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Abstract. We propose an algorithm for e�ciently minimizing the piece-
wise smooth Mumford-Shah functional. The algorithm is based on an
extension of a recent primal-dual algorithm from convex to non-convex
optimization problems. The key idea is to rewrite the proximal operator
in the primal-dual algorithm using Moreau’s identity. The resulting al-
gorithm computes piecewise smooth approximations of color images at
15-20 frames per second at VGA resolution using GPU acceleration.
Compared to convex relaxation approaches [18], it is orders of mag-
nitude faster and does not require a discretization of color values. In
contrast to the popular Ambrosio-Tortorelli approach [2], it naturally
combines piecewise smooth and piecewise constant approximations, it
does not require an epsilon-approximation and it is not based on an
alternation scheme. The achieved energies are in practice at most 5%
o↵ the optimal value for one-dimensional problems. Numerous experi-
ments demonstrate that the proposed algorithm is well-suited to perform
discontinuity-preserving smoothing and real-time video cartooning.

Keywords: Mumford-Shah functional, non-convex optimization, real-
time, primal-dual

1 Introduction

With over 4000 citations to date, the Mumford-Shah functional [15] is among
the most influential publications in the field of image analysis. This and re-
lated publications by Blake and Zisserman [3] and others have sparked enor-
mous research activity on discontinuity-preserving smoothing, piecewise-smooth
approximations and minimal partition problems [14]. Yet, the computation of
the piecewise-smooth approximation has rarely made it into practical image and
video analysis methods because minimization of this non-convex functional is
di�cult and existing algorithmic solutions are far from real-time capability. The
contribution of this paper is to propose what we believe to be the first real-
time capable algorithm for computing piecewise smooth approximations of color
images based on the Mumford-Shah functional.

? This work was supported by the ERC Starting Grant ”ConvexVision”.
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Input image Piecewise smooth approximation

Fig. 1. We propose a fast algorithm to approximately solve the piecewise smooth
Mumford-Shah model. With 20 frames per second and above, it allows real-time image
processing with applications such as denoising and cartooning.

1.1 The Mumford-Shah Problem

The Mumford-Shah functional [15] provides a prototypical form of all regular-
izers which aim at combining a smoothing of homogeneous regions with the
enhancement of edges. Given a bounded open set ⌦ ⇢ Rd, d � 1, the vectorial
Mumford-Shah problem is given by

min
u,K

(

Z

⌦

|u� f |2 dx + ↵

Z

⌦\K
|ru|2 dx + � |K|

)

, (1)

where f : ⌦ ! Rk is a vector-valued input image with k � 1 channels. This
model approximates f by a function u : ⌦ ! Rk which is smooth everywhere in
⌦ except for a possible (d � 1)-dimensional jump set K, at which u is discon-
tinuous. The weight � > 0 controls the length of the jump set K (less jumps for
larger �) and ↵ > 0 penalizes the smoothness of u outside of K. The limiting
case ↵ ! 1 imposes zero gradient outside K and is known as the piecewise

constant Mumford-Shah model or the “cartoon” limit [15]. The norm of the gra-
dient |ru| in (1) is the Euclidean norm |ru|2 =

P

i

|ru
i

|2, and the norm in the
term |u� f | is also Euclidean.

Since the jump set K is defined as the union of the jump sets of the individual
channels u

i

: ⌦ ! R, we have a coupling among the channels assuring that jumps
in di↵erent channels preferably coincide – see also [18].

1.2 Related Work

The Mumford-Shah problem has been intensively studied in the applied math
community [14]. In practice its applicability is substantially limited because of
its non-convexity. While it is often replaced by the convex total variation, this
is a poor substitute because of its tendency to reduce the contrast at edges
and oversmooth flat regions (staircasing). As a consequence, researchers have
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Fig. 2. Comparison with the Ambrosio-Tortorelli model. The images show
piecewise smooth approximation results for � = 0.1, ↵ = 100 (top row) and � = 0.1,
↵ = 10000 (bottom row). While the AT results vary with the parameter " (and it is
not clear how to choose it appropriately), our method has no additional parameters,
is stable for every � and ↵, and about 3–5 times faster.

developed di↵erent optimization strategies to tackle the non-convex Mumford-
Shah problem.

