.: Results on an image of the DRIVE benchmark. The connectivity prior increases
the segmentation accuracy and allows to connect previously unconnected parts to the vascular
network. The region denoted with the red box is shown in Fig. 5.9.

Input Image Without bending energy With bending energy Ground Truth

Figure 5.9.: Magnified result from the DRIVE dataset. The bending energy term helps to
resolve ambiguities about the topology of the connected structure.
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5.6. Conclusion

We presented a novel method for image segmentation with connectivity constraints.
While solving the image segmentation problem with general connectivity constraints is
NP-hard, we propose to formulate the constraint on a geodesic shortest path tree, leading
to the novel tree shape prior.
We show that our method can be successfully applied to medical image segmentation
problems in angiography and retinal blood vessel extraction, where thin structures oth-
erwise would not be preserved by boundary length regularizers. Experiments on a public
dataset show that combining the connectivity prior with existing image segmentation
methods clearly improves the performance. To formulate the optimization problem on
a discrete domain, we generalized an efficient primal dual optimization algorithm for
arbitrary graphs.
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6. A Fast Projection Method for
Connectivity Constraints

In this chapter we present how to efficiently project onto the feasible set of the connectiv-
ity constraints presented in the previous chapter. The constraints form a convex set and
the convex image segmentation problem with a total variation regularizer can be solved
to global optimality in a primal-dual framework. Efficiency is achieved by directly com-
puting the update of the primal variable via a projection onto the constraint set, which
results in a special quadratic programming problem similar to the problems studied as
isotonic regression methods in statistics, which in this case can be solved with O(n logn)
complexity. We show that especially for segmentation problems with long range connec-
tions this method is by orders of magnitudes more efficient, both in iteration number and
runtime, than solving the dual of the constrained optimization problem. Experiments
validate the usefulness of connectivity constraints for segmenting thin structures such as
veins and arteries in medical image analysis. Part of the results presented in this chapter
have been published in [135].

6.1. Introduction

To allow to preserve thin structures, topological constraints, and especially those that
preserve connectivity [139, 150], have been introduced into image segmentation methods.
These constraints have a great advantage in several application areas, including the
segmentation of arteries and veins in medical imaging but also in a user interactive setting
for general image segmentation. They are very useful when thin structures should be
extracted from image data, allowing to extract the whole branching tree of blood vessels
in the lung, as shown on the left in Fig. 6.1. For comparison, a total variation regularized
segmentation of the dataset without connectivity constraints is shown on the right. In
order to preserve the thin structures, only a very small weight of the regularizer can be
chosen. Therefore a lot of noise is still present in the final segmentation.
In the previous chapter and in our work [139], we propose a global optimal segmentation
method with reformulated connectivity constraints in a convex optimization framework.
The combination of a total variation regularizer with the connectivity constraint allows
to segment thin structures even in very noisy image data. In [139] we propose to solve
the resulting constrained optimization problem by computing a solution of the dual op-
timization problem. However, another method to include the constraints is a projection
onto the feasible set. In this chapter we describe an efficient projection scheme for the
connectivity constraints, which allows to directly compute a solution for the update of
the primal variable by a projection of the primal variable onto the feasible set. We show
that the constraints form a convex set and derive a projection algorithm from isotonic re-
gression methods in statistics. We verify in experiments that especially for segmentation
problems with long range connections the projection method is by orders of magnitudes
more efficient, both in iteration number and runtime, than solving the dual of the con-
strained optimization problem.
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Result with connectivity constraint Without connectivity constraint

Figure 6.1.: Connectivity constraints allow to extract the whole branching tree of blood vessels
in the lung, as shown on the left. For comparison, a total variation regularized segmentation
without connectivity constraints is shown on the right. In order to preserve the thin structures,
only a very small weight of the regularizer can be chosen, therefore a lot of noise is still present
in the final segmentation. CT dataset from the Vessel Segmentation in the Lung 2012 Grand
Challenge

For an overview of related work on image segmentation with topological constraints please
refer to Section 5.1.1.

6.2. Connectivity Constraints in Image Segmentation

First we review the results from [139] and the previous chapter, where image segmentation
with connectivity constraints is formalized as the constrained optimization problem

min
l:Ω 7→{0,1}

∫
Ω

f(x) l(x) dx+ λ Per(Σl,Ω) (P1)

s.t. ∀x ∈ Σl : ∃C̄xs ⊂ Gs, C̄xs ⊂ Σl (C1)

with the domain Ω, a bounded connected subset of Rm, and BV (Ω; [0, 1]) is the space
of functions with bounded variation. The data term f : Ω → R is chosen in such a way
that it is negative for image values which are more likely to be foreground and negative
in regions which should be regarded as background, e.g. the log ratio

f(x) = log P (I(x)|l(x) = 0)
P (I(x)|l(x) = 1) , (6.1)

with the image I and the the discrete label assignment l : Ω 7→ {0, 1}, that describes
if an image region belongs to the object of interest l(x) = 1 or the image background
l(x) = 0, and Per(Σl,Ω) measures the boundary length of the foreground region Σl in Ω,
with Σl = {x ∈ Ω : l(x) = 1}.
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With Gs we denote the set of all geodesics that pass through a given point s, for example
defined by user input, defined by a metric that depends on a probabilistic model for
foreground and background probabilities, and C̄xs ⊂ Gs denotes the shortest geodesic
from s to a terminal point x.
The solution of the optimization problem should satisfy the connectivity constraint C1:
For each x ∈ Ω that belongs to the foreground there must exist a connected shortest
geodesic path from a given s ∈ Ω to x such that all p ∈ Ω in the path between x and s
belong to the foreground.
This constraint not only ensures the connection of every labeled foreground region to s
but also ensures that the whole foreground segment is connected.

6.3. Constrained Convex Optimization

On a discretized domain, the geodesics form a geodesic shortest path tree, a directed
acyclic graph Gs = {V,E} with the set of vertices V with |V | = n and the set of directed
edges E ⊂ V × V with |E| = m. With the local variation regularizer introduced in
the previous chapter the image segmentation problem Eq. (P1) can be written as the
optimization problem

min
u:V 7→[0,1]

∑
i∈V

{
fiui + λ |∇iu|

}
(6.2)

where the discrete label assignment has been relaxed by introducing the continuous in-
dicator function u : V → [0, 1] and the operator ∇i is evaluated on the pixel grid. We
further follow the framework we introduced in the previous chapter and in [139] and
formulate the global connectivity constraint as a monotonicity constraint over each edges
of this graph. To satisfy the connectivity constraint we observe that the value of the
discretized value function ui of a node i with distance to the root node di should always
be greater or equal than the labels of its neighbors with a larger distance dj > di to the
root node. This implies that the directional derivative

∂iuj := (du)(eij) = (u(j)− u(i))

of u at vertex i along the edge to vertex j should always be less than or equal to zero.
Thus we get the constrained optimization problem

min
u:V 7→[0,1]

∑
i∈V

{
fiui + λ |∇iu|

}
(6.3)

s.t. ∂iuj ≤ 0, ∀(i, j) ∈ E .

This image segmentation problem can be optimized using the Primal-Dual framework
of [24, 114] which can be applied to convex optimization problems with a saddle-point
structure

min
u∈U

max
p∈P
〈Ku, p〉+G(u)− F ∗(p) , (6.4)

where U and P are finite-dimensional vector spaces, K : U → P is a continuous linear
operator and G : U → [0,+∞) and F ∗ : P → [0,+∞) are proper convex lower semi-
continuous functions. Recall from the introduction in Section 2.5 that the update steps
in [24] are computed using the prox-operator, which is defined as

proxλf (v) = arg min
x
f(x) + 1

2λ‖x− v‖
2
2 . (6.5)
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Using this prox-operator, the updates in the primal variable u and the dual variable p
are computed as

pk+1 = proxσF ∗
(
pk + σKūk

)
uk+1 = proxτG

(
uk − τK∗pk+1

)
ūk+1 = uk+1 + θ

(
uk+1 − uk

)
.

(6.6)

To formulate the image segmentation problem Eq. (6.3) in the Primal-Dual framework we
reformulate the total variation regularizer by introducing a dual variable p : V 7→ R2 [114]
and arrive at the saddle point problem

min
ui∈[0,1]

max
|p|≤1

λ〈∇ui, p〉+ 〈f, u〉+
∑

(i,j)∈E
δ≤0(∂iuj) , (6.7)

where the connectivity constraints are included by adding their indicator functions. Note
that while the constraints are defined on the graph Gs, the gradient operator ∇i in the
regularizer is computed on the image grid. We identify the function G(u) in (6.4) with

G(u) = 〈f, u〉+
∑

(i,j)∈E
δ≤0(∂iuj) . (6.8)

While the constraints over the domains of u and p can be solved by simple projections,
the optimization with respect to the connectivity constraint is more involved. In the
following, we will investigate two different strategies to incorporate the connectivity con-
straint.

6.3.1. Optimization via Fenchel Duality

In [139] we propose to optimize the dual of the constrained optimization problem

min
ui∈[0,1]

max
|p|≤1
αij≥0

λ〈∇iu, p〉+ 〈f, u〉+
∑

(i,j)∈E
αij ∂iuj . (6.9)

The connectivity constraint is ensured by introducing an additional dual variable αij
for each edge (i, j) ∈ E. Especially for long range connections the convergence of these
multipliers is very slow as we show in our experiments in section 6.4.

6.3.2. Projection onto the Constraint Set

In this section we describe how the connectivity constraint can be included by directly
computing the update of the primal variable subject to the constraint. We propose
an efficient projection scheme to solve the constrained quadratic programming problem,
which results from the definition of the prox-operator.
According to [24] the update in the primal variable u is defined as

uk+1
i = proxτG

(
uki + τ divi pk+1

)
(6.10)

= arg min
v∈[0,1]


∥∥∥v − (uki + τ divi pk+1)

∥∥∥2

2τ + 〈fi, v〉+
∑

(i,j)∈E
δ≤0(∂iuj)

 , (6.11)

48 6. A Fast Projection Method for Connectivity Constraints



Part II: Image Segmentation

where we inserted the function G from (6.8).
By completing the square and omitting terms independent of v we arrive at

uk+1
i = arg min

v∈[0,1]

∥∥∥v − (uki + τ divi pk+1 − τfi)
∥∥∥2

+
∑

(i,j)∈E
δ≤0(∂iuj)

 (6.12)

which is of the general form

arg min
v:V 7→[0,1]

‖v − ũ‖2

s.t.
vi ≥ vj , ∀(i, j) ∈ E,

(6.13)

with ũ = (uk + τ div pk+1 − τf).

Proposition 6.3.1. The feasible set C determined by the constraints of the optimization
problem Eq. (6.13) is a closed convex set.

Proof. Let C1 be the feasible set determined by the inequality constraints and let C2
denote the range of v. The feasible set of Eq. (6.13) then is C = C1 ∩C2. First we show
that C1 is convex. If for every a, b ∈ C1 and α, β > 0 it holds that αa+ βb ∈ C1 then C1
is a convex cone. Because a, b ∈ C1 it holds that

ai ≥ aj , bi ≥ bj , ∀(i, j) ∈ E, (6.14)

and because α, β > 0 it follows

αai ≥ αaj , βbi ≥ βbj , ∀(i, j) ∈ E,
αai + βbi ≥ αaj + βbj , ∀(i, j) ∈ E.

(6.15)

Hence the set C1 is a convex cone. In addition to the inequality constraints we also have
the constraint on the range of v. We call the feasible set of this constraint C2 = [0, 1].
This set is closed and convex, so C = C1 ∩C2, the intersection of both sets, is closed and
convex.

Thus the optimization problem Eq. (6.13) is strictly convex subject to convex constraints.
Its solution is an Euclidean projection of ũ onto the closed convex set C and can be solved
to global optimality. Furthermore the inequality constraints describe a partial order on
the values of v. A quadratic programming problem with this structure is known in
statistics as isotonic regression [7].

6.3.3. Isotonic Regression on a Tree

In Pardalos et al. [109] the authors investigate a class of algorithms for isotonic regression
where the constraints define a partial order which can be represented by a directed graph.
In particular the authors propose an O(n logn) algorithm for the case when the directed
graph is a directed tree with n vertices. For convenience we present the algorithm IRT-
BIN from [109] here as Algorithm 2.
We call the isotonic regression problem subject to partial order constraints IRT. This
problem does not include the range constraints of Eq. (6.13). In the following, we will
show that a projection of the optimal solution of IRT on the range constraint yields the
optimal solution of Eq. (6.13).
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First we follow the presentation of Pardalos et al. [109] and describe the algorithm for
isotonic regression with partial order constraints, using the concept of upper sets, lower
sets and level sets:

Definition [109] Let X be a nonempty finite set. Let � be a partial order on X. Let
Y be a nonempty subset of X. We define the average of Y as Av(Y ) = 1

|Y |
∑
i∈Y ũi. We

call a subset L ⊂ X a lower set of X with respect to � if i ∈ X, j ∈ L and i � j implies
i ∈ L. Consequently a subset U ⊂ X is an upper set if i ∈ U , j ∈ X and i � j implies
j ∈ U . We call a subset S ⊂ X a level set if there are an upper set U and a lower set L
such that S = L ∪ U . A block B of X is a nonempty level set such that for each upper
set U ⊂ X for which U ∩B 6= ∅ it holds that Av(B) ≥ Av(U ∩B).

Furthermore the authors of [109] introduce the concept of a block class:

Definition [109] A collection ∆ of blocks of X is called a block class of X if
1. the blocks in ∆ are pairwise disjoint and their union is the set X.
2. the collection ∆ can be ordered by a partial-order � such that A � B for A,B ∈ ∆

if there exist i ∈ A and j ∈ B such that i � j.

Note that the collection of all singleton subsets {x} with x ∈ X is a block class.
The authors prove that the optimal solution of IRT on a block B is vi = Av(B) for every
i ∈ B. Furthermore they show that if a block class ∆ has no adjacent violators, then the
optimal solution of the isotonic regression is given by v∗i = Av(B(i)), where B(i) is the
block which contains i, for each element i of X.

Algorithm 2 IRT-BIN from Pardalos et al. [109]
1: Let ∆ be the singleton block class and let T be a copy of the underlying rooted tree.
2: Mark each leaf node of T as solved and all other nodes as unsolved.
3: for each node xi of T do
4: Create a block B(xi) = {xi} and a binomial heap Hi.
5: end for
6: if all nodes of T are marked as solved then
7: output the blocks corresponding to the nodes in T as the final block class and

stop;
8: end if
9: Let xi be an unsolved node of T such that all the children nodes of xi are solved.

10: Let B(xi) (resp. Hi ) be the block (resp. binomial heap) corresponding to node xi.
11: while Av(B(xi)) < Maximum(Hi) do
12: ExtractMax(Hi) and let B(xk) be the corresponding block
13: Shrink the edge connecting xi to xk . the new vertex is still called vi
14: Create a new block B(xi)← B(xi) ∪B(xk) . the new block is still called B(xi)
15: Calculate the Av(B(xi)) for the new block B(xi)
16: Hi ← Union(Hi, Hk) . this is the binomial heap for the new block B(xi)
17: end while
18: Mark the node xi of T as solved.
19: Let xp be the parent node of xi in T . Let Hp be the binomial heap corres-

ponding to B(xp) and let ai be the node in Hp which corresponds to B(xi).
ChangeKey(ai, Av(B(xi)), Hp).

20: go to 6.
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We will show with the proof of the following proposition that given a solution v∗ of
IRT the optimal solution to Eq. (6.13) is achieved by projecting v∗ on C2. Thus, we
can directly project onto the constraints of the optimization problem Eq. (6.13) by first
projecting onto the isotonicity constraint and then onto the [0, 1]-box constraint.
Obviously, projecting first onto the [0, 1]-box constraint and then onto the isotonicity
constraint will not lead to a valid projection. When the averaging step is performed after
the [0, 1] clipping, in case that the isotonicity constraint is violated and some values are
smaller 1, only block average values well below 1 can be achieved, even when the average
of the block before projection was larger than 1.

Proposition 6.3.2 (Direct Projection onto the Constraint Set). Let B be a block
of X. Let v∗i = Av(B) for every i ∈ B be the solution of IRT. Let π[0,1] : R → [0, 1]
be a projection that projects negative values to 0 and values larger than 1 to 1. Then{
π[0,1](v∗i ) : i ∈ B

}
is the optimal solution to the optimization problem (6.13) on B.

Proof. Let us assume that B has m elements x1, x2, . . . , xm. We look at the three cases
Av(B) > 1, Av(B) ∈ [0, 1] and Av(B) < 0. Obviously these three cases are exhaustive.
If Av(B) ∈ [0, 1] then the solution v∗ of IRT also fulfills the range constraint and the
solution of Eq. (6.13) for the set B is identical to the solution of IRT on B.
We follow a similar proof as in [109] and show that if Av(B) > 1 the point{

π[0,1](v∗i ) : i ∈ B
}

=
(
π[0,1] (Av (B)) , π[0,1] (Av (B)) , . . . , π[0,1] (Av (B))

)
∈ Rm

= (1, 1, . . . , 1) ∈ Rm (6.16)

is the optimal solution to Eq. (6.13) by showing that the inner product of the gradient
of Eq. (6.13) with any feasible direction d ∈ Rm at that point is a non-negative number.
Let d = (d1, d2, . . . , dm) be a feasible direction of the isotonic regression problem on B.
Then, in order to preserve isotonicity, feasibility of the direction d implies di ≤ dj when
xi � xj .
Therefore there exists a permutation σ = (σ(1), σ(2), . . . , σ(m)) such that

dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(m) (6.17)

and
xσ(i) � xσ(j) =⇒ i ≤ j. (6.18)

To prove that for Av(B) > 1 the point in (6.16) is the optimal solution of the optimization
problem (6.13) on the set B it is sufficient to show that∑

i∈B
(1− ũσ(i))× dσ(i) ≥ 0. (6.19)

From Eq. (6.17) and from the definition of a block it follows that

1
m− k + 1

m∑
i=k

uσ(i) ≥ Av(B) > 1 for all 1 < k ≤ m. (6.20)

This implies that
m∑
i=k

(1− uσ(i)) ≤ 0 for all 1 < k ≤ m. (6.21)
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Equations (6.21) and (6.17) imply that for all 1 < k ≤ m that the following inequality
holds

m∑
i=k

(1− uσ(i))× dσ(k−1) ≤
m∑
i=k

(1− uσ(i))× dσ(k). (6.22)

Because Av(B) > 1 the feasibility of d implies that dσ(i) ≤ 0 for all i ∈ {1, . . . ,m}.
Combining everything together we get

m∑
i=1

(1− uσ(i))× dσ(1) (6.23)

=
1∑
i=1

(1− uσ(i))× dσ(i) +
m∑
i=2

(1− uσ(1))× dσ(1)

≤
1∑
i=1

(1− uσ(i))× dσ(i) +
m∑
i=2

(1− uσ(2))× dσ(2)

=
2∑
i=1

(1− uσ(i))× dσ(i) +
m∑
i=3

(1− uσ(2))× dσ(2)

≤
2∑
i=1

(1− uσ(i))× dσ(i) +
m∑
i=3

(1− uσ(3))× dσ(3)

. . .

