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Abstract. We propose to solve an image segmentation problem with
connectivity constraints via projection onto the constraint set. The con-
straints form a convex set and the convex image segmentation problem
with a total variation regularizer can be solved to global optimality in
a primal-dual framework. Efficiency is achieved by directly computing
the update of the primal variable via a projection onto the constraint
set, which results in a special quadratic programming problem similar to
the problems studied as isotonic regression methods in statistics, which
can be solved with O(n logn) complexity. We show that especially for
segmentation problems with long range connections this method is by or-
ders of magnitudes more efficient, both in iteration number and runtime,
than solving the dual of the constrained optimization problem. Experi-
ments validate the usefulness of connectivity constraints for segmenting
thin structures such as veins and arteries in medical image analysis.

1 Introduction

To allow to preserve thin structures, topological constraints, and especially those
that preserve connectivity [16, 15], have been introduced into image segmentation
methods.

These constraints have a great advantage in several application areas, includ-
ing the segmentation of arteries and veins in medical imaging but also in a user
interactive setting for general image segmentation. They are very useful when
thin structures should be extracted from image data, allowing to extract the
whole branching tree of blood vessels in the lung, as shown on the left in Fig. 1.
For comparison, a total variation regularized segmentation of the dataset with-
out connectivity constraints is shown on the right. In order to preserve the thin
structures, only a very small weight of the regularizer can be chosen. Therefore
a lot of noise is still present in the final segmentation.

Including these constraints in the segmentation model either leads to a higher
algorithmic complexity [16, 6] or slow convergence when solving the dual of the
constrained optimization problem [15].
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Result with connectivity constraint Without connectivity constraint

Fig. 1. Connectivity constraints allow to extract the whole branching tree of blood
vessels in the lung, as shown on the left 1. For comparison, a total variation regular-
ized segmentation without connectivity constraints is shown on the right. In order to
preserve the thin structures, only a very small weight of the regularizer can be chosen,
therefore a lot of noise is still present in the final segmentation.

1.1 Related Work

Topology preserving constraints have been recently proposed for different algo-
rithmic frameworks. For the graph cut [4] framework, Zeng et al . [17] present
an extension, that allows to preserve the topology of the result with respect to
an initial segmentation. Beginning on a coarse scale, their method preserves the
topology of the initial segmentation during refinement. A similar approach was
proposed by Han et al . [11] for the level set framework. The drawback of both
methods is that they depend on the initialization and therefore only reach a
local optimum.

Vicente et al . [16] introduce connectivity priors into interactive segmentation
in a Markov random field framework and enforce connectivity to user given seed
points. The authors show that the original problem is NP-hard and propose a
greedy approximation scheme consisting of a Dijkstra algorithm where in every
expansion step a graph cut needs to be solved. Their method also only reaches
a local optimimum.

Chen et al . [6] propose to alternatingly solve a graph cut and modify the
unary terms based on a level-set representation until predefined topological con-

1 CT dataset from the Vessel Segmentation in the Lung 2012 Grand Challenge
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straints are fulfilled. The runtime complexity of the method prevents to use it
for large scale problems.

Recently, three different methods were proposed, that aim to reach a global
optimum. First, Nowozin and Lampert [12] propose to formulate the image seg-
mentation problem with topological constraints as a linear program relaxation.
However, even for small image sizes the runtime complexity of the method does
not scale well and the relaxation is not tight. In contrast to the method presented
in this publication, their method is not suitable for large scale problems in 3D
segmentation.

Gulshan et al . [10] introduce geodesic star shape priors into the graph cut
framework. The solution of the segmentation is restricted to the shape of a
geodesic star around an input seed, while the geodesic distance depends on the
image gradient. If multiple input seeds are given, the foreground segment takes
the form of a geodesic forest, the union of the geodesic stars for every seed. A
drawback of their method is that the boundary length regularizer is affected by
the discretization of the pixel neighborhood.

In a previous work [15] we propose a global optimal segmentation method
with connectivity constraints in a convex optimization framework. The combi-
nation of a total variation regularizer with a connectivity constraint allows to
segment thin structures even in very noisy image data. Compared to the work
of Gulshan et al . [10] our method uses a continuous segmentation framework
and therefore the boundary length regularizer is not biased by discretization
artifacts. The constrained optimization problem in [15] is solved by computing
a solution of the dual problem. In this work, we propose an efficient projection
scheme to directly compute a solution for the update of the primal variable.