≤
m∑
i=1

(1− uσ(i))× dσ(i) (6.24)

From Av(B) > 1 it follows that
m∑
i=1

(1− uσ(i)) < 0. (6.25)

Together with dσ(i) ≤ 0 for all i ∈ {1, . . . ,m} it follows for Eq. (6.23)

m∑
i=1

(1− uσ(i))× dσ(1) ≥ 0. (6.26)

Therefore from Eq. (6.23) to Eq. (6.24) we have proved that if Av(B) > 1
m∑
i=1

(1− uσ(i))× dσ(i) ≥ 0. (6.27)

What is left show is that if Av(B) < 0, the inner product of the gradient of Eq. (6.13)
with any feasible direction d = (d1, d2, . . . , dm) ∈ Rm at the point{

π[0,1](v∗i ) : i ∈ B
}

= (0, 0, . . . , 0) ∈ Rm

is a non-negative number. The proof is equivalent to above proof for Av(B) > 1.

6.4. Experimental Results

For comparison we perform experiments for interactive segmentation on images from [150]
that also have been used in other publications, e.g. [38, 139]. As depicted in Fig. 6.2, the
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(a) Input images

(b) Image segmentation without connectivity constraints

(c) Connectivity constraints using Fenchel Duality

(d) Connectivity constraints using the projection method

Figure 6.2.: Comparison of the projection method and Fenchel duality Both methods
produce the same results for interactive segmentation. (a) Input images with user scribbles. The
red scribbles are the source of the geodesic shortest path tree, green scribbles are foreground
regions that should be connected and blue scribbles are background regions. (b) Segmentation
without connectivity constraints. (c) Segmentation with connectivity constraints by solving the
dual problem. (d) Segmentation with connectivity constraints using the projection scheme.
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Original image Noisy input image

Solution of the dual problem Solution using the projection method

Figure 6.3.: Synthetic test image. Upper row: The input image with added Gaussian noise.
Lower row: Identical results of the two different methods to include the connectivity constraint.

segmentations acquired with the projection method are not different from the results of
the algorithm based on Fenchel duality [139].
We provide convergence results of the two different methods on a set of synthetic test
images containing two circles that are connected by a 2 pixel wide faint path of a length
of 64, 128, 256 and 512 pixels. As an example, the image for the path length of 256 pixels
is depicted in Fig. 6.3.
Plots of the convergence of the two methods with respect to runtime are shown in Fig. 6.4.
The projection method clearly outperforms the method based on Fenchel duality. The
longer the connection, the higher the runtime difference of both methods. Convergence of
the dual method takes from 10.12 seconds for the 64 pixel connection, over 41.11 seconds
for 128, 251.17 seconds for 256 to 1639.15 seconds for the 512 pixel connection, whereas
the projection method converges within less than 3 seconds for all different images. Al-
though solving the isotonic regression problem results in a higher complexity of each
iteration, by magnitudes fewer iterations are required for the projection method to con-
verge. The needed runtime and number of iterations until convergence of both methods
for different data sets are shown in Table 6.1. For images of the DRIVE benchmark [131],
the average runtime per image on a single CPU can be decreased from 71.65 s (± 31.56
s) with the dual approach to only 2.07 s with the proposed projection scheme. Because
the number of iterations needed for the projection method depends less on the length of
the connections, the method depends less on the data and we observe a much smaller
standard deviation of the runtime of 0.26 s. This clearly allows to use the proposed
method for practical applications.
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Table 6.1.: Comparison of runtime and number of iterations until convergence. Especially when
the images contain long range connections, the projection method is by magnitudes more efficient
than solving the dual problem. The results for the DRIVE benchmark are averaged over the
whole dataset and reported together with their standard deviation.

Fenchel Duality Projection Method
Image Iterations Runtime Iterations Runtime
Test Circle 64 5396 10.12 s 19 0.29 s
Test Circle 128 18318 41.11 s 20 0.52 s
Test Circle 256 81987 251.17 s 20 1.06 s
Test Circle 512 344030 1639.15 s 20 2.89 s
Fly 1226 9.13 s 54 3.66 s
Desk 3440 42.00 s 109 13.40 s
DRIVE 4192 (± 1845) 71.65 s (± 31.56 s) 12.2 (± 1.32) 2.07 s (± 0.26 s)

To measure the speed of convergence we first compute a segmentation result that is
reached after a large number of iterations (e.g. 10.000 for the DRIVE benchmark), then
restart the algorithm and stop when the absolute per pixel difference between the current
result and the converged result is below 10−4. All Experiments were performed on a single
threaded 2.27 GHZ Intel Xeon architecture.
To get an intuition, why the projection method allows a much faster convergence than the
multiplier based method, we depict the values of the labeling function u for our synthetic
test image with a connection length of 256 pixels for different number of iterations in
Fig. 6.5.
For the multiplier based approach, it takes a long time until the information about the
disconnected part on the right has been propagated all the way along the 256 pixel wide
connection. The reason for this is, that a multiplier αij is only active, if the constraint
along the edge ij is not fulfilled. This however, is only the case for a limited number of
edges at the far end of the missing part of the connection.
The projection method instead allows to update several values at the same time. All the
values that belong to the same block class are set to the average value of that block. This
allows for a much faster convergence until the connectivity constraint is fulfilled.
Further more, we observe an additional property of the connectivity constraint: missing
parts of the foreground are filled not only by the regularizer, but also by the constraint.
This supports the regularizer in finding a smooth segmentation and increases the con-
vergence for regions that otherwise would have to be filled by the regularizer alone. A
comparison of segmentation results achieved after a few iterations with a total variation
(TV) regularized segmentation model and the same model with additional connectivity
constraints is depicted in Fig. 6.6. In combination with the projection method, the con-
nectivity constraints allow to reach a smooth segmentation result after fewer iterations
than with the regularizer alone.
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Figure 6.4.: Convergence of the two different methods to include the connectivity constraint
on a set of test images as shown in Fig. 6.3. The set contains images with two circles that are
connected by a 2 pixel width path of a length of 64, 128, 256 and 512 pixels. Note that the plots
have a logarithmic scale at the x axes. When using the projection method (dashed line), by order
of magnitudes fewer iterations are needed than for solving the dual problem (solid). This results
in a by order of magnitudes better runtime performance.

Fenchel Duality Projection Method

100 iterations 1 iteration

10.0000 iterations 2 iterations

50.000 iterations 4 iterations

100.000 iterations 8 iterations

Figure 6.5.: The reason for the slow convergence of the multiplier based method is, that the
multipliers are only active where the constraint is not fulfilled: at the far end of the missing part
of the connection. The projection scheme instead allows to update multiple values at the same
time and thus allows much faster convergence. First, the projection method updates the values
of each block that contains a violated constraint. Because of the noise in the input image, some
pixels inside the circles can get a background label, when they are leave nodes of the tree. Already
after 8 iterations these values have been smoothed by the regularizer. In both experiments the
root node s is the center of the left circle.
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TV Regularizer TV + Connectivity Constraints

2 iterations

4 iterations

6 iterations

8 iterations

Figure 6.6.: Connectivity constraints support the regularizer in reaching a smooth
segmentation result Shown are results after only a few iterations of a total variation regularized
segmentation model and the same model with additional connectivity constraints. In combination
with the projection method, the connectivity constraints allow to reach a smooth segmentation
after fewer iterations than with the regularizer alone.
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6.5. Conclusion

We presented a very efficient projection scheme to include connectivity constraints in a
convex image segmentation framework. The method outperforms commonly used ap-
proaches that are based on Fenchel duality in runtime by orders of magnitudes. Instead
of using the common approach to solve the dual problem of the constrained optimization
problem we directly project onto the constraint set. This leads to a by order of mag-
nitudes faster runtime performance, as significantly fewer iterations are needed until a
sufficient convergence is reached. The proposed algorithm enables to use connectivity
constraints for large segmentation problems as they arise for example in medical image
segmentation of three dimensional CT angiography.
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7. Active Online Learning for Interactive
Segmentation using Sparse Gaussian
Processes

The image segmentation methods presented so far, focused on the regularizer and appro-
priate constraints to extract a topologically connected object from the image. Another
important part of an image segmentation model is the data term, which can be defined
by a probabilistic model, that defines the probability for an image region to be part of a
specific segment.
But how exactly is this probabilistic model specified? Possible choices include non-
parametric models, for example a histogram or a Parzen window estimator, and para-
metric models, for example a mixture of Gaussian. These models are fitted to labeled
data, the so called training set. In its most simple form, this training set is specified once
and then used to fit the probabilistic model of the data term.
As an alternative and more flexible approach, we present an active learning framework
to define this probabilistic model. This active learning framework allows to improve the
data term in a user interactive approach. Our system uses a sparse Gaussian Process
classifier (GPC) trained on manually labeled image pixels ("user scribbles") that is refined
in every active learning round. To do this, our method presents a set of image regions to
be labeled by the user. These regions are selected based on the classification uncertainty
of the classifier, i.e. regions with high uncertainty are presented to the user. For small
images, this seems unnecessary, when visual inspection of the segmentation result allows
to quickly identify incorrectly classified regions. However, our method is well suited for
large datasets. These large datasets occur for example in satellite and aerial imagery,
high resolution microscopy in biology and also large image datasets such as [122].
The results presented in this chapter are joint work with Rudolph Triebel and Mohammed
Souiai and have been published in [143]. Jan Stühmer and Rudolph Triebel performed
the experiments and wrote the manuscript [143]. Mohammed Souiai provided code and
wrote part of the manuscript [143]. The efficient online update scheme was contributed
by Rudolph Triebel.

7.1. Introduction

Image segmentation is one of the most important problems in computer vision with a
large range of applications, including medical imaging and robotics. However, image
segmentation is an ill-posed problem in general, because the definition of a correct seg-
mentation strongly depends on the application. In this chapter we therefore focus on
interactive image segmentation, where the user provides information about the image to
be segmented, by manually selecting regions and assigning them a specific class label.
These selected regions can for example be selected with strokes drawn in the image, these
strokes are also called user scribbles, and are used as ground truth information to infer
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a good segmentation of the image. The scribbles can be used in two ways, first they can
define constraints on the final segmentation, because the image labeling result should be
consistent with the labels assigned manually by the user. Second, the labeled regions in
the image can be used to train a probabilistic classifier to assign the correct class label to
an image region. There exist many approaches for interactive image segmentation, one
of the most important and central problems in computer vision, with impressive results.
However, current methods reach a high classification rate only by requiring comparably
many user scribbles, and the amount of user input needed usually grows rapidly when
the segmentation quality should approach 100%.
Therefore, we present a method that asks for user input more intelligently, by actively
querying image regions to be labeled where the classification was made with high uncer-
tainty. This way, the amount of user input needed to obtain a high quality segmentation
is significantly reduced. While this approach seems unnecessary for a single image, where
the user immediately can recognize image regions that were not correctly classified, the
proposed approach is well suited for large datasets, where a manual inspection of the clas-
sification result is not feasible. To obtain an accurate classification uncertainty estimate,
we use a Gaussian Process classifier (GPC) to learn a background and foreground model.
For increased runtime performance, we use an efficient sparse version of the GPC.

7.1.1. Related Work

Since the work of Boykov et al. [19], many approaches, e.g. [94, 120], have been pro-
posed to compute a segmentation based on the graph cut framework. Another line of
research [102, 147] formulates the image segmentation problem on a continuous domain
and uses the convex relaxation of Chan et al. [25]. In both approaches, the solution is
regularized by a boundary length regularizer, that favors a spatially smooth solution.
This work is related to the approach of [102], where the data term that describes the pixel-
wise probability distribution for foreground and background includes both information
about the color distribution and in addition spatial information by using a Parzen window
estimator. Here we instead propose to use an Informative Vector Machine (IVM) [88], a
sparse version of the Gaussian Process Classifier, and propose to use active learning to
improve the classifier in an interactive segmentation setup.
The Informative Vector Machine achieves a sparsification of the GP classifier by selecting
only a sub-set of the training data based on an information theoretic criterion. The sparse
training set is iteratively constructed from the larger training set, by selecting samples
that are most informative with respect to the expected information gain. Csató and
Opper [30] also proposed a sparse GP algorithm. However, they form the sparse subset
by minimizing the KL-divergence between the approximate posterior defined by the full
training set and the posterior achieved by the sparse representation. We choose the
IVM, due to its information-theoretic selection criterion that can be directly leveraged
for active learning [142].
Active learning methods have been proposed for other classification tasks, e.g. Kapoor
et al. [75] propose to use a Gaussian process classifier (GPC) for object categorization
and improve the classifier by querying labels for data points with large classification
uncertainty. Here we use a similar approach to the work of Triebel et al. [142], who uses
an IVM in an active learning framework for traffic light detection in urban traffic images.
Recently, Vezhnevets et al. [149], as well as Wang et al. [151], also propose to use act-
ive learning for interactive image segmentation. However they use either a conditional
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Figure 7.1.: Flowchart of our active learning framework. Starting from an initial set of user
scribbles, a sparse GP classifier is trained and the remaining image pixels are classified. The
obtained class predictions are analyzed with respect to their uncertainty estimates. Then, new
user scribbles are queried at locations that are randomly sampled, with probabilities proportional
to the classification uncertainties. The newly added user scribbles are added to the training data,
and the next training round begins. Figure used with kind permission of Rudolph Triebel.

random field model with a naive Bayes classifier [149], or a a Gaussian Mixture Model
(GMM) [151]. Instead, we favor to use a Gaussian process classifier which provides
very accurate uncertainty estimates [111], and use these uncertainty estimates for act-
ively querying additional training data, which allows to quickly improve the classification
result.

7.2. Algorithm Overview

A typical sequence of our active learning framework for interactive segmentation is de-
picted in Fig. 7.2. From the initial user input, a set of labeled pixels (Fig 7.2a) of both
foreground and background, the Gaussian process classifier is trained. Then this classi-
fier is used to estimate foreground and background probabilities for the remaining pixels
of the image. The resulting segmentation of the image using this initial training set for
classification is shown in Fig. 7.2b.
To improve the segmentation, first an uncertainty measure is computed from the pre-
dictive variance returned by the Gaussian process classifier. The benefit of the Gaussian
process classifier is, that its uncertainty estimates are more reliable than those produced
by other classifiers such as Support Vector Machines, where reliability of uncertainty es-
timates corresponds to a strong correlation between uncertain and incorrectly classified
samples (see, e.g., [111]). To be able to present meaningful parts of the image to the
user, we compute a partition of the image into larger regions, called "super pixels", using
the method of [44]. For each segment, we compute the average classification uncertainty
(see Fig. 7.2c) and select the segment with the highest uncertainty to query a ground
truth label from the user. After the user has assigned a label to this image region, a
set of pixels is uniformly sampled from the region and, together with the obtained label,
added to the training data set (see Fig. 7.2d). In some cases, a segment can contain
both foreground and background of the scene. In that case, the user can select a “don’t
know” option. Then the next segment with the next highest classification uncertainty is
selected. However, this occurs only rarely in practice and can be avoided by computing
a super pixel segmentation with sufficiently small regions. As last step of the active
learning cycle the classifier is updated with the extended training set.
Above active learning round is iterated, either for a fixed number of iterations or until
the classification uncertainty has become sufficiently small (Fig. 7.2e and 7.2f).
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(a) (b) (c)

(d) (e) (f)

Figure 7.2.: Example sequence of our proposed active learning framework. The algorithm
starts with initial user input as shown in (a). A sparse GP classifier is trained and the image
is segmented using the GP prediction and a total variation spatial smoothness prior (b). Then,
candidate regions for new, informative labels are computed (c). These are based on the normalized
entropy of the GP prediction, where bright regions represent a higher classification uncertainty
than darker regions. In this case, the segment with highest uncertainty at the upper right border
is chosen. A label is queried for this region, here it is background, and a sub-set of uniformly
sampled pixels in this region is added to the training data (d). In the next round, the classification
is improved and the result is refined (e). After a few rounds, here 4 in total, the final segmentation
is obtained (f).
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7.3. Gaussian Process Classification

In every round of the active learning algorithm, the Gaussian Process Classifier (GPC)
is trained on the current training set. This set consists of user scribbles, these are user
defined pixel locations in the image and their respective labels. We represent the training
set as pairs (x1, y1), . . . , (xN , yN ), where xi are feature vectors and yi ∈ {−1, 1} are binary
labels denoting background or foreground. In our implementation, we use a combination
of image coordinates and RGB color values of the pixels as feature vector xi, but our
active learning method can easily extend to higher level features, for example the output
of special feature detectors. The use of image coordinated is motivated by the work of
Nieuwenhuis and Cremers [102], to which we compare our method in the experimental
section.
Once the classifier is trained we can compute p(y∗ = 1 | X ,y,x∗), the predictive distri-
bution of an unseen pixel/label pair (x∗, y∗), where X are the feature vectors in the
training set and y are the labels in the training set. In a Gaussian Process Classifier,
the predictive distribution is computed by first estimating a distribution p(f | X ,y) over
the latent variables f ∈ RN . This distribution is approximated by a multivariate normal
distribution with mean ~µ and covariance matrix Σ, i.e.: p(f | X ,y) ≈ N (f | ~µ,Σ) using
Bayes’ rule:

p(f | X ,y) = p(y | f)p(f | X )∫
p(y | f)p(f | X )df , (7.1)

where p(f | X ) = N (f | ~0,K) is the prior of the latent variables, and

p(y | f) =
∏
i

p(yi | fi) (7.2)

are the likelihoods, which are conditionally independent. These likelihoods are given by
sigmoid function Φ, i.e. p(yi | fi) = Φ(yifi), from which it follows that Eq. (7.1) cannot
be computed in closed form. Instead, these likelihoods are commonly approximated
with Expectation Propagation (EP). This approximation yields a Gaussian distribution
q(yi | fi) that minimizes the Kullback-Leibler (KL) divergence between q(y | f)p(f | X )
and the numerator of Eq. (7.1).
At test time, the GP classifier computes for a given new data point x∗ the mean µ∗ and
the variance σ2

∗ of the latent variable distribution

p(f∗ | X ,y,x∗) =
∫
p(f∗ | X ,x∗, f)p(f | X ,y)df . (7.3)

Given the distribution of the latent variables, the predictive distribution can be modeled
as

p(y∗ = 1 | X ,y,x∗) =
∫

Φ(f∗)p(f∗ | X ,y,x∗)df∗ . (7.4)

When choosing Φ as the cumulative Gaussian function, the prediction can be computed
in closed form using

p(y∗ = 1 | X ,y,x∗) = Φ
(

µ∗√
1 + σ2

∗

)
. (7.5)

7.3.1. Information-theoretic Sparsification

A drawback that limits the practical applicability of Gaussian Process Classifiers is their
huge demand of memory and runtime. The high computational complexity of the method
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is due to the N×N covariance matrix that has to be maintained, where N is the number
of samples in the training set that can be very large i practice. Therefore, we use a sparse
version of the Gaussian Process Classifier, the Informative Vector Machine (IVM) [89].
This sparsification is achieved my only using a sub-set of the training data, the so called
active set ID, which is used to compute an approximation q of the posterior. As in the
original Gaussian Process Classifier, q is Gaussian, i.e. q(f | X ,y) = N (f | ~µ,Σ). The
IVM computes the vector ~µ and the covariance matrix Σ incrementally, i.e. in every step
j a new ~µj and Σj are computed:

~µj = ~µj−1 + Σj−1gj (7.6)
Σj = Σj−1 − Σj−1(gjgTj − 2Γj)Σj−1 (7.7)

where
gj = ∂ logZj

∂~µj−1
, Γj = ∂ logZj

∂Σj−1
, (7.8)

and Zj is an approximation to the denominator in Eq. (7.1) using the estimate qj . Ini-
tially, we set ~µ0 = ~0, and Σ0 = K, where K is the prior GP covariance matrix.
At every iteration, a new training point (xk, yk) that maximizes the entropy difference
between qj−1 and qj is added to the active set, until the active set has reached a desired
size D. In our experiments, we defined this size as a fixed fraction of the size of the
training set N .
Because both ID and the kernel hyper parameters θ depend on each other, the training
algorithm of the IVM iterates several times over two steps: estimation of the active set
ID from θ and, for this given active set ID, minimizing the marginal likelihood ZD using
∂ZD/∂θ. Although there is no guaranteed convergence, in practice only a few iterations
are needed to find good kernel hyper-parameters.

7.4. Online Update of the IVM

The IVM differs from the standard GP not only in its sparsity, it also allows to compute
an efficient update of the posterior distribution p(f | X ,y) incrementally. In every
iteration of the IVM, new elements are added to the active set and thus the size of the
mean vector µ and covariance matrix Σ increases in every iteration. In the IVM, the
covariance matrix Σ is efficiently represented by a lower triangular matrix L of a Cholesky
decomposition. Further details of this approach are given in Algorithm 1 of Lawrence et
al. [89].
For our user interactive approach this incremental scheme is particularly useful, as it
avoids the computation of the complete covariance matrix. In contrast to the standard
GP, we do not need to update the whole covariance matrix when adding new elements to
the active set, instead in every training round only a fixed number of rows and columns
is added to the lower triangular matrix L. This reduces the amount of time needed in
each subsequent training round substantially, as we show in our experiments (Fig. 7.4b).
Furthermore, we propose an efficient update rule for class prediction.

7.4.1. Efficient Online Computation of the Class Prediction

In every active learning round, the super pixel with the highest classification uncertainty
given the current active set of the IVM has to be found. To estimate this classification
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uncertainty, we need to compute the class probabilities of each candidate pixel x∗ con-
tained in a super pixel. This step we call prediction step, in contrast to the training of the
classifier described above. Therefore, one seeks to predict the class label y∗ with highest
probability for a given test data point x∗. In the framework of the IVM, this prediction
amounts to compute the mean µ∗ and the covariance σ∗ of the approximation (Eq. (7.5))
to the latent variable distribution (Eq. (7.3)).
Using the notation of Rasmussen and Williams [116] the computation of µ∗ and σ∗ for a
new candidate data point x∗ is given by

µ∗ = kT∗ (K + Σ̃)−1µ̃ (7.9)
σ∗ = k(x∗,x∗)− kT∗ (K + Σ̃)−1k∗, (7.10)

where x1, . . . , xN denote the set of points in the training set, µ̃ and Σ̃ are the site
parameters of the approximate Gaussian likelihood q(y | f), and the matrix K is the
prior covariance matrix, i.e. the kernel function k applied to all pairs of x1, . . . , xN ,
and k∗ = (k(x∗,x1) . . . , k(x∗,xN )). Because we use the sparse representation above
quantities are only computed for the active set of D < N points.
In the following, we describe an efficient online prediction scheme, which allows for a sig-
nificant speedup when computing above quantities. In a naive implementation, Eqs. (7.9)
and (7.10) would have to be recomputed completely anew for every candidate data point
x∗. However, the matrix B := K + Σ̃ increases in every round and thus the computa-
tional complexity of computing the prediction step scales quadratically with the size of
the active set.
To speed up the computation of the prediction step, we utilize the following two redund-
ancies in the computation: First, the active set of subsequent active learning rounds
always contains the active set of any previous round, and second, the set of test pixels
x∗ is a subset of the test pixels in the previous round. Thus the vector k∗,t from round
t can be computed by taking the vector k∗,t−1 of the previous round and appending the
covariances k(x∗,xDt−1+1) . . . , k(x∗,xDt) between x∗ and the newly added data points
in the active set, where Dt is the total number of active points in round t.
We will now show how this iterative structure can be used to to compute µ∗,t and σ∗,t
incrementally from µ∗,t−1 and σ∗,t−1. First note that in the IVM approach, the matrix
Bt := Kt + Σ̃t is characterized by its Cholesky decomposition LtLTt , and

Lt :=
(
Lt−1 0
A L+

)
, (7.11)

where Lt−1 is the lower-triangular Cholesky factor from the previous iterate, and L+
is a lower-triangular matrix, with as many rows and columns as the number of points
that have been added to the active set in the current active learning round t. For the
parameters of the approximate prediction Eqs. (7.9) and (7.10), we have to compute the
inverse matrix B−1

t . We use the Cholesky decomposition of Bt = LtL
T
t and write the

inverse matrix as

B−1
t =

(
Lt−1L

T
t−1 Lt−1A

T

ALTt−1 AAT + L+L
T
+

)−1

. (7.12)

Given this block-wise Cholesky decomposition, we compute the Schur complement as

S = AAT + L+L
T
+ −ALTt−1(Lt−1L

T
t−1)−1Lt−1A

T = L+L
T
+ .

7. Active Online Learning using Sparse Gaussian Processes 65



Part II: Image Segmentation

With the Schur complement, we can express the inverse matrix B−1
t as

B−1
t =

(
C −L−Tt−1A

TS−1

−S−1AL−1
t−1 S−1

)
, (7.13)

where C = (Lt−1L
T
t−1)−1 + L−Tt−1A

TS−1AL−1
t−1.

The covariance of the approximate prediction Eq. (7.10) can be expressed as

σ∗ = k(x∗,x∗)−
(
k∗,t−1 k∗,+

)
B−1
t

(
k∗,t−1

k∗,+

)
, (7.14)

where k∗,+ is the vector of covariances of newly added points in the active set. We insert
Eq. (7.13) into Eq. (7.14) and get for the rightmost term r of Eq (7.14)

r = k̂Tt−1k̂t−1 + k̂Tt−1A
TS−1Ak̂t−1 − 2k̂Tt−1A

TS−1k∗,+ + kT∗,+S−1k∗,+ , (7.15)

where k̂t−1 = L−1
t−1k∗,t−1.

We observe that the first term of r in Eq. (7.15) and the first term in Eq. (7.14) define
the predictive variance of the previous round σ∗,t−1

σ∗,t−1 = k(x∗,x∗)− k̂Tt−1k̂t−1 , (7.16)

whereas the remaining terms of r can be subsumed into

(L−1
+ k∗,+ − L−1

+ Ak̂t−1)T (L−1
+ k∗,+ − L−1

+ Ak̂t−1) , (7.17)

which we simplify to
(L−1

+ ∆k)T (L−1
+ ∆k) , (7.18)

with ∆k = k∗,+ −Ak̂t−1.
By this decomposition, we achieved an efficient way to compute σ∗,t iteratively: We
store k̂t−1 from the previous round and compute ∆k and L−1

+ ∆k for the newly added
points. Then we multiply the result with itself (Eq. (7.18)) and subtract it from σ∗,t−1.
Similarly, µ∗,t can be computed from µ∗,t−1 of the previous round using the difference
vector ∆µ := µ∗,+ −Aµ̂t−1, where µ̂t−1 = L−1

t−1µ̃t−1.
To summarize, the online update scheme for the prediction step becomes

µ∗,t = µ∗,t−1 + (L−1
+ ∆µ)T (L−1

+ ∆k) (7.19)
σ∗,t = σ∗,t−1 − (L−1

+ ∆k)T (L−1
+ ∆k). (7.20)

With this we can efficiently compute the approximate class prediction Eq. (7.5) for a
candidate data point x∗.

7.5. Segmentation Model

The IVM allows to infer predictions for the foreground and background class probabilities
for a given image location. However, these estimates are only based on the local feature
vector. To allow a consistent segmentation of the image with smooth object boundaries,
we use the boundary length regularized image segmentation model from the previous
chapters. We formulate the image segmentation problem according to(3.9) as

min
S⊆Ω

∫
S
f(x) dx+ λPerα(S,Ω) , (7.21)
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Figure 7.3.: Evaluation of our algorithm on the Graz benchmark. Left column: input image
with initial user scribbles. Second column: classification uncertainties after the first learning
round. Third column: resulting segmentation after the first round. Note that some small
areas are misclassified, but the classification in those same areas is often very uncertain (see,
e.g., the third peg on the wardrobe). Thus, the errors can be corrected by querying more useful,
i.e. informative user scribbles. Right column: final segmentation results, obtained after a few
further active learning rounds (betw. 1 - 5). Here, a segmentation of high-quality is obtained.

where Perα(S,Ω) measures the perimeter of S in Ω weighted by a local metric α(x) =
e−γ|∇I| that depends on the image gradient.
The probabilistic model of the IVM is included with

f(x) = log p(y∗ = −1 | X ,y,x∗)
p(y∗ = 1 | X ,y,x∗)

. (7.22)

As in the previous chapters, we use the convex representation of Chan et al. [25] and
define a continuous indicator function u : Ω 7→ [0, 1] and get the convex optimization
problem

min
u:Ω7→[0,1]

∫
Ω
f(x)u(x) dx+ λ

∫
Ω
α(x) |∇u(x)| dx, (7.23)

which can be minimized with the primal-dual hybrid gradient method, see [23, 24, 113,
114] and Section 2.5.

7.6. Experimental Results

To allow a comparison to the most related work of Nieuwenhuis and Cremers [102], we
also use the benchmark data set from the University of Graz [123] for evaluation. The
data set consists of images with predefined user scribbles and a ground truth segmentation
for every image. Because we implemented our method for two class image segmentation
we chose a subset of 44 images from the dataset which contain only two object classes.
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Figure 7.4.: (a) Average f-measure over 8 active learning rounds. The GPC steadily improves
the segmentation, because its label queries are more informative for classification. In contrast,
the Parzen window estimator only improves slightly and then remains at a lower performance
level. As a baseline comparison, we also show GPC results where new user scribbles are chosen
randomly and not based on the classification uncertainty. This also improves the segmentation,
as it increases the amount of training data, but it does not improve the result as quickly as the
GPC with uncertainty based sampling. (b) Run time of online and offline inference, averaged
over all images. Note that in the beginning, the online and the offline method take the same
time, because they both need to compute the initial covariance matrix. However, in later steps
the online computation time drops down significantly.

7.6.1. Benefits of the GP classifier

In the work of Nieuwenhuis and Cremers [102] the data term is computed using a Parzen
window (PW) estimator, and the feature vector consists of the RGB color channel and
the position of a scribbles. We use the same idea and also use the RGB-color value and
the image coordinates as feature vector. In contrast to [102], we employ a Gaussian
Process Classifier instead of the Parzen window estimator, with the benefit that mis-
classifications can be detected using the predictive uncertainty, which is more strongly
correlated to incorrect classifications than for the Parzen windows estimator. We validate
this assumption by performing the active learning approach on the Graz data set (Fig.
7.4). As a result, in active learning the GPC generates more informed questions.
Both approaches, the Gaussian Process Classifier (GPC) and the Parzen window estim-
ator (PW), perform equally well in the first active learning rounds, but then the GPC (red
curve) outperforms the PW (blue curve), because it asks more informed label queries. As
a baseline comparison, we also show the result for randomly selected scribbles (magenta
curve) instead of those with the highest uncertainty. We see that random sampling also
improves the classification, as it provides more training data in every round, but the
improvement is smaller compared to selecting the most uncertain image region.
Representative results from the Graz data set are shown in Fig. 7.3. The left column
shows the images with the initial user scribbles. Columns two and three show the un-
certainties of the GPC, where brighter is more uncertain, and the segmentation after the
first learning round. The general segmentation quality is good, already after the first
learning round, but some small misclassifications occur. However, these often correspond
to locations of high uncertainty, e.g. the lower right corner of the helicopter image or the
third peg on the wardrobe: here the classification is incorrect, but the uncertainty is also
high. This allows to correct for these misclassified regions in subsequent training rounds.
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Table 7.1.: Dice and F-Measures on the Graz benchmark. Already after 4 active learning rounds
our method produces as accurate results as the segmentation method of [102].

Batch Dice F-Measure
1 0.890 0.845 5 0.923 0.898
2 0.910 0.875 6 0.928 0.904
3 0.917 0.887 7 0.932 0.908
4 0.920 0.894 8 0.936 0.913

[102] 0.920 0.882

We quantitatively compare our method to the method of Santner et al. [123] and
Nieuwenhuis and Cremers [102], and report the dice-score in Table 7.1. The dice score is
the relation between the overlap of each segmented region with the ground truth and the
sum of their areas. In addition we present the f-measure of our results, which is defined
as the harmonic mean of precision and recall.

7.6.2. Advantage of the Online Inference Algorithm

As described in Section 7.4.1, we use a very efficient online class prediction step. In
Fig. 7.4b we show its benefit in comparison to the standard offline technique. While in
the first learning round, both methods have to compute the full covariance matrix for the
initial training set, and thus show comparable run time, the online prediction approach
is much more efficient and has a constant run time over subsequent batches while the
run time of the offline prediction method increases with the amount of training data (as
discussed in Section 7.4.1). Both methods are implemented on the CPU in 8 concurrent
threads.

7.7. Conclusion

The presented active learning approach for user interactive image segmentation is able to
significantly improve the classification performance over several active learning rounds.
The method adaptively improves the classifier by informed questions based on the clas-
sification uncertainty.
We believe that this approach is particularly useful for the classification of large image
data sets, where a manual inspection of the segmentation result is infeasible. Instead,
our active learning approach identifies exactly those regions in the image, which have a
high classification uncertainty and which are likely to be misclassified. This enables a
user interactive validation and improvement of image segmentation of large image data
sets.
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8. Connectivity Constraints for Image
Based 3D Reconstruction

This chapter describes how to introduce connectivity constraints into spatio-temporal
multiview reconstruction. In the previous part of the thesis, the connectivity constraint
was introduced for the task of image segmentation: the labeling of an image into two
different parts, the object and the background. Here we will use a very similar math-
ematical framework for spatio-temporal multiview reconstruction, which is based on a
labeling of a volume into the interior and exterior of the object to reconstruct. The use
of this framework allows to adapt the connectivity constraints for image segmentation
easily to the task of multiview reconstruction.
We also present an extension of the connectivity constraints: Previously, only connectiv-
ity of the object was required. We extend this framework to preserve loops as distinct
topological features of the object. This has practical applications in volumetric multiview
reconstruction. Starting from the so called visual hull of the object, the intersection of
the interior of the silhouettes of the object from all perspectives, in a first step we de-
tect loops in this visual hull and in the subsequent reconstruction step guarantee that
these loops stay connected in the final segmentation. The combination of the connec-
tivity constraint with the spatio-temporal multiview reconstruction method of Oswald
and Cremers [107] allows a significant improvement in comparison to the state-of-the-art
especially for scenes with fine structured details.
The chapter is organized as follows: First, we give an introduction to the spatio-temporal
multiview reconstruction method, then we describe the modifications necessary to extend
the connectivity prior to allow to preserve loops.
Part of the results presented in this chapter have been published in [108] and [106].
Martin Oswald contributed the implementation of the spatio-temporal reconstruction
algorithm. Jan Stühmer developed the theory and methods to include the connectivity
constraint and extend it to preserve loops. The final integration of both methods and
necessary implementations for analyzing the topology of the visual hull were performed
by both authors.
Here, the work presented in [108] is extended by introducing the mathematically more
precise notion of k-connectedness of the graph spanned by the edges of the constraints. We
will see that loop connectivity constraints correspond to 2-connectedness in comparison
to the tree shape priors presented in the previous part of this thesis, which correspond
to 1-connectedness of the constraint graph.

8.1. Introduction

Multi-view 3D reconstruction is one of the classical topics in computer vision research.
Given a set of images from different viewpoints the goal is to reconstruct the three
dimensional geometry of the scene. Often, the scene consists of a single object one wishes
to reconstruct, another application domain is 3D reconstruction from aerial photographs.
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State-of-the-art reconstruction algorithms make use of a priori information about the
scene, such as smoothness of the surface or shape priors for the object to reconstruct.
We will see in the following, how higher level features about the topology of the object
can be incorporated into the reconstruction process. To demonstrate the effectiveness of
topological constraints for 3D reconstruction we combine our framework for connectivity
constraints with a state-of-the-art algorithm for dynamic scene reconstruction: the spatio-
temporal reconstruction method of Oswald and Cremers [107].

8.1.1. Contributions

We propose a framework for connectivity constraints in spatio-temporal multi-view re-
construction. Whereas the connectivity constraints developed in the previous part of this
thesis allowed to preserve 1-connectedness on the directed graph defining the constraints,
here we extend this framework to allow to preserve loops as topological features, resulting
in a 2-connected constraint graph1. Because the underlying spatio-temporal multi-view
reconstruction approach of [107] is formulated in a convex optimization framework, and
the connectivity constraint preserves the convexity, our method allows image based glob-
ally optimal 3D reconstruction while preserving connectivity.

8.1.2. Related Work

In their pioneering work for spatio-temporal multi-view reconstruction on dense occu-
pancy grids Goldlücke et al. [56, 57] represent the dynamic scene as a space-time surface
using a level set representation. The main drawback of their method is that level set
representations only allow for local optimality of the solution, thus their method de-
pends on a good initialization. Another local optimal approach was proposed by Aganj
et al. [1]. The scene is also represented as a space-time surface, which is computed as a
spatio-temporal Delaunay mesh.

1Refer to Section 4.2.1 for details on 1- and 2-connectedness.