1.2 Contribution

We propose to solve an image segmentation problem with connectivity con-
straints via projection onto the constraint set. We show that the constraints
form a convex set and derive a projection algorithm from isotonic regression
methods in statistics. We show that especially for segmentation problems with
long range connections this method is by orders of magnitudes more efficient,
both in iteration number and runtime, than solving the dual of the constrained
optimization problem.

2 Connectivity Constraints in Image Segmentation

First lets review the results from [15] where image segmentation with connectiv-
ity constraints is formalized as the constrained optimization problem

min
u∈BV (Ω;[0,1])

∫
Ω

f(x)u(x) + |∇u| dx (1)

s.t.

∀x ∈ Ω, u(x) = 1 : ∃Cxs ∈ Gs : u (Cxs (t)) = 1. C1
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where I is an image with the domain Ω, a bounded connected subset of Rm,
BV (Ω; [0, 1]) is the space of functions with bounded variation and f : Ω → R
depends on the image data. The data term f is chosen in such a way that it
is negative for image values which a more likely to be foreground and neg-
ative in regions which should be regarded as background, e.g. the log ratio

f(x) = log P (I(x)|l(x)=0)
P (I(x)|l(x)=1) . The discrete label assignment l : Ω → {0, 1}, that

describes if an image region belongs to the object of interest l(x) = 1 or the
image background l(x) = 0, is relaxed by introducing the continuous indica-
tor function u : Ω → [0, 1]. The total variation regularizer |∇u| measures the
boundary length of the foreground segment. With Cxs we formalize the shortest
geodesic path from a given starting point s, for example defined by user input,
to a terminal point x which is part of the geodesic shortest path tree Gs.

The solution of the optimization problem should satisfy the connectivity
constraint C1:

For each x ∈ Ω that belongs to the foreground there must exist a connected
shortest geodesic path from a given s ∈ Ω to x such that all p ∈ Ω in the path
between x and s belong to the foreground.

This constraint not only ensures the connection of every labeled foreground
region to s but also ensures that the whole foreground segment is connected.

2.1 Geodesic Distances

Recently, shortest geodesic distance measures have been successfully applied to
image segmentation problems including medical image segmentation [3] as well
as general image segmentation[1, 7].

In order to define the geodesic shortest path tree Gs, first we have to choose
an appropriate local geodesic metric. If λ = 0 the labeling function u(x) takes the
value 1 for f(x) < 0 and 0 for f(x) > 0. We leave out the special case f(x) = 0 as
it does not occur in practice. For all xp ∈ Ω that do not belong to the foreground
but need to be added to the foreground to satisfy the connectivity constraint
obviously u(xp) = 0 and therefore f(xp) ≥ 0. The optimal cost of the connecting
path between a fixed s and any x in the region that should be connected on Gs
is then given by

min
Cx

s

∫ T

0

f+(C(t))dt, (2)

with f+ = max(0, f(x)). Thus, we choose the non negative cost funciton f+ as
metric for the construction of Gs. Thus the shortest path tree can be computed
using Djkstra’s algorithm [8].

More complex prior models for the geodesic path are possible. In [15] we could
show that a bending energy prior for the construction of the geodesic shortest
path tree can improve the segmentation performance on a retinal blood vessel
dataset to some extent.
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3 Constrained Convex Optimization

The geodesic shortest path tree forms a directed acyclic graph Gs = {V,E} with
the set of vertices V with |V | = n and the set of directed edges E ⊂ V ×V with
|E| = m. We follow [15] and formulate the global connectivity constraint as a
monotonicity constraint over each edge of this graph. To satisfy the connectivity
constraint we observe that the value of the discretized value function ui of a
node i with distance to the root node di should always be greater or equal than
the labels of its neighbors with a larger distance dj > di to the root node. This
implies that the directional derivative

∂iuj := (du)(eij) = (u(j)− u(i))

of u at vertex i along the edge to vertex j should always be less or equal to zero.
The image segmentation problem Eq. (1) thus can be written as the con-

strained optimization problem

min
ui[0,1]

∫
Ω

f(x)u(x) + λ|∇u| dx (3)

s.t.

∂iuj ≤ 0, ∀(i, j) ∈ E.

This image segmentation problem can be optimized using the Primal-Dual
framework of [14, 5] which can be applied to convex optimization problems with
a saddle-point structure

min
u∈U

max
p∈P
〈Ku, p〉+G(u)− F ∗(p), (4)

where U and P are finite-dimensional vector spaces, K : U → P is a continuous
linear operator and G : U → [0,+∞) and F ∗ : P → [0,+∞) are proper, convex,
lower semicontinuous functions. The update steps in [5] are computed using the
prox-operator, which is defined as

v = (I + τ∂G)−1(u) = arg min
v

{
||u− v||2

2τ
+G(v)

}
. (5)

Using this prox-operator, the updates in the primal variable u and the dual
variable p are computed as

uk+1 = (I + τ∂G)−1(uk − τK∗pk+1) (6)

pk+1 = (I + σ∂F ∗)−1
(
pk + σK

(
uk+1 + θ

(
uk+1 − uk

)))
. (7)

To formulate the image segmentation problem Eq. (3) in the Primal-Dual
framework we reformulate the total variation regularizer by introducing a dual
variable p ∈ R2 [14] and after discretization arrive at the saddle point problem

min
ui∈[0,1]

max
|p|≤1

λ〈∇u, p〉+ 〈f, u〉+ δ≤0(∇iu), (8)
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where ∇iu is the stacked vector of the directional derivatives ∂iuj and the con-
nectivity constraint is included by adding its indicator function1. We identify
the function G(u) in Eq. (4) with G(u) = 〈f, u〉+ δ≤0(∇iu).

While the constraints over the domains of u and p can be solved by sim-
ple projections, the optimization with respect to the connectivity constraint is
more involved. In the following, we will investigate two different strategies to
incorporate the connectivity constraint.

3.1 Optimization via Fenchel Duality

In [15] we propose to optimize the dual of the constrained optimization problem

min
ui∈[0,1]

max
|p|≤1
α≥0

λ〈∇u, p〉+ 〈f, u〉+ 〈α,∇iu〉. (9)

The connectivity constraint is ensured by introducing an additional dual variable
αij for each edge (i, j) ∈ E. Especially for long range connections the convergence
of these multipliers is very slow as we show in our experiments in section 4.

3.2 Projection onto the Constraint Set

In this section we describe how the connectivity constraint can be included by
directly computing the update of the primal variable subject to this constraint.
Therefore we propose an efficient projection scheme to solve the constrained
quadratic programming problem, which results from the definition of the prox-
operator.

According to [5] the update in the primal variable u is defined as

uk+1 = (I + τ∂G)−1(uk + τ div pk+1) (10)

= arg min
v∈[0,1]

{
||v − (uk + τ div pk+1)||2

2τ
+ 〈f, v〉+ δ≤0(∇iv)

}
. (11)

By completing the square and omitting terms independent of v we arrive at

uk+1 = arg min
v∈[0,1]

{
||v − (uk + τ div pk+1 − τf)||2 + δ≤0(∇iv)

}
(12)

which is of the general form

arg min
vi∈[0,1]

||v − ũ||2 (13)

s.t.

vi ≥ vj , ∀(i, j) ∈ E,

with ũ = (uk + τ div pk+1 − τf).

1 Note that while ∇iu is defined on the graph Gs, the gradient ∇u used in the total
variaton regularizer is computed using standard forward operators on the image grid.
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Proposition 1. The feasible set C determined by the constraints of the opti-
mization problem Eq. (13) is a convex set.

Proof. Let C1 be the feasible set determined by the inequality constraints and
C2 the constraint on the range of v. The feasible set of Eq. (13) then is C =
C1 ∩ C2. First we show that C1 is convex. If for every a, b ∈ C1 and α, β > 0 it
holds that αa + βb ∈ C1 then C1 is a convex cone. Because a, b ∈ C1 it holds
that

ai ≥ aj , bi ≥ bj , ∀(i, j) ∈ E, (14)

and because α, β > 0 it follows

αai ≥ αaj , βbi ≥ βbj , ∀(i, j) ∈ E, (15)

αai + βbi ≥ αaj + βbj , ∀(i, j) ∈ E. (16)

Hence the set C1 is a convex cone. In addition to the inequality constraints
we also have the constraint on the range of v. We call the feasible set of this
constraint C2 = [0, 1]. This set is convex, so C = C1 ∩ C2, the intersection of
two convex sets, is convex. ut

Thus the optimization problem Eq. (13) is strictly convex subject to convex
constraints. Its solution is an Euclidean projection of ũ onto the set C and can
be solved to global optimality. Furthermore the inequality constraints describe
a partial order on the values of v. A quadratic programming problem with this
structure is known in statistics as isotonic regression [2].