1 of 16 input images No Connectivity 1-Connectivity 2-Connectivity
Constraint [107] Constraint [139]+[107] Constraint

Figure 8.1.: Comparison of reconstruction results with and without connectivity
constraints. Connectivity constraints clearly improve state-of-the-art multi-view reconstruction
methods and allow to recover fine structures like the rope in this example. The tree-shaped
connectivity prior introduced in the previous chapter only enforces connecedness of the object on
the tree, thus it is allowed that the rope is disconnected into multiple parts when it touches the
head. In the following we will modify the connectivity constraints to allow to preserve loops of the
object, which results in a 2-connectivity constraint on the constraint graph. Dataset: ’jumping
rope’ sequence from the INRIA 4D repository [69].
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Starck and Hilton [132] propose to first estimate shapes from silhouettes and in a second
step to refine the reconstruction with photometrically matched features together with
temporal coherence. Guillemaut and Hilton [60] perform spatio-temporal reconstruction
by first computing a multi-layer segmentation of the scene and then assigning a depth
value to each layer based on confidence-weighted optical flow.
The spatio-temporal reconstruction method from Oswald & Cremers [107], on which
the method presented in this chapter is based on, generalizes the 3D reconstruction
framework of Kolev et al. [82] to the temporal domain. Similar to the image segmentation
methods studied in the first part of this thesis, Kolev et al. and Oswald & Cremers
represent the scene as the surface of a labeling function and optimize it using a convex
optimization framework. This readily enables us to combine their framework with the
connectivity constraints for image segmentation and build on top the results from the
previous chapters.
To the best of our knowledge there is only one previous work on connectivity in 3D re-
construction, the work of Bleyer et al. [13]. They propose to solve for the stereo matching
problem by concurrently computing a segmentation of the scene and impose connectivity
on each segment of the scene. While we aim for a full 3D reconstruction in the spa-
tial domain, Bleyer’s method only computes a stereo matching: the scene is represented
by assigning a depth value for every pixel in one of the images. In contrast to full 3D
reconstruction, such approaches are also called 2.5D stereo reconstruction methods.

8.2. 3D Reconstruction with Connectivity Constraints

Before we describe our extension of the connectivity constraint, we first give an introduc-
tion to spatio-temporal 3D reconstruction. We choose the method of [107], as it encodes
the spatio-temporal surface by an implicit indicator function, and is thus very similar to
the image segmentation problem studied in the previous chapters. Then we describe how
to include the connectivity constraint can be included in their reconstruction framework
and verify with experiments on real world data that the constraints help to reconstruct
fine-scale details of the scene.

8.2.1. Spatio-temporal Multi-view Reconstruction

This section gives an introduction to the spatio-temporal 3D reconstruction approach of
[107]. The task of spatio-temporal 3D reconstruction is formulated as convex optimiza-
tion problem, which allows to include the connectivity constraints without difficulty. The
dynamically changing scene is represented by a hypersurface Σ ⊂ V×T that is embedded
in the spatio-temporal product space of the three-dimensional Euclidean space V ⊂ R3

with the time dimension T ⊂ R≥0. The scene is observed by N static calibrated cameras
with projection matrices {πi}Ni=1. Furthermore, for every image at every time point t we
have the approximate silhouettes {Si(t)}Ni=1. The method does not need exact silhouettes,
which allows to extract the silhouettes automatically, for example by 2D image segment-
ation or, in case of a controlled background, even simpler methods. Recordings in front
of a green or blue screen allow to extract the silhouettes with a method called chroma
keying, which is broadly used in television broadcasting. These silhouettes from different
perspectives allow to impose geometric and topological constraints on the reconstruction
process. The geometric constraint is given by the visual hull VH(t) =

⋂N
i=1 π

−1
i (Si(t))

and states that the projections of the reconstructed object into the viewpoint of every
camera have to stay within the silhouette Si(t) of this viewpoint. In the following section
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we will also see, how constraints on the topology of the object can be derived from the
visual hull.
The hypersurface Σ is represented as the 1-level-set of the binary label function u :
V×T 7→ {0, 1}, indicating either interior or exterior for every point in space-time. This
implicit representation ensures that the surface is a closed, not necessarily connected,
manifold without a boundary while allowing arbitrary topologies.
Furthermore, we are given a photoconsistency measure ρ : V×T 7→ R≥0, that describes
a measure for a point in space-time for being on the surface of the object, as well as a
data term f : V×T 7→ R that expresses an affinity to an interior (f < 0) or an exterior
(f > 0) labeling.
We are now able to formulate the space-time reconstruction problem as an energy min-
imization problem which amounts to finding a surface of minimum area, where this area
is weighted by the local photo-consistency, such that a smaller weight corresponds to
higher agreement with the image data. We combine this problem of finding a minimum
surface with the region based data term and get the energy minimization problem

E(u) =
∫
V×T

fu dx dt+ λ

∫
V×T

(
ρ|∇xu|+ gt|∇tu|

)
dx dt , (8.1)

where λ > 0 is the weight for a regularizer that measures the smoothness of the recon-
structed hypersurface and the function gt(x, t) = exp

(
−|∇f(x, t)|

)
weights the temporal

smoothness based on f to allow fast motions.
Following [107], we restrict the solution space of the energy minimization in (8.1) to the
visual hull such that the object’s outline from every camera viewpoint has to remain
inside the visual hull. As a consequence, the visual hull completely contains the interior
of the scene.
The photo-consistency measure ρ(x) is a voting scheme that is based on truncated nor-
malized cross-correlation matching scores Ci between neighboring camera pairs:

ρ(x) = exp
[
− µ
∑
i∈C

δ
(
dmax
i =depthi(x)

)
· Ci(x, dmax

i )︸ ︷︷ ︸
VOTEi(x)

]
, (8.2)

with scaling parameter µ. Together with dmax
i = arg maxdCi(x, d) the delta function

δ performs a ray-based denoising of the photo-consistency measures and represents the
voting scheme proposed by Hernández and Schmitt [42].
To avoid the empty set as trivial solution of Eq. (8.1), we define a data term based on
above voting scheme, and propagate the photometric information from Eq. (8.2) into the
volume:

f(x, t) = − ln
(1− P (x ∈ int(Σ))

P (x ∈ int(Σ))

)
, (8.3)

where the probability P (x ∈ int(Σ)) for a point x to belong to the interior int(Σ) of the
surface Σ depends on the votes along the camera rays ri(x, ·) through the point x:

P (x ∈ int(Σ)) =
N∏
i=1

N∏
j=1

∏
depthi(x)<d≤dmax

i

1
Zj

exp
[
−η ·VOTEj

(
ri(x, d)

)]
. (8.4)

To limit the memory consumption we follow the approach in [107] and solve for a time
point t by computing a solution of (8.1) with respect to t− 1, t and t+ 1, thus limiting
the number of time points used to estimate a surface to |T| = 3. For each time point a
mesh is extracted with the Marching Cubes algorithm [95] at an iso-level of 0.5.
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8.2.2. Connectivity Constraints for 3D Reconstruction

In this section we describe how to include the connectivity constraints from the previ-
ous part of this thesis in above reconstruction method. We assume that the visual hull
is connected. In case it consists of multiple connected components, we apply the pro-
posed approach to each component independently. In spatio-temporal reconstruction, we
define the connectivity constraints separately for each time step, which allows topological
changes to occur over time. To simplify notation, we omit the temporal dependency in
the following.

Connectivity Graph. Following the approach from the previous part of this thesis,
we define a geodesic shortest path tree Gs with root s on the interior I of the visual hull.
For each x ∈ I inside the visual hull, the tree Gs contains the shortest geodesic paths
C̄xs : [0, 1] 7→ R3, with C̄xs (0) = s and C̄xs (1) = x that minimizes the geodesic distance Ds
to the root, defined as

Ds(x) =
∫ 1

0
ef(C̄xs (t)) dt , (8.5)

which integrates over a positive measure that depends on the data term. Obviously, this
results in a lower cost for paths through areas with strong support of the data term.

Automated Selection of the Root. To enable an automated processing of large
video sequences, we propose an automated selection of the root s. Because the position
of the root defines the origin of the star-shaped topology of the reconstructed object,
it is desirable to choose a position which is ’central’ to the reconstructed object. Thus,
we propose to find a position for the root by computing the point which minimizes a
spatio-temporal convolution of the data term f with a sufficiently large Gaussian kernel
G:

s(t) = argmin
x

t+1∫
t−1

(
f ∗ G

)
(x, τ) dτ (8.6)

Minimization of above term ensures that we select a position which has a high probability
of being interior. Furthermore, the spatio-temporal convolution allows a smooth change
of the position of the root over time while at the same time maximizing the distance to the
surface of the object. We depict an example of a shortest path between the automatically
selected root node and a leaf node of the tree in Fig. 8.4a.

Constrained Optimization. As we have seen in the previous chapters, the connectiv-
ity constraints can be included in the reconstruction process as monotonicity constraints
on the labeling function u with respect to the edges E in Gs.
Thus, we include the monotonicity constraints as inequality constraints on the directional
derivative ∂iu(x, t)j of u along every edge ij ∈ E and formulate our model for spatio-
temporal 3D reconstruction with connectivity constraints as

min
u∈BV(V×T;{0,1})

E(u) (8.7)

s.t. ∂iuj ≤ 0, ∀(i, j) ∈ E

where BV(·) denotes the space of functions with bounded variation [2].
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8.3. Loop Connectivity

In the following we will see how a topological analysis of the visual hull allows to derive
suitable topological constraints in a fully automated process. Therefore, we first describe
how to extend the connectivity constraints introduced in the previous part of this thesis to
allow to preserve loops. So far, the proposed connectivity constraint only guarantees that
the object is path connected, which means that it is 1-connected on the underlying graph,
in the following we will show how the framework can be extended to allow to preserve
2-connecedness on the underlying graph for specific parts of the object. This section is
organized as follows: First we describe how the framework is extended to formulate 2-
connectivity constraints which allow to require connected cycles in the underlying graph.
Then we describe how the topology of the visual hull can be automatically analyzed to
identify topological features of the object which should be preserved.

8.3.1. Loop Connectivity Constraints

So far, the connectivity constraint requires that the vertices in the foreground segment
induce a 1-connected subgraph on the tree defined by the connectivity constraints: Let
T = (V,ET ) denote the tree of the connectivity constraints that are defined along the
edge set ET . Let u : V 7→ {0, 1} be a feasible labeling with respect to the connectivity
constraints defined by ET . The vertices v ∈ V with label u(v) = 1 form the set of
vertices inside the foreground segment Σu ⊆ V , thus Σu = {v ∈ V : u(v) = 1}. As shown
in Section 5.2.3, Σu is connected on T , thus the subgraph TΣ = T [Σu] induced by Σu

is connected. However, because TΣ is a tree, there is only one possible path from the
source vertex s to each vertex v ∈ TΣ . This leads us to the following statement about
the connectivity of a connected tree.

Proposition 8.3.1. Let T = (VT , ET ) be a connected tree with |VT | > 2, then the
connectivity of T is exactly 1.

Proof. Let v ∈ VT be an internal vertex of T . We denote all paths through v with the
set P : {P 3 v}. Because there is only one single path that connects the end vertices of
each P ∈ P, these end vertices are not connected when v is removed. Thus the graph
T \ v is not connected which concludes the proof.

If the object to reconstruct has a more complex topology of a higher genus, and we would
like to preserve this topology, this connectivity constraint is not sufficient, as it does not
allow to formulate the requirement of connected loops of the object. However, we will
see in the following how to extend the constraint to formulate a connectivity constraint
for loops, while still using the shortest geodesic path topology.

Proposition 8.3.2. Let T = (VT , ET ) be a connected undirected tree and e = ab an
edge with a ∈ VT , b ∈ VT , and a 6= b, that is not in ET , i.e. e /∈ ET . The graph
G = (VT , ET ∪ {e}) that we get by adding the edge e to T , has a cycle which contains e.

Proof. The tree T contains the unique connected path P from the root vertex s to a,
which we denote with sPa, and the unique path Q from s to b, which we denote with
sQb. Because both P and Q originate in s it holds that V (P ) ∩ V (Q) 3 s and therefore
V (P )∩ V (Q) 6= ∅. There exists a vertex xi, which is both in V (P ) and in V (Q), and for
which the adjacent vertex in P , xPi+1 ∈ P , is not in Q, likewise it holds for the adjacent
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vertex in Q, xQi+1 ∈ Q, and xQi+1 /∈ P . Then it holds that xiPa ∩ xiQb = {xi}. We form
the cycle xiPa ∪ ab ∪ bQxi.

Thus by adding an additional edge to the tree that connects two vertices which were
previously not connected we get a graph which contains a cycle. We will describe in the
following, how to define the connectivity constraint on a cycle. For the 1-connectivity
constraint on the directed tree, the connectivity constraint was defined as monotonicity
constraint of the label function along each path of the tree. The label should not increase
when traversing along a directed edge, with each edge pointing into the direction of
increasing distance from the root vertex. To get a graph with a cycle from a directed
tree, we first discard the directions of the edges and add a cycle to the resulting undirected
tree as shown above. Then we assign an arbitrary, but consistent direction to the cycle,
that allows to traverse the cycle along the directed edges, we call this an oriented cycle.

Proposition 8.3.3. Introducing a monotonicity constraint of the label function along an
oriented cycle results in an equality constraint along the cycle.

Proof. Let xiPa ∪ ab ∪ bQxi be a directed cycle. We use the definitions of the paths P
and Q and the vertices xi, xPi+1 ∈ P and xQi+1 ∈ Q of the previous proof. Then there is a
directed edge from xi to xPi+1 and a directed edge from xQi+1 to xi. The monotonicity along
the edge from xi to xPi+1 implies that u(xi) ≥ u(xPi+1). The monotonicity along xPi+1Pa∪
ab ∪ bQxQi+1 implies that u(xPi+1) ≥ u(xQi+1), together with the remaining constraint
u(xQi+1) ≥ u(xi) we get

u(xi) ≥ u(xPi+1) ≥ u(xQi+1) ≥ u(xi) (8.8)

which only holds when all the values of the label function along the cycle are equal.

We will now see that above connectivity constraint along a cycle ensures that a cycle is
either completely included in the final reconstruction or completely excluded.

Proposition 8.3.4. Let G denote a directed graph that contains a single undirected cycle.
We define the connectivity constraints on G and compute a feasible reconstruction. Either
the cycle is preserved in the reconstruction or the cycle is completely excluded. In case
the cycle is preserved the connectivity of the reconstruction on G is exactly 2.

Proof. Let u denote a feasible solution of (8.7) with respect to above constraints. By
Proposition 8.3.3 the connectivity constraint results in equality constraints along the cycle
P , thus ui = c for all i ∈ VP for some constant c, and monotonicity constraints along
the remaining edges. The final reconstruction is achieved by thresholding the solution
u with some threshold µ. Either c ≤ µ and the cycle is completely excluded, or c > µ,
thus ui > µ for all i ∈ VP and P [Σ{u>µ}] is connected if P is connected, i.e. the cycle is
completely included.
What remains to be shown is that Σ{u>µ} is 2-connected on G if c > µ. We choose an
interior vertex of the cycle a ∈ VP . By construction, removing a from G results in the
cycle free graph G \ {a}, i.e. a tree that is 1-connected, thus G is 2-connected. From
Theorem 5.4.1 it follows that G[Σ{u>µ}] is connected and because of c > µ it follows
that P [Σ{u>µ}] is 2-connected. Taking both statements together it follows that Σ{u>µ}
is 2-connected on G.

Therefore we call the connectivity constraint along a cycle 2-connectivity constraint.
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8.3.2. Handle and Tunnel Loops

In [32], Dey et al. describe a method to automatically analyze the topology of a two-
dimensional surface embedded in three dimensional space that allows to extract topolo-
gical features, specifically the handles and tunnels of the surface. The surface is embedded
in a simplicial complex, a hierarchy of p-simplicies. The surface M separates the simpli-
cial complex into an interior part I and an exterior part E. Both the interior and the
exterior part are closed and bounded by the surface, therefore I∩E = M. In the following
we will denote the surface of the visual hull with M = ∂VH, the interior of the visual
hull with I = VH and the exterior with E = (V \ VH) ∪ ∂VH.
In [32] the authors study cycles of edges on the surface which form equivalence classes
with respect to contraction of the cycle - like a rubber band which can be moved on
the surface but not through holes in the surface. We call this equivalence relation ∼M
’contractible’ on the set M, for example, we denote the relation that a loop l1 ⊂ M is
contractible to a loop l2 ⊂ M on the set M as l1 ∼M l2. We use the following definition
from [108], which allows to describe topological features of the visual hull:

Handle and tunnel loops [108] A handle loop h ⊂ M is a cycle of edges on the
surface that is contractible in the interior (h ∼I 0) and not contractible on the surface
(h �M 0). A tunnel loop t ⊂M is a cycle of edges on the surface that is contractible in
the exterior (h ∼E 0) and not contractible on the surface (h �M 0).

Handle and tunnel loops have the following two important properties: First, both defin-
itions form equivalence classes of loops. Two loops are in the same equivalence class if
there exists a continuous transformation between them. Second, the classes of handle and
tunnel loops are dual to each other, for each handle loop there exists a corresponding
tunnel loop. Furthermore, a closed surface of genus g has exactly g classes of handle
loops and g classes of tunnel loops. We consider one representative loop with approx-
imate minimal geometric length per class and denote them as the set of handle loops
{hi}gi=1 and the set of tunnel loops {ti}gi=1. For each hole i of the surface we have a
corresponding pair (hi, ti) of representative handle and tunnel loops which intersect in at
least one point, i.e. hi ∩ ti 6= ∅. Figs. 8.2, 8.3, 8.4c show examples of handle and tunnel
loops which clearly shows their duality.
Dey et al. propose different algorithms for computing these handle and tunnel loops:
In [32] they present a method that is able to process geometries defined by implicit
functions, perfectly suited to process the geometry defined by the volumetric labeling
function we use here for 3D reconstruction. Also their algorithm allows to compute
handle and tunnel loops with approximate minimal length, which is desirable for our
purpose of segmenting the handles from the rest of the object. However this method is
considerably slower than a recently published algorithm by Dey et al. [31] for meshes.
The faster runtime is achieved by using the concept of Reeb graphs to estimate an initial
set of handle and tunnel loops and their geometric length is shortened in a subsequent
refinement step. Also the method does not require to compute a full 3D tessellation of
the scene. Therefore, we extract an iso-surface mesh of the visual hull and use the more
efficient method [31] to extract handle and tunnel loops.

Handle Segmentation. In the following, we describe how to segment those parts of
the visual hull, called handles, which enclose a hole in the surface, a tunnel. Once the
handles are segmented, we can specify a connectivity constraint for the detected handle,
which allows for topological constraints that adapt to the topology of the visual hull.
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(a) (b) (c) (d)

Figure 8.2.: The sets defined in this section are visualized for the surface of a teapot of genus
2. (a) Exterior E (red), (b) Interior I (green), (c) Handle and tunnel loops {h1, h2}, {t1, t2}
(green+red), (d) Handle segments H1, H2 (yellow+blue).

To describe the handle segmentation process, we first reproduce the following definitions
from [108]:

Handle Segment Surface [108] We define the handle segment surface as the connec-
ted subset of all points x ∈M for which a handle loop hx 3 x exists which is contractible
to hi subject to the additional constraint that the ratio of the lengths of hx and hi does
not exceed a given threshold σ:

MHi =
{
x ∈M

∣∣∣ ∃hx ⊂M : hx ∼σI hi
}

(8.9)

where hx ⊆ M with hx 3 x denotes a handle loop through the surface point x and
hx ∼σI hi means that handle loop hx is contractible to hi subject to the length ratio
constraint `(hx) < σ`(hi).

Handle Segment [108] Given the handle segment surfaceMHi from the previous defin-
ition, we define the corresponding volumetric handle segment Hi ⊆ I as the set of all
points in the visual hull for which the closest point on the visual hull boundary is on the
handle segment surface MHi .

Hi =
{
x ∈ I

∣∣∣∣ argmin
y∈M

dist(x, y) ∈MHi

}
(8.10)

where dist(x, y) denotes the Euclidean distance between point x ∈ I in the interior and
point y ∈M on the surface.

To segment the handle Hi, we implement a breadth first search on the visual hull. Begin-
ning at the position where the handle loop hi takes on its minimum length, a wavefront
is propagated on the surface of the visual hull via a breadth first search algorithm. While
the wavefront is propagated further on the surface of the handle, eventually the wavefront
splits into two parts that move along the handle in opposite directions. Independently
for each of the two parts of the wavefront we stop the breadth first search if the ratio
between the current length of the wavefront and the length of the minimum handle loop
exceeds above threshold σ. Finally, we define the handle segment surface as that part of
the surface between the two final positions of the wavefronts, which were reached by the
breadth first search. Together with above definition of a handle segment, this procedure
yields a segmented handle Hi ⊆ VH for each handle loop hi.
With the definition of the handle and tunnel segments of the visual hull we are now able
to formulate connectivity constraints to preserve these topological features. Therefore,
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(a) Visual Hull (b) Result with strict
loop connectivity (LC0)

(c) Result with relaxed
loop connectivity (LC1)

Figure 8.3.: (a) In some cases artifacts of the visual hull can lead to spurious handle loops which
should not be preserved in the final reconstruction. (b) The constraint (LC0) strictly preserves
all loops in the solution. (c) Relaxing the topology preserving constraint to an equality constraint
allows to suppress handles where the photo-consistency is not strong enough. The rope, for which
the support of the photo-consistency is sufficient, is still completely preserved. Handle loops are
depicted in green and and tunnel loops in red.

we define a cycle through the interior of each handle segment as follows: In order to add
a minimum amount of cost to the energy (8.7) when enforcing loop connectivity, we need
to form a cycle in the graph with minimum cost with respect to the data term. We solve
for these geodesic shortest cycles by computing cycles tGsi ⊂ I using the precomputed
geodesic shortest path tree Gs. These cycles need to be path homotopic to the original
tunnel loop on the surface, i.e. tGsi ∼I ti. For an introduction to path homotopy please
refer to the introductory material in section Section 4.1.2. The computation of the min-
imum cost cycle tGsi is discussed later in this section. First we discuss possible definitions
of constraints to preserve the topology of the visual hull. For each tunnel loop ti of the
visual hull we define a path homotopic cycle tGsi ∼I ti and introduce a loop preserving
constraint along this cycle as

∀i ∈ [1, . . . , g] :
{
∀x ∈ tGsi : u(x) = 1

}
. (LC0)

Proposition 8.3.5. [108] The constraint (LC0) preserves the handle and tunnel loops
and thus all holes of the visual hull in the reconstructed object. The topological genus of
the reconstructed object is larger or equal to the one of the visual hull.

Proof. [108] Let us assume that the proposition does not hold. To let the genus of the
reconstructed object decrease, either (i) at least one hole of the visual hull needs to be
filled or (ii) at least one tunnel loop has to be disconnected in the reconstructed object.
Because the domain of the reconstructed object is restricted to the visual hull (i) cannot
be fulfilled. By construction (ii) is fulfilled if (LC0) is fulfilled. Therefore the genus of
the reconstructed object has to be larger or equal to the genus of the visual hull.

However, in some cases it might not be desirable that the reconstruction preserves all
handles of the visual hull. An example is depicted in Fig. 8.3 where artifacts in the visual
hull lead to a spurious handle loop. For being able to remove such artifacts, for example
due to low photometric support by the data term along the handle, we relax the strict
loop preservation constraint (LC0) to an equality constraint (LC1) of the labels along
the cycle through the handle. As we have seen in Proposition 8.3.3, this corresponds
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to the connectivity constraints from the previous chapter, now defined along a cycle.
Accordingly, either the handle is preserved in case of sufficient photometric support, or
if the support by the data term is not strong enough, the entire handle segment Hi is
suppressed. We define this equality constraint as

∀i ∈ [1, . . . , g] :
{
∀x ∈ tGsi ∩Hi : d

ds
u(x) = 0

}
(LC1)

where d
ds is the directional derivative along the loop tGsi .

Finding the optimal connected loop tGsi . For the 1-connectivity constraint we
motivated the cost function of the geodesic shortest path tree by looking for a connecting
path that adds a low cost to the final segmentation result. For the loop preserving
constraints described here, we therefore look for a loop through the handle that adds
the minimum cost to the final segmentation. However, to compute this minimum cost
path, we don’t have to solve another shortest path problem, but instead can utilize the
already computed shortest path tree Gs. The shortest loop tGsi with respect to Gs can
be computed for each handle i by the following steps: Starting from the boundary of a
handle segment Hi, we perform a depth first search on Gs and compute the partitions
H1
i ∪H2

i = Hi, H
1
i ∩H2

i = ∅, which are disconnected on the shortest path tree Gs. We
illustrate these partitions in Fig. 8.4d. If one of these partitions is empty, then all points
in the handle segment Hi are connected on Gs and no further constraints need to be
added in order to preserve the handle segment Hi. Otherwise, there exists an optimal
pair of points

(p, q) = argmin
(x∈H1

i ,y∈H
2
i ,y∈N (x))

Ds(x) +Ds(y) (8.11)

which are leaf-nodes in Gs. The set N (x) denotes the local spatial neighborhood of a
point x ∈ V in the voxel grid. We add an edge between p and q and form a cycle tGsi in
Gs, that by construction is in the interior of the handle segment Hi, is path homotopic
to the corresponding tunnel loop ti, and is of minimum cost of all such cycles. We define
the set

E= :=
⋃
i

E(tGsi ) (8.12)

as the set of edges of all minimum cost cycles tGsi and define the loop preserving 2-
connectivity constraint as

∂iuj = 0, ∀(i, j) ∈ E=. (8.13)

While the 1-connectivity constraint resulted in a monotonicity constraint, the 2-connec-
tivity constraint corresponds to an equality constraint of the labeling function along the
cycle, as shown in Proposition 8.3.3.

8.4. Numerical Optimization

We follow a similar approach as in image segmentation and minimize (8.7) using convex
optimization. Therefore we introduce a continuous indicator function u : V×T 7→ [0, 1] to
represent the space-time surface. As in image segmentation, the connectivity constraints
are equivalent for the relaxed case.
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(a) (b) (c) (d) (e) (f)

Figure 8.4.: Visualization of different quantities computed from the data term and visual hull.
(a) Example shortest path from the source node to a leaf node in the rope (green). (b) Color
encoded geodesic distance Ds with respect to the source node s. (c) Tunnel loop (red), and
handle loop (green). (d) Handle segments Hi = H1

i ∪ H2
i (green and orange), the color shows

the two parts of each handle which are disconnected on the geodesic path tree Gs. (e) Cycle of
minimum cost through the handle for which the equality constraints (LC1) are imposed. (f) Final
reconstruction result.

Further, we introduce a dual variable p : V×T 7→ R4 and write the multiview reconstruc-
tion problem Eq. (8.7) as saddle-point problem

min
u:V×T 7→[0,1]

max
‖p‖≤1

∫
V×T

〈u,−div p〉 dx dt+ λ

∫
V×T

fu dx dt . (8.14)

s.t. ∂iuj ≤ 0, ∀(i, j) ∈ ET
∂iuj = 0, ∀(i, j) ∈ E=

The optimization problem is convex in u and concave in p and the constraints on u
over the edge sets ET and E= are linear. Furthermore, the feasible set defined by the
constraints is non-empty, e.g. a trivial feasible solution is u(x, t) = 0 for all x ∈ V and
t ∈ T , thus Slater’s condition holds and we have strong duality (see Section 2.4.1). The
constraints can be included in the optimization using Lagrangian multipliers β and γ.
The Lagrangian dual associated to problem (8.14) becomes

min
u:V×T 7→[0,1]

max
‖p‖≤1,
β≥0,
γ

∫
V×T

〈u,−div p〉 dx dt+ λ

∫
V×T

fu dx dt (8.15)

+
∫
T

{ ∑
ij∈ET

βij∂iuj +
∑
ij∈E=

γij∂iuj
}
dt .

We optimize this saddle point problem with the primal-dual hybrid gradient method,
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see [23, 24, 113, 114] and Section 2.5, and get the update equations

pn+1 = ΠC [pn + σ∇ūn]
βn+1
ij = Π≥0(βnij + µ∂iū

n
j )

γn+1
ij = γnij + ν ∂iū

n
j (8.16)

un+1 = Π[0,1]
[
un + τ

(
div pn+1 + div βn+1 + div γn+1 − λf

)]
ūn+1 = 2un+1 − un

where Π[0,1] is the projection of u onto the unit interval [0, 1] and Π≥0 projects onto
positive values. With ΠC we denote the projection onto the set C = {q = (qx, qt)T :
V×T 7→ R4∣∣ ‖qx‖ ≤ 1, |qt| ≤ 1}, that projects the iterate of the dual variable p on a four
dimensional hyperball:

ΠC(q) =

 qx

max(1, ‖qx‖ρ )
,max

(
− gt,min(gt, qt)

)T . (8.17)

The step sizes τ , σ, µ and ν are chosen by the preconditioning scheme described in [112].
Because the optimization problem is convex in u, concave in p, and the constraints are
linear, above update equations (8.16) converge to a global minimum of the relaxed energy
(8.14). It is easy to see that Theorem 5.2.2 also holds for equality constraints. Thus
the thresholding theorem also holds in this case and an optimal solution to the binary
labeling problem (8.7) can be found by thresholding the minimizer of above relaxed
energy ([25, 107] and Theorem 5.2.2).

Implementation. The iterative scheme allows a high degree of parallelization and is
implemented on a GPU using the CUDA programming framework. The analysis of the
visual hull and the search algorithms for defining the connectivity graph are more difficult
to parallelize and therefore are implemented on the CPU.

8.5. Experiments

For evaluation, we performed experiments on several spatio-temporal multi-view data
sets of the INRIA 4D repository [69], each consisting of synchronized video recordings of
16 video cameras in a green room environment.
Since there is no ground-truth available, we perform a qualitative comparison of the
proposed approach in comparison to the state-of-the-art, however, to the best of our
knowledge there is no other 4D reconstruction method publicly available. Thus we com-
pare our results with two state-of-the-art 3D reconstruction methods by evaluating them
on the same dataset. The reconstruction methods chosen for comparison are the method
by Jancosek and Pajdla [72], and a combination of Furukawa et al. [49] (PMVS) with
Poisson surface reconstruction [77]. We use the same approximate silhouettes for the dif-
ferent reconstruction methods, except of the method by Jancosek and Pajdla [72] which
does not include any silhouette information. For computing the geodesic shortest path
tree Gs we use a regular 6-neighborhood.

Runtime and Memory Resource Evaluation. To encode the connectivity con-
straint, the memory requirement of the suggested implementation increases only by |V×T|
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1 of 16 Input Images

Jancosek and Pajdla [72]

Furukawa et al. (PMVS) [49] + Poisson surface reconstruction [77]

Without Connectivity Constraint [107]

With 1-Connectivity Constraint [139]+[107]

Proposed 2-Connectivity Constraint

Figure 8.5.: Comparison of the proposed reconstruction method with the state-of-the-art. Ex-
isting approaches [49, 72, 77] fail to recover thin structures, in this example the stick and the
rope. The 1-connectivity constraint allows to preserve the stick, but for the rope-jump scene, it
does not completely preserve the connection of the rope. Our proposed 2-connectivity constraint
allows to correctly reconstruct the connected rope (volume resolution |V | = 3843).
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bytes in comparison to the original approach. The required runtime per iteration remains
almost unchanged, but depending on the length of the connections and the photometric
support along the connections, more iterations can be required for sufficient convergence
of long connections. However, this can be solved by using a projection scheme similar
to the one presented in Chapter 6. Because of the higher memory requirements of the
projection method and the large size of the space-time volume used for reconstruction,
here we prefer the Lagrange multiplier based approach. All experiments were performed
on an Intel Xeon architecture with 24GB RAM and a NVidia GTX Titan graphics card.
For the 1-connectivity constraint [139] the amount of time needed per frame for com-
puting the tree was about 20 sec. For the 2-connectivity constraints the precomputation
time for handle and tunnel loop detection, handle segmentation and computation of the
minimum cost connecting cycle was about 1 min. Minimization of the convex optimiza-
tion problem needs about 3 min per frame, which results in a total runtime of about 4
minutes per frame when using the 2-connectivity constraints.

8.6. Conclusion

In this chapter we showed how to include connectivity constraints in spatio-temporal
multi-view 3D reconstruction. Because the method used for 3D reconstruction is based
on a volumetric labeling by convex optimization, the connectivity constraints for image
segmentation described in the first part of this thesis can be directly applied in this new
context of 3D reconstruction. Furthermore, we showed how to reformulate the constraints
to allow to preserve loops of the object. Therefore, we first showed that the connectivity
constraints defined on a tree induce a 1-connectedness of the tree, then we extended these
constraints to allow to preserve 2-connectedness of cycles in the constraint graph. By
analyzing the visual hull of the scene, we can automatically deduce suitable constraints
for a scene in a fully automated way. We demonstrate in several experiments on real
world data that the connectivity constraints significantly improve the reconstruction in
the presence of thin structures. To the best of our knowledge, apart from the work of
Bleyer et al. [13], a simplification of connectivity for depthmap estimation, this is the
first time that connectivity constraints are described in the context of multi-view 3D
reconstruction.
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9. The Direct Geometry Approach for
Real-Time 3D Reconstruction

In our earlier work [136, 137], we presented a variational approach for online estimation of
dense depth maps with a handheld camera. We show that by combining the information
from multiple images using the robust `1 norm in the data term, geometry reconstruc-
tions of high quality and detail can be achieved. Here we review this approach and
propose several improvements: First, we show that the resulting optimization problem
can be solved by introducing dual variables in the data term. In contrast to our previous
approach, based on half-quadratic splitting [51], this approach is numerically more stable
and the fine tuning of the weight of the quadratic penalty term, the parameter θ in [137],
can be avoided. Furthermore the dual variable approach results in a much better runtime
performance and allows high quality geometry reconstructions with up to 41.1 frames per
second.
Second, we show that minimization of the reconstruction problem by using the dual vari-
able approach leads to staircasing artifacts, a well known drawback of total variation
regularizers. However, the previous method that was based on half quadratic splitting
never produced these artifacts. We describe the connection between half quadratic split-
ting, infimal convolution with a quadratic function, and the Huber loss and propose to
avoid the staircasing effect by using the robust Huber loss instead of the absolute value
function in the regularizer. Experimental results confirm that this allows to achieve 3D
reconstructions of a quality that is en par with the earlier results, but with improved
numerical stability and better runtime performance.
Early results on the research topic presented in this chapter have been published in [137]
and [136]. These early results were also part of the author’s Diploma thesis [134]. As
extension to the Diploma thesis here we present the dualization of the data term, the
connection to infimal convolution, and the Huber loss as robust penalty function in the
regularizer.

9.1. Introduction

The three-dimensional reconstruction of the world is one of the classical research topics
in computer vision. Several methods have been proposed for offline reconstruction, that
even allow to reconstruct full three-dimensional models, e.g. [42, 82]. However, real-time
capable methods usually only allow to reconstruct a sparse point-cloud [73, 103]. More
recent real-time approaches reconstruct a "semi-dense" point cloud [41], but still these
methods do not allow a detailed reconstruction of the scene.
In [137] we published our seminal work on real-time dense reconstruction from multiple
views. It has inspired a lot of following work, including the online dense 3D recon-
struction method DTAM [101] of Newcombe et al., who published their earlier work on
online reconstruction [99] the same year as our seminal paper for real-time reconstruc-
tion. Further methods include the online depth fusion method Kinectfusion [100] and
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its extension to larger environments Kintinuous [154], the semi-dense visual odometry
method LSD-slam [41], odometry for RGBD cameras [78, 153], and 3D reconstruction
on mobile devices [141].
Here we extend our previous work and propose to use the Huber loss instead of the
absolute value function for the regularizer. This modified regularizer has already been
proposed in the computer vision literature, e.g. for semi-automatic terrain model gen-
eration from elevation data by Unger et al. [146], where the goal is to reconstruct a
terrain model where vegetation and man made objects like houses have been removed.
Another work using this modified regularizer is the work of Werlberger et al. on optical
flow estimation [152].

9.2. Dense Depth Map Estimation from Multiple Images

In this section we review the results from [137], where we describe the first method for
real-time dense geometry estimation with a handheld camera.
Input to the algorithm is a set of images I0, . . . , Im from different viewpoints, in this
case single channel radiance images Ii : Ωi 7→ R but the method should easily extend
to color and multi spectral images. Furthermore the camera poses ξ1, . . . , ξm relative to
the camera pose of I0 are assumed to be known. These camera poses can be estimated
for example by using a real-time camera tracking method, here we use the feature based
method PTAM by Klein and Murray [79].
The goal of the algorithm is to robustly estimate a dense depthmap h : Ω0 7→ R, that
assigns a depth value to every pixel of the image I0. Robust estimation is achieved by
combining the observations from the additional viewpoints and jointly estimating a single
depth map that is consistent with all observations. This is achieved by minimizing the
following functional, that is inspired by variational optical flow methods, such as the
seminal work by Horn and Schunk [67] and the TV-L1 method of Zach et al. [159]

E(h) = λ

∫
Ω0

∑
i∈I(x)

∣∣Ii(π(ξi ◦X(x, h)
))
− I0

(
π
(
x
))∣∣ dx+

∫
Ω0
|∇h| dx . (9.1)

The term
∣∣Ii(π(ξi ◦X(x, h)

))
− I0

(
π
(
x
))∣∣measures the absolute difference of the observed

brightness between a pixel in the reference image I0 and its projected position in an
additional view Ii. By taking the sum of absolute differences we achieve robustness of the
data term. A reference pixel position x ∈ Ω0 is projected from Ω0 to Ωi by π

(
ξi◦X(x, h)

)
,

whereX(x, h) ∈ R3 is a point in three dimensional space that corresponds to x with depth
h(x). In an ideal pin-hole camera model the coordinates of the point X(x, h) are achieved
by a multiplication of the homogeneous coordinates of x with h(x). In the following we
will use the simplified notation

Ii(x, h) = Ii
(
π
(
ξi ◦X(x, h)

))
(9.2)

for this "depth-warped" image.

z-Buffer The sum in (9.1) is taken over all image indices i ∈ I(x), for which the
projection of Ii(x, h) is visible from the reference frame. The simplest approach is to
take only those images for which the projection is inside the reference frame Ω0. In our
implementation we make use of a z-buffer into which we render the warped image Ii(x, h).
This allows to test for occlusions by comparing the depth of Ii(x, h) with the value stored
in the z-buffer.
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Linearization We linearize Ii(x, h) by using a first order Taylor expansion

Ii(x, h) = Ii(x, h0) + (h− h0) d
dhIi(x, h)

∣∣∣
h0

(9.3)

where h0 is a given depth map and d
dhIi(x, h) is the directional derivative on the image

plane of Ω0, that results from a variation of h. This derivative can be expressed as the
scalar product of the gradient of Ii(x, h) with the derivative of the projection, that has
to be calculated with respect to the chosen camera model. Thus we get

d
dhIi(x, h) = ∇Ii(x, h) · d

dhπ
(
ξ ◦X(x, h)

)
. (9.4)

Using this linear approximation for Ii(x, h) we write the functional as

E(h) = λ

∫
Ω

∑
i∈I(x)

|ρi(x, h)| dx+
∫

Ω
|∇h| dx (9.5)

where ρi(x, h) denotes the residual of the linearized data term

ρi(x, h) = Ii(x, h0) + (h− h0) d
dhIi(x, h)

∣∣∣
h0
− I0(x) , (9.6)

where we omitted the dependency on h0. In the following, we present two different
strategies to find a minimizer of (9.5).