3.3 Isotonic Regression on a Tree

In Pardalos et al . [13] the authors investigate a class of algorithms for isotonic
regression where the constraints define a partial order which can be represented
by a directed graph. In particular the authors propose an O(n log n) algorithm
for the case when the directed graph is a directed tree with n vertices. For
convenience we present the algorithm IRT-BIN here as Algorithm 1.

We call the isotonic regression problem subject to partial order constraints
IRT. This problem does not include the range constraints of Eq. (13). In the
following, we will show that a projection of the optimal solution of IRT on the
range constraint yields the optimal solution of Eq. (13).

First we follow the presentation of Pardalos et al . [13] and describe the al-
gorithm for isotonic regression with partial order constraints, using the concept
of upper sets, lower sets and level sets:

Definition 1. Let X be a nonempty finite set. Let � be a partial order on X.
Let Y be a nonempty subset of X. We define the average of Y as Av(Y ) =
1
|Y |
∑
i∈Y ũi. We call a subset L ⊂ X a lower set of X with respect to � if

i ∈ X, j ∈ L and i � j implies i ∈ L. Consequently a subset U ⊂ X is an upper
set if i ∈ U , j ∈ X and i � j implies j ∈ U . We call a subset S ⊂ X a level
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set if there are an upper set U and a lower set L such that S = L ∪ U . A block
B of X is a nonempty level set such that for each upper set U ⊂ X for which
U ∩B 6= ∅ it holds that Av(B) ≥ Av(U ∩B).

Furthermore the authors of [13] introduce the concept of a block class:

Definition 2. A collection ∆ of blocks of X is called a block class of X if

1. the blocks in ∆ are pairwise disjoint and their union is the set X.
2. the collection ∆ can be ordered by a partial-order � such that A � B for

A,B ∈ ∆ if there exist i ∈ A and j ∈ B such that i � j.

Note that the collection of all singleton subsets {x} with x ∈ X is a block class.
The authors prove that the optimal solution of IRT on a block B is vi =

Av(B) for every i ∈ B. Furthermore they show that if a block class ∆ has no
adjacent violators, then the optimal solution of the isotonic regression is given
by v∗i = Av(B(i)), where B(i) is the block which contains i, for each element i
of X.

Algorithm 1 IRT-BIN from Pardalos et al . [13]

1: Let ∆ be the singleton block class and let T be a copy of the underlying rooted
tree.

2: Mark each leaf node of T as solved and all other nodes as unsolved.
3: for each node xi of T do
4: Create a block B(xi) = {xi} and a binomial heap Hi.
5: end for
6: if all nodes of T are marked as solved then
7: output the blocks corresponding to the nodes in T as the final block class and

stop;
8: end if
9: Let xi be an unsolved node of T such that all the children nodes of xi are solved.

10: Let B(xi) (resp. Hi ) be the block (resp. binomial heap) corresponding to node xi.
11: while Av(B(xi)) < Maximum(Hi) do
12: ExtractMax(Hi) and let B(xk) be the corresponding block
13: Shrink the edge connecting xi to xk . the new vertex is still called vi
14: Create a new block B(xi)← B(xi) ∪B(xk) . the new block is still called

B(xi)
15: Calculate the Av(B(xi)) for the new block B(xi)
16: Hi ← Union(Hi, Hk) . this is the binomial heap for the new block B(xi)
17: end while
18: Mark the node xi of T as solved.
19: Let xp be the parent node of xi in T . Let Hp be the binomial heap corre-

sponding to B(xp) and let ai be the node in Hp which corresponds to B(xi).
ChangeKey(ai, Av(B(xi)), Hp).

20: go to 6.