9.2.1. Half Quadratic Splitting

In [137] we minimized (9.5) by using a quadratic decoupling method proposed in [159],
which is also known as half quadratic splitting [51]. The regularizer and data term are
decoupled by introducing an auxiliary function u : Ω0 7→ R. We get the following convex
approximation of (9.5):

Eθ =
∫

Ω

|∇u|+ 1
2θ (u− h)2 + λ

∑
i∈I(x)

|ρi(x, h)|

 dx, (9.7)

where θ is a small constant and ρi(x, h) denotes the current residual of the data term i.
For θ → 0 the minimization of the above functional results in both h and u being a close
approximation of each other.
Because the functional is convex both in h and u, it can be minimized by alternating the
following steps [137]

1. For h being fixed, solve

min
u

∫
Ω

{
|∇u|+ 1

2θ (u− h)2
}

dx (9.8)

2. For u being fixed, solve

min
h

∫
Ω

 1
2θ (u− h)2 + λ

∑
i∈I(x)

|ρi(x, h)|

 dx (9.9)
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In our earlier work [137] we proposed to minimize the first sub problem (9.8), which is ba-
sically the ROF denoising model [121], with the algorithm of Chambolle from 2004 [21].
However, because this problem is strongly convex, it can also be minimized using Al-
gorithm 2 from [24].
The second sub problem can be solved point wise and in [137] we presented a thresholding
scheme to find a minimizer of (9.9) in closed form. In [136] we described how to implement
this thresholding scheme on the GPU.

9.3. Dualization of the Data Term

Instead of using the half quadratic splitting method discussed above, here we propose to
introduce a dual variable for the data term in (9.5). To simplify the notation, we write
each summand of the linearized data term as general linear function ρi(x, h) = ai h− bi,
with ai := Ihi (x) and bi := ai h0 − Ii(x, h0) + I0(x). We write (9.5) as

E(h) = λ

∫
Ω

∑
i∈I(x)

{
|ai h− bi|

}
dx+

∫
Ω
|∇h| dx (9.10)

We define the column vector a := a1, . . . , am, with m := |I(x)|, and the column vector
b := b1, . . . , bm and write above energy functional as

E(h) = λ

∫
Ω
|a h− b|1 dx+

∫
Ω
|∇h| dx , (9.11)

with |·|1 we denote the `1 norm, the sum of the absolute value of each component of a
vector.
We introduce a dual variable p : Ω 7→ Rm, where m is the number of summands in
(9.5), i.e. with one component pi for each summand of the data term, and |pi| ≤ 1, thus
|p|∞ ≤ 1. We also introduce a dual variable q : Ω 7→ R2 for the total variation regularizer.
With these dual variables, we write (9.5) as the saddle point problem

min
h:Ω7→R≥0

max
|p|∞≤1,
|q|≤1

〈p, λ a h− λ b〉+ 〈q,∇h〉 , (9.12)

with the `∞ norm for the dual variable of the data term and the `2 norm for the dual
variable of the total variation regularizer. With the positivity constraint on h we avoid
a mirrored solution that is point symmetric to the focal point.
By rearranging the terms we get

min
h:Ω 7→R≥0

max
|p|∞≤1,
|q|≤1

〈p, λ a h〉+ 〈q,∇h〉 − λ b p . (9.13)

Now we have brought the optimization problem into a standard form that allows to apply
Algorithm 1 of [24]. The update equations are defined by the prox-operator

pk+1 = proxσF ∗
(
pk + σ λ a h̄k

)
− λ b p

qk+1 = proxνH∗
(
qk + ν∇h̄k

)
hk+1 = proxτG

(
hk + τ div qk+1 − τ λ aT pk+1

)
h̄k+1 = hk+1 + θ

(
hk+1 − hk

)
,

(9.14)
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(a) Dualized data term

(b) Half quadratic splitting

(c) Reference View (d) Keyframe 1 (e) Keyframe 2 (f) Keyframe 3 (g) Keyframe 4

Figure 9.1.: Comparison of the proposed dualized data term method (a) with the half
quadratic splitting method (b). For both methods the weight of the data term is λ = 0.17,
the parameter for the Huber loss for (b) is ε = 0.025. (c-g) The bottom row shows the images
used to achieve above reconstructions.
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where we choose the step sizes τ , σ, and ν following the diagonal precondition method
described in [112].
We evaluate the prox-operators with F ∗(p) = λ b p, H∗(q) = δ|·|≤1, and G(h) = δ≥0 and
get as update equations

pk+1 = pk + σ λ
(
a h̄k − b

)
qk+1 = π|·|≤1

(
qk + ν∇h̄k

)
hk+1 = π≥0

(
hk + τ div qk+1 − τ λ aT pk+1

)
h̄k+1 = π≥0

(
hk+1 + θ

(
hk+1 − hk

))
.

(9.15)

In contrast to the thresholding scheme we described in [136] that requires to sort the
critical points, these update equations consist of simple arithmetic expressions and can
be efficiently parallelized on the GPU.

9.3.1. Infimal Convolution and the Huber loss

When computing the minimizer of the total variation using the dual variable approach,
we discovered stair-casing artifacts in the resulting depth map, a well known effect when
minimizing the total variation of a function. In our former approach, where we used
the only approximative half quadratic splitting approach, these effects did not appear.
A possible explanation is that the half quadratic splitting results in a smoothing of the
functional, similar to an infimal convolution with a quadratic function [51].
We provide the definition of the infimal convolution from [110]:
The infimal convolution of two closed proper convex functions f and g on Rn, denoted
f � g, is defined as

(f � g)(v) = inf
x

(f(x) + g(v − x)) , (9.16)

with dom(f � g) = dom f + dom g.
The infimal convolution of a function f with a quadratic function is also known as the
Moreau-Yosida regularization [97, 158] defined as

Mλf = λ f �
1
2‖·‖

2
2 , (9.17)

with λ > 0. With above definition of the infimal convolution we get

Mλf (v) = inf
x

(
f(x) + 1

2λ‖x− v‖
2
2

)
. (9.18)

As described in [96, 97, 110], we will now see that the Moreau-Yosida regularization of
the absolute value function results in the Huber loss [68].
First we give an intuition for the Moreau-Yosida regularization. Note that the infimal
convolution is dual to addition [110, 118]

(f � g)∗ = f∗ + g∗ . (9.19)

For λ = 1, the quadratic term 1
2‖·‖

2
2 is self-dual and for the bi-conjugate of the infimal

convolution it holds that M∗∗f = Mf . It follows that

Mf =
(
f∗ + 1

2‖·‖
2
2

)∗
, (9.20)
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Figure 9.2.: Reconstruction results with Huber loss regularization using the dual variable ap-
proach for the data term. Shown are reconstruction results for different parameters for the weight
of the data term λ and the Huber loss parameter εH .

thus the Moreau-Yosida regularization results is a smooth approximation of a function
by quadratic regularization of its conjugate.
When we apply Moreau-Yosida regularization to the absolute value function we get

inf
x

{
|x|+ 1

2ε‖x‖
2
2

}
=

x2

2ε for |x| ≤ ε

|x| − ε
2 else ,

(9.21)

which is the Huber loss [68], for which we also write |·|ε in the following.

9.3.2. Huber-TV for Depth Map Estimation

As we will see in the experiments, using the Huber loss instead of the absolute value
function in the regularizer avoids the stair casing artifacts in the depth map. This
modified regularizer has already been successfully applied to computer vision tasks such as
terrain model generation [146] and optical flow estimation [152]. The functional for depth
map estimation from multiple images using the Huber loss function for the regularizer
becomes

E(h) = λ

∫
Ω
|a h− b|1 dx+

∫
Ω
|∇h|ε dx , (9.22)

with the `1 norm |·|1 that sums up over the absolute values of the data terms of multiple
images and the Huber loss |·|ε for the regularizer.
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To minimize above functional in the primal dual optimization framework, we need to
evaluate the prox-operator of the Huber loss. With H(x) = |x|ε the conjugate of the
Huber loss is

H∗(y) = ε

2 |y|
2 + δ|·|≤1(y) , (9.23)

and the prox-operator for the Huber loss becomes

proxνH∗ (ỹ) = arg min
y

1
2ν |y − ỹ|

2
2 + ε

2 |y|
2
2 + δ|·|≤1(y) (9.24)

= π|·|≤1

( 1
1 + ν ε

ỹ

)
. (9.25)

Thus the update in the dual variable q is given by the projection

qk+1 = proxνH∗
(
qk + ν∇h̄k

)
(9.26)

= π|·|≤1

( 1
1 + ν ε

(
qk + ν∇h̄k

))
. (9.27)

An experimental comparison of the Huber loss applied to the regularizer with the total
variation regularizer is described in the experimental section below.

9.4. Implementation

The linearization of the data term in (9.3) only holds for small variations of h. Inspired by
methods that compute the optical flow, we therefore embed the reconstruction method
in a multi-resolution framework. Beginning on the coarsest scale a solution for h is
computed and propagated to the next higher resolution where it is used as new point h0
for the Taylor expansion. To initialize the coarsest scale of subsequent frames, we use
a transformed and scaled version of the solution for the previous time frame. The first
frame is initialized with a constant depth value.
For camera tracking we use the real-time feature based approach of [79], but in principal
also other camera tracking methods can be used, e.g. the semi-dense tracking approach
of [41]. A benefit of both camera tracking methods is, that they are keyframe based:
the camera pose for a subset of keyframes is iteratively improved. While the pose for
the current camera image needs to be estimated very quickly, and thus is expected to be
not very accurate, the keyframe poses are iteratively improved and thus are much more
stable.
We utilize the higher accuracy of the camera poses of the keyframes, and choose the
images from such keyframes as additional views I1, . . . Im. The depth map is computed
for the current camera frame with respect to the closest keyframes which have a sufficient
baseline. This approach yields dense reconstructions for the current view of the camera
in real-time.

9.5. Experimental Results

We compare the proposed dual variable approach with the previous approach that used
half quadratic splitting. Fig. 9.1 depicts reconstruction results of both methods to allow
a direct comparison. We use the highest quality parameter in Table 9.1, with a multi-
resolution pyramid of 24 levels. As depicted in the figure, the reconstruction results are
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Dualized Data Term

(a) 4.4 fps (b) 23 fps (c) 31.2 fps

Half Quadratic Splitting

(d) 3.3 fps (e) 18.7 fps (f) 25.5 fps

Figure 9.3.: Runtime comparison between both approaches. For comparison we use the
same parameters as in [137].

Table 9.1.: Runtime comparison between both approaches. Parameter settings of the
experiments depicted in Fig. 9.3. The first two parameters describe the multi-resolution pyramid.
The next parameter is the number of iterations per scale level. Inner iterations refer to the
number of iterations performed on a block before the values on the boundary of the block are
synchronized. The speedup factors are in comparison the values reported in [137]

Parameter Setting (a)+(d) (b)+(e) (c)+(f)

Multi-Scale Levels 24 10 7
Scale Factor 0.94 0.8 0.7
Iterations per Level 120 70 70
Inner Iterations 1 4 4

Frames per Second
Values reported in [137] 1.8 11.3 24
Half Quadratic Splitting 3.3 (1.8×) 18.7 (1.7×) 25.5 (1.1×)
Dualized Data Term 4.4 (2.4×) 23.0 (2.0×) 31.2 (1.3×)
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Table 9.2.: Detailled Dense Reconstructions in Real-Time. Parameter settings of the
experiments depicted in Fig. 9.4. The proposed dual variable approach allows to solve each
linearized sub-problem with higher precision while the half-quadratic splitting method only allows
to compute an approximative solution. As a result, only very few scale levels are needed for the
dual variable approach. This allows to reach real-time performance without the need of additional
speedup by inner iterations.

Parameter Setting (a)+(b) (c)+(d) (e)+(f)

Multi-Scale Levels 10 7 4
Scale Factor 0.8 0.7 0.5
Iterations per Level 70 70 70
Inner Iterations 1 1 1

Frames per Second
Half Quadratic Splitting 12.9 17.9 34.5
Dualized Data Term 16.0 (1.24×) 22.0 (1.23×) 41.1 (1.19×)

almost the same, clearly the dual variable approach allows reconstructions which are en-
par with the quadratic splitting approach. In some areas the dual variable approach even
allows more detailed reconstructions, as visible for example at the leaves of the plant.

Huber loss Fig. 9.2 depicts the parameter space of the Huber loss regularized approach
for different values of the weight of the data term λ and the Huber loss parameter ε. Both
parameters influence the detail and noise level of the reconstruction, but once a parameter
setting has been selected, the reconstruction result is very stable over different time frames
and also for different parameters, e.g. iteration number or different multi-resolution
settings. In the quadratic splitting approach, the weight θ of the quadratic penalty had
to be tuned to allow a stable reconstruction. Furthermore a common approach is to
reduce the weight θ exponentially during the optimization. This scheme however needs
to be carefully adjusted and depends on the number of iterations.

Runtime Comparison Both methods are implemented for the GPU using the CUDA
programming framework and we report runtime results on an nVidia GeForce GTX Titan
X GPU. First, we perform an experiment with the same parameters as in [137]. Due
to the modern hardware, a speedup between 1.1× and 1.8× is achieved for the half
quadratic splitting approach in comparison to the runtime results reported in [137]. The
dual variable approach however allows an even larger speedup of 1.3× to 2.4× compared
to [137], which corresponds to a relative speedup of 1.2× to 1.3× in comparison to the
half quadratic splitting approach.

Detailled Dense Reconstructions in Real-Time The proposed dual variable ap-
proach has a huge benefit over the half quadratic splitting method. On each scale level
of the multi-resolution pyramid, the linearized problem can be solved with higher preci-
sion while the half-quadratic splitting method only allows to compute an approximative
solution. As a result, only very few scale levels are needed. As depicted in Fig. 9.4 this
allows to compute detailled dense reconstructions at 41.1 frames per second with only
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Dualized Data Term Half Quadratic Splitting

(a) 16.0 fps (b) 12.9 fps

(c) 22.0 fps (d) 17.9 fps

(e) 41.1 fps (f) 34.5 fps

Figure 9.4.: Detailled Dense Reconstructions in Real-Time. The proposed method with
dual variables in the data term allows very detailled reconstructions in real-time. In comparison
to the half quadratic splitting approach the proposed method is much more stable which allows
to use a coarser multi-resolution pyramid. Real-time performance is reached without the need for
approximative accelerations by performing several iterations before the values on the boundary
of each block, that is processed in parallel, are synchronized. This value is called inner iterations
in Table 9.1. Results that were acquired using this acceleration are depicted in Fig. 9.3. There is
only a very small trade-off between accuracy and speed and in comparison to the half quadratic
splitting method, the quality does not degrade as quickly (also compare to Fig. 9.3 d-f). Depicted
are renderings of reconstructions and their respective runtime performance in frames per second
(fps) using the parameters shown in Table 9.2.
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4 levels of the multi-resolution pyramid and a scale factor of 0.5. In contrast to our pre-
vious approach in [137] no additional approximative techniques such as inner iterations
on every block are needed to achieve (more than) real-time performance. The parameter
settings used for the reconstructions depicted in Fig. 9.4 are shown in Table 9.2.

9.6. Conclusion

We described a primal-dual optimization method for real-time dense geometry reconstruc-
tion with a single camera, which extends our earlier work [137] by using dual variables in
the data term. Furthermore, we derived the Huber loss in the total variation regularizer
by interpreting the half quadratic splitting method as infimal convolution of the absolute
value function with a quadratic term. We observed that the Huber loss in the regularizer
prevents the staircasing artifacts of the total variation and thus greatly improves the
segmentation results, leading to reconstructions which are qualitatively comparable to
those achieved with half quadratic splitting. However, the dual variable approach for the
data term leads to a large benefit: in contrast to the only approximative half-quadratic
splitting, the dual variable approach allows to minimize each linearized subproblem with
higher precision. This allows to use much fewer levels of the multi-resolution pyramid
and leads to reconstructions of much higher quality at high frame rates.
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10. 3D Tracking from Raw ToF data

The 3D reconstruction methods described so far are image based reconstruction meth-
ods, which reconstruct the geometry from images of traditional video and photo cameras.
Because digital color images are encoded using a red, green and blue color channel, these
image modalities are also referred to as RGB data. In this chapter, we will present a
novel approach for object tracking for a special type of sensor, that in addition to the red,
green, and blue color channel also measures the depth of the scene for every pixel. These
sensors are commonly referred to as depth cameras or RGBD cameras, to emphasize
that in addition to a red, green and blue channel these sensors also measure the depth
of the scene for every pixel. This additional information greatly improves segmentation
and tracking of rigid, articulated, and even deformable 3D objects in real-time. How-
ever, these depth cameras typically have a limited temporal resolution (frame-rate) that
restricts the accuracy and robustness of tracking, especially for fast or unpredictable
motion. In the following, we show how to perform model-based object tracking at an
order of magnitude higher frame-rate. This is achieved through simple modifications to
an off-the-shelf depth camera. We focus on phase-based time-of-flight (ToF) sensing,
which reconstructs each low frame-rate depth image from a set of short exposure ‘raw’
infrared captures. These raw captures are taken in quick succession near the beginning
of each depth frame, and differ in the modulation of their active illumination. Instead of
computing a depth frame for this set of raw captures, we propose a model-based tracking
approach that allows to infer the depth of the object for each individual measurement
We make two main contributions. First, we detail how to perform model-based track-
ing against these raw captures. Second, we show that by reprogramming the camera
to space the raw captures uniformly in time, we obtain a 10× higher frame-rate, and
thereby improve the ability to track fast-moving objects. The proposed approach has
the side-benefit of avoiding the depth reconstruction step that may be costly for mobile
applications.
The results presented in this chapter are joint work with Sebastian Nowozin and Jamie
Shotton and have been previously published in [138]. The research was conducted in
cooperation with Microsoft Research Cambridge and partly funded by the Microsoft
Research internship program.

10.1. Introduction

Tracking objects that move is one of the fundamental research topics in computer vision,
that enables higher-level reasoning about the world and allows to build systems that
interact with the environment. Real-time tracking and especially tracking of the artic-
ulated human body enable applications in human computer interaction which allow a
very intuitive user interface. One way to enable interaction is by tracking the full body
pose [130], more recent approaches allow real-time tracking of the articulated hand [129].
These methods allow the user to interact with the computer in an intuitive way without
the need of an additional input device, e.g. by pointing with the finger at objects on a
screen or even in the scene itself [148].
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Figure 10.1.: Overview. Phase-based time-of-flight (ToF) sensors infer a low frame-rate stream
of depth images from a set of short-exposure ‘raw’ captures that are clustered closely in time to
reduce motion artifacts. For illustration purposes, we use five colors here to indicate different
frequencies and phase modulations of the illuminant and sensor; see text. For the application
of model-based tracking, we propose to forego the depth reconstruction step, and instead track
directly from equispaced raw captures, resulting in a signal at much higher frame-rate.

However, the visual object tracking problem itself bears several key challenges that limit
the accuracy of current systems. One of the main difficulties in tracking is the change
of the object’s appearance due to object translation, rotation, deformation, and lighting
variation. Further difficulty stems from object occlusion, and objects leaving the viewing
volume. Another key challenge is the simultaneous tracking of multiple objects whose
number may vary over time, and tracking fast moving objects. These challenges make
it hard to build robust tracking algorithms that can achieve human level accuracy and
robustness.
Modeling these effects is very challenging, thus general purpose tracking approaches
employ non-parametric models, e.g. in mean-shift tracking [28], or estimate the object
representation during tracking by using online learning [119]. Tracking of multiple objects
with similar appearance usually requires to integrate observations over a longer period
of time [4, 105]. After all, general purpose tracking remains a challenging problem, as
demonstrated in the recent VOT 2014 tracking challenge [85]. For a review on object
tracking approaches, see [156, 157].
Here, we want to focus on tracking fast-moving rigid objects, and in particular on tracking
the object in three dimensional space from a single viewpoint. An established approach
to address this problem is to use high speed sensors from multiple viewpoints [86, 98],
however this approach usually requires custom hardware. Instead of increasing the time
resolution, an alternative is to increase the resolution of the sensor to allow for an im-
proved angular resolution, as described in an extensive synthetic SLAM study [64]
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However, using multiple sensors and increasing the frame rate by using a high speed cam-
era or even custom built hardware is expensive. Also multiple camera systems usually
require a tedious and time consuming calibration step before they can be used for track-
ing. Therefore, we instead propose to use a single time-of-flight (ToF) sensor, the Kinect
V2 [6], for high speed object tracking. In the following we will show how the sensor can
be re-purposed for this application. Furthermore, we validate in experiments that the
proposed approach allows to accurately infer the depth of the object from observations
from a single viewpoint. The method is very general and should easily extend to other
commercially available ToF sensors.
The proposed method is based on the working principles of phase-based ToF sensors,
which is illustrated in Fig. 10.1. To infer a single depth image (each gray bar on the
left), the sensor captures a set of actively illuminated infrared frames (the colored bars
in the left column). A frame rate of 30Hz for the depth images is achieved by capturing
the infrared frames at an average frequency of 300Hz. To minimize movement of the
object during the capture period, which is required for a consistent depth reconstruction
of the scene, the infrared frames are captured in a short burst at the beginning of each
30Hz cycle. The active illumination of the infrared frames is modulated with one of three
different frequencies and one of three different phases. Each infrared frame is recorded
with a particular combination of frequency and phase shift, resulting in nine differently
illuminated infrared frames per depth frame. The camera also captures an additional
tenth frame without active illumination, to allow to correct for ambient brightness in the
infrared frames.
In the following, we will show how this phase-based ToF sensor can be re-purposed for
fast object tracking. Our method consists of two contributions: First, we describe an
observation model that allows to perform model-based object tracking directly in the raw
infrared ToF captures. The main advantage of this approach is, that it does not require
a reconstruction of a depth frame prior to tracking. As we will show in the following, this
allows to track objects with much faster motion, for which the usual depth reconstruction
would fail. Second, we propose an exposure timing better suited for tracking, that is
different to the burst mode used for depth reconstruction. We show that when equally
spacing the frames out in a 30Hz interval, we achieve a more stable tracking output and
are able to track much faster moving objects at approximately 300Hz (see Fig. 10.2).
We implement the above ideas in a model-based tracking framework, that consists of a
probabilistic state space model and a temporal prior. While this probabilistic tracking
approach is a standard approach for object tracking, our contribution is a generative
model of the observation likelihood, that allows to compare the raw infrared captures
to a rendered simulation of an object with known shape and albedo. We validate in
experiments that we can accurately track a fast moving rigid object in three dimensions,
even for object speeds for which the depth reconstruction fails.
In contrast to a depth-based tracking method, that would fail completely in case of fast
motions, we do not need to first infer a depth image but instead directly track the object
in the raw ToF frames. Compared to constant illumination high frame-rate tracking, the
benefit of the proposed method is that we not only achieve a high frame rate but that
each frame contains a distinctive active illumination response that contains additional
depth information.
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Figure 10.2.: Time-of-flight captures and fast motion. A table tennis ball is dropped,
and three raw captures are superimposed for visualization using the red, green, and blue color
channels. Left: The standard timing used for phase-based ToF clusters the captures temporally
to minimize motion artifacts in the depth reconstruction. Right: We propose to evenly space
out the ToF captures in time. We demonstrate that this allows for more stable tracking of fast
moving objects without previous reconstruction of a depth image.

10.2. Background

Before we describe our main contributions, we provide some background material on
phase-based time-of-flight sensors and model-based tracking.

10.2.1. Phase-Modulation Time-of-Flight

State-of-the art ToF cameras perform depth measurements by phase modulated active
illumination: The camera contains an active light source, that is amplitude modulated
with a specific frequency. The scene is recorded by the sensor, which is gain-modulated
with the same frequency [87, 127]. During the frame exposure, the sensor integrates
over a large number of oscillation periods and the recorded image intensities contain
information about the phase shift between emitted light and incoming light. This phase
shift depends linearly on the time it took for the emitted light to travel from the light
source to the object, where it is reflected back to the sensor. Usually, the phase shift
wraps around several times for depth ranges in typical scenes. To disambiguate between
multiple possible depth values that correspond to the same phase shift, a set of frames
with different modulation frequencies and phase delays is recorded. The information
that is contained in the set of recorded frames then allows a unique disambiguation of
the distance via phase unwrapping algorithms [62, 65, 91]. To allow for a stable phase
unwrapping, it is important that the depth of the object does not change between the
independent measurements of a set of frames. Thus the frames are recorded in a short
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time span at the beginning of each depth reconstruction cycle, to reduce the motion of
the object between the different captures. This standard operation mode is illustrated in
the leftmost column in Fig. 10.1.
Formally, we obtain a sequence of nine measurements R1, . . . , R9 (3 frequencies × 3
phases) for each pixel with

Ri = ρ

d2 Si(d) + εi , (10.1)

where d > 0 is the depth of the imaged surface at that pixel and ρ > 0 is the surface
albedo. The responses Si depend on the specific modulation frequency and phase delay
and are given by an idealized calibrated response curve [6],

Si : [dmin, dmax]→ {−Imax, . . . ,−1, 0, 1, . . . , Imax},

where dmin and dmax denote the range of valid depths that are mapped to signed image
intensities between −Imax and Imax. We simply assume zero mean Gaussian noise as
noise model εi with a fixed standard deviation.1

The standard approach to reconstruct a depth frame is to use a phase-unwrapping method
which infers the depth from the nine measurements as

d̂ = f(R1, . . . , R9). (10.2)

The proposed approach instead directly performs tracking in the raw measurements,
without the need to first infer a depth frame.

10.2.2. Model-Based Tracking

We use model-based object tracking [83, 155], with a generative observation model to
relate the estimated position to the observations. To allow for stable tracking we use
a temporal model that relates measurements over time and follow the work by Isard
and Blake [70] by performing particle filtering [58] in a state space model. For a state
space model we first need to specify a state space and additionally both a probabilistic
transition model and a probabilistic observation model [37].
As state vector we use

Xt = (xt, vt), (10.3)

which encodes a 3D location xt ∈ R3 in some reference frame (also called world co-
ordinate) and a 3D velocity vector vt ∈ R3. To track general rigid objects we could
include rotation parameters, i.e. by extending the state space to Xt = (xt, rt, vt). To
demonstrate our key contribution, how to perform object tracking in the phase encoded
infrared frame, here we instead use a setup as simple as possible and use a rotationally
invariant object (a table tennis ball) in the experiments and thus do not need to include
rotational parameters in the state space.
Temporal coherence is achieved with a stochastic transition model which is specified via a
distribution P (Xt+1|Xt) that encodes the assumed laws of motion (see below for further
details). For the observation model we implement an analysis-by-synthesis approach: an
observation Yt corresponds to an entire raw ToF frame. We assume that we are given a
3D model of the object together with a model for the object’s reflectivity. This allows
to synthesize a rendering of the object as it would appear in the phase-encoded raw

1Because the phase shift is measured in the Kinect sensor by computing the difference of two accumu-
lation buffers [6], a more accurate noise model would be an intensity-dependent Skellam noise. Here
we choose the Gaussian approach for simplicity.
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ToF frame. Then the observation likelihood is computed by comparing this synthesized
rendering with the observed raw ToF frame (further details are given below).
Combining the transition and observation model yields a joint distribution over the entire
sequence of states X1:T and observations Y1:T as

P (X1:T , Y1:T ) =
T∏
t=1

P (Xt|Xt−1) P (Yt|Xt), (10.4)

where P (X1|X0) = P (X1) is the initial distribution over the state space of the first frame
that is assumed to be given.
When the transition model and the observation model are defined, inference about the
object’s state for given observations can be done either by filtering or by smoothing [37].
In filtering the distribution over the current position and velocity is estimated depending
on all past observations. Because filtering allows to infer a distribution about the current
object state it is suitable for an interactive setup. At each time step t, filtering provides
the marginal distribution P (Xt|Y1:t) over the current stateXt. In smoothing, observations
both from the past and the future are used, thus inference is performed offline after
the entire sequence Y1:T of T frames has been observed. This approach significantly
improves tracking accuracy [71] as the inference result P (X1:T |Y1:T ) integrates over all
observations. However, the approach only allows for offline tracking and thus is not
suitable for interactive tracking. A suitable intermediate strategy for online tracking is
fixed-lag smoothing [35]: inference is delayed by a small number ofK frames and inference
is performed by smoothing over a truncated sequence, i.e. only the distribution over a
partial sequence P (X(t−K+1):t|Y1:t) is inferred. Fixed-lag smoothing allows a trade-off
between the low latency of filtering and the high accuracy of smoothing: for K = 1 the
approach results in filtering, and for K = T it results in smoothing. This allows for
improved accuracy for interactive tracking at the expense of a fixed latency.
For the results reported in this work we found that filtering, implemented using the
bootstrap particle filter [58], offered sufficient accuracy and stability.

10.3. Method

In this section we describe the model for tracking a fast moving object directly in the
phase encoded raw ToF captures. While we use a standard motion model, the observation
model for raw ToF captures is a novel contribution.

10.3.1. Motion model P (Xt+1|Xt)

We use the state representation (10.3) and define a linear motion model as a multivariate
Gaussian distribution

P (Xt+1|Xt) ∼ N
([

xt + ∆vt
vt

]
,

[
σ2
xI3 0
0 σ2

vI3

])
, (10.5)

where ∆ is the time difference between the frames captured at step t and t + 1, and
σx > 0 and σv > 0 are the noise parameters for the position and velocity vectors respect-
ively. Above model (10.5) predicts the position xt+1 by linear extrapolation in time of
the currently estimated position xt with the current estimate of the velocity vector vt.
Any change to the velocity is modeled with the noise term σv, but more complicated
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Figure 10.3.: Model Based Tracking. Depending on the frequency and phase configuration of
the individual exposures, the object appears with different illuminations in the raw ToF captures.
The generative forward model allows to synthesize the appearance of the object for these different
illuminations. First row: Observed raw ToF image. Second row: Rendered image of the best
hypothesis. Columns correspond to individual exposures.

motion models are possible, for example by including gravity or modeling changes of
the movement direction, e.g. by explicitly modeling deflection off the ground. Here we
chose (10.5) as probably the simplest possible motion model to demonstrate our main
contribution: an observation model that allows for raw ToF-based tracking.

10.3.2. Observation model P (Yt|Xt) for raw ToF

Now we describe our main contribution: the observation model that allows to compute
observation likelihoods directly against the raw ToF captures without the need to first
compute a depth map.
The observation model describes the conditional distribution P (Yt|Xt), where Yt is an
observed raw ToF frame of size 512 × 424 together with its timestamp, and Xt is the
hypothesis about the current state of the object. The raw ToF frame consists of phase-
encoded responses (10.1) for each sensor element (sensel). With R̄i(r) we denote the
observed response at sensel location r and shutter type i, a specific configuration of
frequency and phase shift of the active illumination of this frame. An observation is then
encoded as Yt = (i, R̄i), where i is the shutter type, and R̄i is the vector of all responses
at all sensel locations. When recording a sequence of images, the shutter type i changes
in a predefined cyclic order, and thus does not need to be modeled probabilistically.
Therefore, we only have to specify a probabilistic model for the observed frame R̄i.
The probabilistic model for the raw ToF observation R̄i is based on an analysis-by-
synthesis approach: given the hypothesis for the current stateXt we first render a distance
map d(r) and reflectivity ρ(r) of the object for every sensel r. The reflectivity of the object
is modeled by a Blinn-Phong model [14], whose parameters are fitted empirically to the
object appearance in a calibration step prior to tracking. We use the ideal response
curve from equation (10.1) with the rendered distance d(r), the reflectivity ρ(r), and
the known shutter type i and compute the expected response Robj

i (r) for each location
r. Fig. 10.3 shows pairs of observed and rendered responses side by side. The whole
pipeline of rendering the depth and reflectivity of the object and finally computing the
ideal response is implemented efficiently on the GPU using the HLSL shader language.
To compute the likelihood of the current hypothesis XT , the synthesized response Ri(r)
is compared to the observed response R̄i(r). Here, a difficulty arises: so far the rendering
model only provided a synthesized response for the object, and does contain an explicit
model for the background. A possible strategy is to compare only sensels that belong to
the object for an assumed location Xt. However, this does not provide a valid distribution
P (Yt|Xt) for the entire observed frame and is biased by the amount of sensels in the frame
that are covered by the object.

10. 3D Tracking from Raw ToF data 107



Part III: 3D Reconstruction and Tracking

To solve for this bias, we explicitly model the background. A common approach for
RGB images is to model the background via mixture models, e.g. in the seminal public-
ations [48, 133, 161]. For simplicity, we assume a static camera and a static background,
and use a simpler Gaussian model as described below. Prior to tracking, we record a few
seconds of static background video. Then, for every shutter type i and every location r,
we compute the empirical mean µ̂i(r) of the observed responses R̄i(r). In case the video
contains moving objects, those can be removed by computing the more robust median of
a sufficiently long sequence instead of taking the mean. We assume the background to
be distributed by a Gaussian distribution

Rbg
i (r) ∼ N (µ̂i(r), σ2

bg), (10.6)

where σbg is the standard deviation of the background noise in raw ToF units, typically
in the range of a few hundred units.
We get the full model P (Yt|Xt) by a composition of the object responses Robj

i for sensel
locations which are occupied by the rendered object hypothesis Xt, and the background
responses Rbg

i for the remaining part of the frame. To compute this composition, the
renderer computes a mask of occupied sensel locations during rendering. Let us denote
the mask by M(r) ∈ {0, 1} where M(r) = 1 denotes a location inside the object. The
full model then is obtained as

Ri(r) ∼

 N (Robj
i (r), σ2

obj), if M(r) = 1,
N (µ̂i(r), σ2

bg), otherwise.
(10.7)

Here σobj is a parameter that specifies the assumed noise in the object responses. We
assume the noise to be independently distributed among the sensel locations, thus the
joint model for the full raw ToF frame is modeled by a product of Gaussian distributions
(10.7) and itself is a multivariate Gaussian. We compute the log-likelihood function as

logP (Yt|Xt) =−
∑

r:M(r)=1

[
(R̄i(r)−Robj(r))2

2σ2
obj

+ log σobj

]

−
∑

r:M(r)=0

[
(R̄i(r)− µ̂i(r))2

2σ2
bg

+ log σbg

]
+ C , (10.8)

where C = −n
2 log(2π) is a constant independent of the observation (with n = 512 · 424

the number of sensels per frame) that can be omitted.
Above observation model is evaluated for several thousand object hypotheses against
the same observation. Therefore it would be very expensive to evaluate above equation
for every sensel location of the frame. Instead we use simple arithmetic to achieve a
significant speedup. We use the following identity:

logP (Yt|Xt) = −
∑

r:M(r)=1

[
(R̄i(r)−Robj(r))2

2σ2
obj

+ log σobj

− (R̄i(r)− µ̂i(r))2

2σ2
bg

− log σbg

]
(10.9)

−
∑
r

[
(R̄i(r)− µ̂i(r))2

2σ2
bg

+ log σbg

]
+ C ,

where the last sum of the log-likelihood of the background model is taken over the whole
frame. It is independent of the hypothesis and thus needs to be computed only once for
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Figure 10.4.: Experimental setup A. A table tennis ball is released from a stationary position
and accelerates towards the ground. The camera observes this fall at a slightly downwards angle
which results in motion both along the vertical axis and the depth axis.

a given observation. Only the first term depends on the object hypothesis and has to be
evaluated only for those sensel locations occupied by the object.

10.4. Implementation and Validation

Implementation details We implement the equidistant exposure timing of the Kinect
sensor [6] in a custom firmware. However, in principle this modification can also applied
to other phase modulation based ToF cameras, e.g. to sensors from PMD, Intel, or Mesa
Imaging. The tracking algorithm is implemented in C++ on the CPU and the rendering
and likelihood computation pipeline is performed entirely on the GPU, implemented in
the HLSL shading language. A tiled layout for the rendering pipeline enables to evaluate
over 8000 particles in parallel and allows real time tracking at 300 Hz using 4096 particles
on modern GPU hardware.