We will show with the proof of the following proposition that given a solution
v∗ of IRT the optimal solution to Eq. (13) is achieved by projecting v∗ on C2.
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Thus, we can directly project onto the constraints of the optimization problem
Eq. (13) by first projecting onto the isotonicity constraint and then onto the
[0, 1]-box constraint.

Obviously, projecting first onto the [0, 1]-box constraint and then onto the
isotonicity constraint will not lead to a valid projection. When the averaging
step is performed after the [0, 1] clipping, in case that the isotonicity constraint
is violated and some values are smaller 1, only block average values well below 1
can be achieved, even when the average of the block before projection was larger
than 1.

Proposition 2. Direct Projection onto the Constraint Set
Let B be a block of X. Let v∗i = Av(B) for every i ∈ B be the solution of IRT.
Let π[0,1] : R→ [0, 1] be a projection that projects negative values to 0 and values

larger 1 to 1. Then
{
π[0,1](v

∗
i ) : i ∈ B

}
is the optimal solution to the optimization

problem (13) on B.

Proof. Let us assume that B has m elements x1, x2, . . . , xm. We look at the three
cases Av(B) > 1, Av(B) ∈ [0, 1] and Av(B) < 0. Obviously these three cases are
exhaustive. If Av(B) ∈ [0, 1] then the solution v∗ of IRT also fulfills the range
constraint and the solution of Eq. (13) for the set B is identical to the solution
of IRT on B.

If Av(B) > 1 we follow a similar proof as in [13] and show that the point{
π[0,1](v

∗
i ) : i ∈ B

}
=
(
π[0,1] (Av (B)) , π[0,1] (Av (B)) , . . . , π[0,1] (Av (B))

)
∈ Rm

= (1, 1, . . . , 1) ∈ Rm (17)

is the optimal solution to Eq. (13) by showing that the inner product of the
gradient of Eq. (13) with any feasible direction d ∈ Rm at that point is a non-
negative number.

Let d = (d1, d2, . . . , dm) be a feasible direction of the isotonic regression
problem on B. Then, in order to preserve isotonicity, feasibility of the direction
d implies di ≤ dj when xi � xj .

Therefore there exists a permutation σ = (σ(1), σ(2), . . . , σ(m)) such that

dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(m) (18)

and
xσ(i) � xσ(j) =⇒ i ≤ j. (19)

To prove that for Av(B) > 1 the point in (29) is the optimal solution of the
optimization problem (13) on the set B it is sufficient show that∑

i∈B
(1− ũσ(i))× dσ(i) ≥ 0. (20)

From Eq. (18) and from the definition of a block it follows that

1

m− k + 1

m∑
i=k

uσ(i) ≥ Av(B) > 1 for all 1 < k ≤ m. (21)
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This implies that

m∑
i=k

(1− uσ(i)) ≤ 0 for all 1 < k ≤ m. (22)

Equations (22) and (18) imply that for all 1 < k ≤ m that the following
inequality holds

m∑
i=k

(1− uσ(i))× dσ(k−1) ≥
m∑
i=k

(1− uσ(i))× dσ(k). (23)

Because Av(B) > 1 the feasibility of d implies that dσ(i) ≤ 0 for all i ∈
{1, . . . ,m}. Combining everything together we get

m∑
i=1

(1− uσ(i))× dσ(1) (24)

=

1∑
i=1

(1− uσ(i))× dσ(i) +

m∑
i=2

(1− uσ(1))× dσ(1)

≤
1∑
i=1

(1− uσ(i))× dσ(i) +

m∑
i=2

(1− uσ(2))× dσ(2)

=

2∑
i=1

(1− uσ(i))× dσ(i) +

m∑
i=3

(1− uσ(2))× dσ(2)

≤
2∑
i=1

(1− uσ(i))× dσ(i) +

m∑
i=3

(1− uσ(3))× dσ(3)

. . .