Experimental setup A. We use two different setups for the experiments, depicted
in Fig. 10.4 and Fig. 10.5. In the first setup, the scene is observed by a static camera
mounted on a tripod and a table tennis ball is released from a fixed position in front of
the camera. It is released with no inertia and thus falls downwards accelerated purely
by gravity. Because the camera is tilted slightly downwards, the downward motion of
the falling ball results in both a motion along the vertical axis and the depth axis of
the camera coordinate frame. This allows to evaluate the quality of the depth estimate
achieved with the model based tracking approach.
The ball quickly reaches a velocity that prevents a reliable depth reconstruction using
phase unwrapping because of insufficient overlap in the individual raw ToF frames (see
Fig. 10.7). Thus there is no ground truth available for the whole sequence. To never-
theless evaluate the tracking performance quantitatively we use the following procedure:
Accelerated purely by gravity, the trajectory of the table tennis ball lies on a line in
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Figure 10.5.: Experimental setup B. A table tennis ball attached to a rope is obtaining a
pendulum movement. Attached to the rope are two reflective markers used for motion capture.
The rope is ensured to be a straight line by an attached weight. The scene is captured by the
Kinect camera and by a commercial Motion Capture system consisting of 11 cameras (not shown).

3D space. The tracking algorithm estimates object coordinates at each observation as
the weighted average of the particle positions. We fit a line through these estimated
3D coordinates using least squares and measure the deviation between the estimated co-
ordinates from the ideal linear trajectory. The magnitude of this deviation is a reasonable
measure of the tracking quality.
The camera is tilted downwards which results in movement of the ball not only along the
vertical y axis but also results in a change of the measured depth along the z axis. Because
motion is present only in the y/z plane, we fit a least squares regressor zt ≈ ayt + b to
the estimated object position at step t. As error metric we choose the root mean squared
error (RMSE),

RMSE =
√

1
T

∑
t=1:T

(zt − (ayt + b))2 , (10.10)

between the depth zt, that was estimated with the model based tracking approach, and
the depth value given by the regression.
We perform the above evaluation only for the second half timespan of each sequence,
when the tracking algorithm has suitably converged, to avoid potential biases due to
initialization effects. In all experiments, we use the same transition model and the same
parameters in (10.5).

Experimental setup B. To allow for a better quantitative evaluation, we use a second
experimental setup: The table tennis ball is attached to a rope together with two reflective
markers that are tracked in 3D at 150 Hz using an eleven-camera motion capture system
(Qualisys QTM, Qualisys Inc., Gothenburg, Sweden). We choose this setup and do
not attach the markers directly to the table tennis ball, otherwise the brightness of the
reflective markers would interfere with our model based tracking approach. Attached
to the end of the rope is also a weight, which straightens the rope. For quantitative
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Figure 10.6.: Experimental setup B. A table tennis ball is attached to a rope with two
reflective markers. Additional markers in the scene allow to register the coordinate frames of
the camera and of the motion capture system. Shown is an averaged infrared image of the ToF
camera.

comparison we transform the 3D trajectory of the motion capture system to the Kinect
camera coordinate frame and compute the root mean squared error (RMSE) between
the three dimensional coordinates of the raw ToF tracking result and the motion capture
system output.
Notes on the accuracy: The motion capture system is calibrated with a residual of less
than 2 mm. The coordinate frames of the Kinect camera and the motion capture system
are registered by using six reflective markers which both are assigned a 3D coordinate
by the motion tracking system and which are visible in the Kinect camera frame. In the
Kinect camera frame, we measure the depth of the base plate of each marker using the
standard depth reconstruction of the Kinect. Finally the registration of both coordinate
frames is achieved by using Kabsch’s algorithm [74] with a residual of 8− 9 mm.

10.5. Experiments

The proposed method combines the use of phase modulated raw ToF observations with
a high frame rate. Therefore, we design the experiments to verify that both the ToF
modulation and the equispaced timing of the captures are beneficial for tracking and
verify that these benefits are complementary.
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Figure 10.7.: Depth reconstruction failure (Experiment A). The ball quickly reaches a
velocity that prevents a successful depth reconstruction by phase unwrapping. This is due to
insufficient overlap of the object in the nine frames used for reconstruction. Left two images: an
overlay of the raw captures for five frames and the corresponding depth reconstructions, using
the standard ‘clustered’ exposure timing of the Kinect. Note that with increasing velocity the
depth reconstruction fails in the non-overlapping regions (missing depth values are shown in
black). Right two images: Equidistant exposure timing. Depth reconstruction now completely
fails. However, we show that this timing is beneficial for the proposed tracking method because
it can directly take advantage of the high frame-rate raw ToF information.

First we demonstrate that tracking based on phase unwrapping, the standard depth
reconstruction method for ToF cameras, fails for fast moving objects because of motion
artifacts due to insufficient overlap of the object in the individual exposures used for
phase unwrapping.

10.5.1. Failure of Depth Based Tracking

The underlying assumption of a reconstruction algorithm based on phase unwrapping is
a static scene. As a consequence, when an object moves between two raw frames and
those frames are used for reconstructing the depth image, artifacts become visible in the
depth reconstruction. Fig. 10.7 shows an overlay of the raw frames of the falling table
tennis ball together with the depth reconstructions obtained from these frames by using
phase unwrapping. A depth value can only be reconstructed in those regions where the
moving object overlaps in all the raw frames used for the depth reconstruction. Therefore
it is obvious that the strategy of first reconstructing a depth image and then tracking fast
moving objects has to fail. We therefore propose to track the object in three dimensions
by directly using the raw data of the sensor.
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Figure 10.8.: Experiment A. Left: Validation of the estimated depth values when tracking in
raw ToF images captured using the standard ‘clustered’ temporal spacing (blue), in comparison
to the depth values of the standard time of flight reconstruction method (red). Right: Equispaced
exposure timing leads to a more stable depth estimate when tracking from raw ToF captures.

10.5.2. Tracking with Raw ToF Observations

We now show that the unknown depth of an object can be obtained by the proposed
model-based tracking approach. Fig. 10.8a depicts the estimated depth with respect to
the vertical y coordinate of the falling table tennis ball (Experiment A). To validate
the proposed method, we also depict the depth value which was reconstructed with the
standard phase unwrapping approach. This value is acquired by averaging over those
depth values, that are in the interior of the overlapping region of the table tennis ball in
the depth image (this overlapping region is visible in Fig. 10.7).
In the standard exposure timing, all nine raw ToF captures are taken at the beginning
of each 30Hz depth frame cycle in order to minimize motion artifacts. For tracking
purposes these unevenly spaced exposures are suboptimal: the larger time-gap between
the captures results in a low quality estimate of the depth in the first frame of each
capture, leading to the sharp drop of the estimated depth in every 9th frame in Fig. 10.8a.

10.5.3. Benefit of Equispacing

To overcome the large time gap between the 30Hz captures we propose to use an equi-
distant timing of the exposures. Fig. 10.8b clearly demonstrates that this increases the
stability of the trajectory estimates. Note that Fig. 10.8b tracks a different sequence than
the sequence depicted in Fig. 10.8a, since due to interference we are unable to capture
the same scene simultaneously with two cameras, and thus it is necessary to capture
separate sequences for different exposure timings.
We also quantitatively compare the effect of the equidistant timing scheme in comparison
with the standard clustered exposure timing. Therefore we compute the root mean
squared error of the residual towards a linear regressor as explained in the beginning of
this section. Both exposure timings are compared by individually tracking 10 sequences
with 60 frames each of a table tennis ball falling straight to the ground. The camera
is slightly tilted downwards which leads to a linear relation between the y and the z
coordinate. Our results in Table 10.1 and Table 10.2 show first that the proposed model-
based tracking method is highly accurate and second that the equidistant based shutter
profile further improves this accuracy.
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Table 10.1.: Experiment A. Quantitative comparison of the standard clustered exposure tim-
ing and the proposed equidistant timing for a table tennis ball accelerated by gravity.

RMSE

Exposure timing clustered 1.62 cm
equidistant 1.59 cm

Table 10.2.: Experiment B. Quantitative comparison of the different exposure timings for a
slow and fast moving table tennis ball. Shown is the root mean squared error between the raw
ToF tracker and a commercial motion capture system, for all three coordinates (RMSE) and for
the z coordinate in the camera coordinate frame (RMSE-z).

Exposure timing Object Speed RMSE RMSE-z

clustered 1.40 kmh 4.15 cm 0.94 cm
2.16 kmh 6.59 cm 2.59 cm

equidistant 1.12 kmh 2.40 cm 0.66 cm
2.54 kmh 4.47 cm 1.39 cm

10.6. Discussion

The proposed method has two major benefits: First, tracking of an object directly in
the raw ToF observations avoids the reconstruction of a depth frame and allows to track
much faster motion, and second, equispacing of the raw ToF captures, which increases
the stability of the tracking result.

10.6.1. Tracking from Raw ToF

The proposed observation model allows for direct computation of observation likelihoods
against the raw ToF captures. In contrast to a comparison in the reconstructed depth
frame, a potential benefit of the proposed approach is a reduction in computational cost:
whereas a depth-based tracking approach first has to reconstruct a depth frame and
then compute the likelihood between the model and the estimated depth, the presented
approach allows to skip the potentially costly depth reconstruction process. This can be
a significant advantage for power-limited environments, e.g. mobile devices.
An even greater benefit of the proposed raw ToF tracking approach is the avoidance of
motion artifacts that would occur in phase unwrapping based depth reconstructions of
fast moving objects (examples of fast motion that would cause problems are shown in
Fig. 10.2). The individual exposure time of a single raw ToF frame is by an order of
magnitude shorter compared to the time interval in which a full sequence of nine frames,
used for phase unwrapping based depth reconstruction, is recorded, even when these
exposures are clustered in the beginning of the depth frame cycle.
Still very fast object motion can result in motion blurring in the raw ToF capture. But
in contrast to the motion artifacts due to phase unwrapping of a sequence of captures,
motion blurring in a single raw ToF frame is negligible, because of the much shorter
exposure time.
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10.6.2. Equispaced ToF Captures

We proposed to space out the raw captures uniformly in time (see Fig. 10.1) and verified
in our experiments that this increases the stability of the tracking result. While for the
standard exposure timing the goal was to reconstruct depth, it was useful to cluster
the frames in time to minimize motion between the captures and achieve the required
consistence for phase unwrapping. In the proposed approach, we are instead interested
in an exposure timing that is beneficial for tracking. By capturing the frames uniformly
in time, the measurements better cover the movement of the object along the trajectory
and allow an increased stability of the tracking result.

10.6.3. Limitations and Future Work

As we have demonstrated, the proposed raw ToF tracking framework allows several
benefits in comparison to the standard approach of tracking in the depth image. But
there are also some limitations in practice. Tracking an object in the ToF captures of
a cluttered scene with dynamic background is much harder than tracking in the depth
frame.
In future work we hope to generalize the model-based tracking approach to dynamic
backgrounds and to allow for tracking more general objects including rigid-body motion
and articulated objects. Furthermore, especially for articulated objects, we believe that
the benefits of both methods, depth based tracking and raw ToF based tracking, can
be combined. A combination allows to benefit from the strengths of both methods by
using the more robust depth based tracking for slowly moving object parts and utilizing
the higher time resolution of the raw ToF tracking approach for the faster moving parts.
While the depth based tracking approach allows easier detection and tracking of the
object itself, the raw ToF based approach allows tracking with high time resolution of
those parts which move too quickly for a phase based depth reconstruction.

10.7. Conclusion

We proposed a novel framework for high-speed object tracking using an off-the-shelf ToF
sensor. Experimental results confirm improved tracking accuracy due to two distinct
contributions: an observation model which allows to compare a model based hypothesis
against a raw ToF observation, and by spacing out the captures uniformly over time.
We see our work as a first step in adapting ToF sensor operation for computer vision
tasks. Here we considered tracking, but other computer vision applications such as
surface reconstruction and camera localization may benefit similarly from a co-design
of algorithm and sensor operation. In this work we focused on adapting the algorithm
to the specific characteristics of raw ToF flight data and used a fixed sensor operation,
i.e. using exposure timings and specific frequency and phase delay configurations that
are defined apriori. Possible future work could explore how to adaptively configure the
sensor operation online depending on observed data and the estimated object trajectory.
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11. Concluding Remarks

11.1. Summary

In this thesis we presented convex optimization methods for two major computer vision
tasks: image segmentation and 3D reconstruction.
We proposed a novel convex formulation of connectivity constraints for image segmenta-
tion and 3D reconstruction, that shows several advantages over the established boundary
length regularization. The connectivity constraints allow the reconstruction of objects
with fine thin structures and additionally increase the speed of convergence towards a
smooth solution.
Furthermore, we described an active learning framework for the probabilistic model of
the data term, which is especially useful for large scale segmentation problems. The
active learning method asks for additional labels for parts of the data that have a high
classification uncertainty, which leads to a quick improvement of the classification result.
As additional results, this thesis presented two real-time capable approaches: first, an
improvement of our previous real-time dense 3D reconstruction method, and second, a
novel approach for real-time object tracking with a time-of-flight camera.

11.2. Advantages

Connectivity Constraints for Image Segmentation We believe that the proposed
combination of connectivity constraints with a total variation regularizer can become a
new paradigm for image segmentation: Instead of just imposing a compact shape of the
segmented object, we additionally formulate the connectivity of the object as a desired
property of a valid segmentation. The presented approach has several advantages, includ-
ing better performance when segmenting objects with thin parts, that would otherwise
be smoothed by the regularizer. We demonstrated these benefits in experiments on real
world datasets in different application areas: 3D reconstruction of dynamic scenes, 3D
angiography, and 2D segmentation in a medical imaging dataset. The results on the
medical image segmentation benchmark also demonstrate the practical importance of
the proposed framework.
In a recent study, Rempfler et al. [117] compare the proposed method with the global
optimal solution of the minimum cost connected subgraph, an NP-hard discrete combin-
atorial optimization problem that corresponds to the image segmentation problem (5.1)
with general connectivity constraints (C0) without the perimeter term. They evaluate
both methods on a medical image segmentation benchmark and find no statistically
significant difference between both approaches, which validates that the proposed re-
formulated connectivity constraints yield a very good approximation to the NP-hard
optimization problem.
Further more, the connectivity constraints allow to fill in missing parts of the object and,
when combined with a total variation regularizer, allow faster convergence for acquiring
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a smooth segmentation than with the total variation regularizer alone. To achieve this
faster convergence, we developed an efficient projection scheme onto the feasible set of the
constraints. This allows the application of connectivity constraints to large scale prob-
lems such as 3D reconstruction of dynamic scenes and large medical image segmentation
problems.

Real-time Dense 3D Reconstruction The presented approach allows dense recon-
structions with a handheld monocular camera in real-time. It contains two improvements
in comparison to our earlier work: a dual variable approach for the data term and a ro-
bust Huber loss for the regularizer. When integrated together, these improvements result
in a much faster run-time performance compared to the previously used half quadratic
splitting approach. We achieve a performance of more than 40 fps on a single GPU.
This performance increase allows the utilization of additionally available resources to
perform high quality online camera pose estimation which, in combination with the pro-
posed method, enables future work on full 3D reconstruction systems at interactive frame
rates.

Raw Time-of-Flight Tracking We proposed a novel mode of operation for a time-
of-flight camera, that is especially suited for tracking fast moving objects. With the
standard approach of first reconstructing depth and performing tracking in the depth
image, it is currently not possible to track objects which do not have sufficient overlap
within the individual exposures used for depth reconstruction. The proposed method
instead tracks the object in the raw infrared signal acquired by the time-of-flight camera.
Furthermore, in contrast to the standard mode, where the raw exposures used for depth
reconstruction are taken in quick succession, we proposed to distribute the individual
exposures equally in time which increases the stability of the tracking output. While
here we focus on object tracking, we believe that similar co-design of algorithm and
sensor operation allows further improvements when solving other computer vision tasks,
such as surface reconstruction and camera localization.

11.3. Limitations and Future Work

In the experiments on real world data sets, we confirmed that the presented approaches
have several benefits in practical applications, e.g. the connectivity constraints allow a
significant improvement on a medical image segmentation benchmark and are basically
indistinguishable from the results of a global optimum solution of the more general min-
imum connected subgraph problem [117]. However, there are still some limitations that
leave room for future work.

Connectivity Constraints In the proposed approach, the connectivity constraints
are defined by a rooted tree, with a predefined root s. This leads to two limitations:
first, the root needs to be specified, and second, the location of the root s also defines
the topology of the tree.
In the current approach, the selection of a root was done either by the user, e.g. with a
scribble in interactive image segmentation, or by an automated approach, as we demon-
strated for dynamic 3D reconstruction. In general however, it would be desirable to
remove this dependency on a particular root vertex.

120 11. Concluding Remarks



Part IV: Conclusions and Outlook

The location of the root also influences the topology of the tree on which the constraints
are defined and thus determines the quality of the result that can be achieved with the
proposed approach. The constraints (C1) on the tree define a certain subset of feasible
solutions, which does not necessarily contain the optimal least cost labeling that fulfills
the general connectivity constraints (C0).
It turned out however, that the exact location is not very important in practice; e.g. in
3D reconstruction it is sufficient that the root is in the largest connected component.
But if the root is far away from the optimal location, the tree shape that has to originate
from the selected root, might not fit the topology of the data.
Future work could overcome these limitations by solving the NP-hard problem with the
general connectivity constraints (C0) that do not require a particular root node. Recent
work approaches this problem using integer linear programming [117, 145]. However, the
long run-time still prohibits the application of these methods to large scale problems.

3D Reconstruction There are difficult problems remaining in 3D reconstruction, for
example how to handle varying material properties, illumination changes, and how to
represent large scale dynamic scenes. The particular choice of the scene representation is
of key importance for the performance of a 3D reconstruction method. In the proposed
real-time dense reconstruction approach, the scene is represented by a dense depth map.
While the choice of this representation allows for the high frame rate of 41 frames per
second, it only allows a limited representation of the scene. In our work on dynamic
scene reconstruction, we instead used a labeling of a space-time volume with a continuous
indicator function. This allows to reconstruct objects of arbitrary topology and also to
represent a dynamically changing scene. However, this rich representation usually does
not allow reconstructions in real-time. Future work could explore possible combinations
of both approaches, how to achieve the run-time efficiency of a depth-map representation
while still offering some topological flexibility of the representation. An example of
such a hybrid representation is DTAM [101], which represents a surface by its indicator
function in the visibility frustum of the camera. This method however is restricted to
small environments and does not allow to represent a scene of larger scale.

Raw Time-of-Flight Tracking We demonstrated several benefits of the proposed
method for tracking fast moving objects in comparison to the standard approach of
reconstructing a depth image prior to tracking. However, there are also limitations in
practice: object tracking in front of a cluttered background in the raw time-of-flight
image can be much harder than tracking an object in a depth image. Future work could
address these difficulties by applying strategies used for general object tracking in RGB
images and by extending these existing methods to the phase encoded raw time-of-flight
data.
Also, the current implementation is limited to rotationally invariant objects. However,
we believe that the presented idea to perform tracking directly in the raw time-of-flight
data is general, and thus should extend to existing tracking approaches for rigid body
motion, deformable and articulated objects, e.g. the human hand [129].
For articulated objects, we believe that the proposed method can be combined with
approaches which track the in depth image, and that both approaches are complementary.
While slowly moving parts of the object can be tracked by using a more robust depth
image based approach, object parts that undergo fast motions can be tracked with the
proposed approach, thus combining the benefits of both methods.
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