≤
m∑
i=1

(1− uσ(i))× dσ(i) (25)

From Av(B) > 1 it follows that

m∑
i=1

(1− uσ(i)) < 0. (26)

Together with dσ(i) ≤ 0 for all i ∈ {1, . . . ,m} it follows for Eq. (24)

m∑
i=1

(1− uσ(i))× dσ(1) ≥ 0. (27)

Therefore from Eq. (24) to Eq. (25) we have proven that if Av(B) > 1

m∑
i=1

(1− uσ(i))× dσ(i) ≥ 0. (28)
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If Av(B) < 0 we have to show that the inner product of the gradient of Eq.
(13) with any feasible direction d = (d1, d2, . . . , dm) ∈ Rm at the point{

π[0,1](v
∗
i ) : i ∈ B

}
= (0, 0, . . . , 0) ∈ Rm

is a positive number. This proof is equivalent to the proof for Av(B) > 1. ut

4 Experimental Results

For comparison we performed experiments for interactive segmentation on im-
ages from [16] that also have been used in other publications, e.g. [9, 15]. As
depicted in Fig. 2, the segmentations acquired with the projection method are
not different from the results of the algorithm based on Fenchel duality [15].

Input image Results from [16] No connectivity Fenchel Dual [15] Projection

Fig. 2. Connectivity priors for interactive segmentation. First column: Input image
with user scribbles. The red scribbles are the source of the geodesic shortest path tree,
green scribbles are foreground regions that should be connected and blue scribbles
are background regions. Second column: Results from [16]. Third column: Segmenta-
tion without connectivity constraints. Fourth column: Segmentation with connectivity
constraints by solving the dual problem [15]. Fourth column: Segmentation with con-
nectivity constraints using the proposed projection scheme.

We provide convergence results of the two different methods on a set of
synthetic test images. The set contains images of two circles that are connected
by a 2 pixel wide faint path of a length of 64, 128, 256 and 512 pixels. As an
example, the image for the path length of 256 pixels is shown in Fig. 3.

Plots of the convergence of the two methods with respect to runtime are
shown in Fig. 4. The projection method clearly outperforms the method based
on Fenchel duality. The longer the connection, the higher the runtime difference
of both methods. Convergence of the dual method takes from 10.12 seconds
for the 64 pixel connection, over 41.11 seconds for 128, 251.17 seconds for 256
to 1639.15 seconds for the 512 pixel connection, whereas the projection method
converges within less than 3 seconds for all different images. Although solving the
isotonic regression problem results in a higher complexity of each iteration, by
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Original image Noisy input image

Solution of the dual problem Solution using the projection method

Fig. 3. Synthetic test image. Upper row: The input image with added Gaussian noise.
Lower row: Identical results of the two different methods to include the connectivity
constraint.

magnitudes fewer iterations are required for the projection method to converge.
The needed runtime and number of iterations until convergence for both methods
are also shown in Table 1. To measure the speed of convergence we first compute
a segmentation result that is reached after a large number of iterations (10000).
Then we restart the algorithm and stop when the absolute difference between
the current result and the converged result is below 0.1�of the number of pixels
of the image. All Experiments were performed on a a single threaded 2.27 GHZ
Intel Xeon architecture.
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Fig. 4. Convergence of the two different methods to include the connectivity constraint
on a set of test images as shown in Fig. 3. The set contains images with two circles
that are connected by a 2 pixel width path of a length of 64, 128, 256 and 512 pixels.
Note that the plots have a logarithmic scale at the x axes. When using the projection
method (dashed line), by order of magnitudes fewer iterations are needed than for
solving the dual problem (solid). This results in a by order of magnitudes better runtime
performance.
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Table 1. Comparison of runtime and number of iterations until convergence. Espe-
cially when the images contain long range connections, the projection method is by
magnitudes more efficient than solving the dual problem.

Fenchel Duality Projection Method
Image Iterations Runtime Iterations Runtime

Test Circle 64 5396 10.12 s 19 0.29 s
Test Circle 128 18318 41.11 s 20 0.52 s
Test Circle 256 81987 251.17 s 20 1.06 s
Test Circle 512 344030 1639.15 s 20 2.89 s

Fly 1226 9.13 s 54 3.66 s
Desk 3440 42.00 s 109 13.40 s

5 Conclusion

We presented a very efficient projection scheme to include connectivity con-
straints in a convex image segmentation framework. The method outperforms
commonly used approaches that are based on Fenchel duality by orders of mag-
nitudes. Instead of using the common approach to solve the dual problem of the
constrained optimization problem we directly project onto the constraint set thus
significantly fewer iterations are needed until a sufficient convergence is reached.
This enables to use connectivity constraints for large segmentation problems as
they arise for example in medical image segmentation of three dimensional CT
angiography.
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