Alternating Minimization Schemes. One kind of methods consists of non-
convex approximations of the original Mumford-Shah functional, where one al-
ternatingly minimizes for u and for K [2, 20, 11].

The Ambrosio-Tortorelli Approach. The non-convex phase-field model of Am-
brosio and Tortorelli [2], for example, is given by:

min
u,s

Z

⌦

|u� f |2 dx + ↵

Z

⌦

(1� s)2|ru|2 dx + �

Z

⌦

✓

"|rs|2 + 1

4"
s2
◆

dx (2)

with a small parameter " > 0. The key idea is to introduce the additional variable
s : ⌦ ! R as an edge set indicator, in the sense that points x 2 ⌦ are part of
the edge set K if s(x) ⇡ 1 and part of the smooth region if s(x) ⇡ 0.

It was shown in [2] that this approximation � -converges to the Mumford-
Shah functional for " ! 0, i.e. minimizers of (2) approach minimizers of (1).
One finds u and s by alternating minimization, computing s for fixed u and vice
versa. Each of these subproblems is elliptic and can be solved quickly, e.g. by the
linearly converging primal-dual method [8]. Extensions of this approximation to
color images have been proposed in [5].

One disadvantage of this model, beside its non-convexity, is its dependancy
on an additional parameter ". To obtain a good approximation of minimizers of
(1), " will depend on ↵, � and f . Generally, " must be chosen small for increasing
↵, and for large ↵ the dependancy becomes sensitive and a good choice is unclear.
This makes the approach infeasible for the piecewise constant case ↵ = 1.
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Fig. 3. Real-time unsupervised segmentation. The proposed method (top row)
directly includes the piecewise constant case ↵ = 1, which allows to segment an image
with an automatic selection of suitable color models in real-time. This is in contrast
to L

0

-Smoothing (bottom row,  = 1.05), which leads to piecewise smooth solutions.
Avoiding this by choosing small  > 1 leads to significant run times.

The L
0

-Smoothing Approach of Xu et al. For the piecewise constant case, Xu
et al. [21] recently proposed a fast approximating method. Assuming the image
domain has been discretized into a finite rectangular grid, again denoted by ⌦,
the piecewise constant Mumford-Shah limit corresponds to L

0

penalization of
the gradient:

min
u

X

x2⌦

|u(x)� f(x)|2 +R
MS0(ru(x)) (3)

where

R
MS0(g) =

(

� if g 6= 0

0 else
(4)

and the gradient ru = (ru
i

)
1ik

is discretized e.g. using forward di↵erences.
Intuitively, the regularizer R

MS0 summed up over all pixels counts how many
times u changes its value. This way, it prefers regions of constancy instead of
smooth variations. Xu et al. propose a quadratic decoupling strategy to solve
(3), introducing new variables g which approximate the gradient:

min
u,g

X

x2⌦

|u(x)� f(x)|2 + �|ru(x)� g(x)|2 +R
MS0(g(x)) (5)

with a parameter � > 0 and the Euclidean norm for the coupling. This approxi-
mation is again solved via alternating minimization. After having computed the
next u and g, the parameter � is increased to � with a  > 1 until a final �

max

is reached. Starting value for � is chosen automatically as �
0

= 2�. Multiplier
 is set either to 2 (fast but smooth result) or 1.05 (slow and more piecewise
constant).
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Fig. 4. Comparison with the convexification approach [18] for the MS model

(1). The images show denoising results for di↵erent parameters ↵ and �. While both
algorithms provide discontinuity-preserving smoothing, in the piecewise constant limit
(bottom row), the solutions of [18] appear too smooth or blurry. Moreover, since [18]
adds an additional dimension to the problem because of color quantization, it requires
much more memory (> 2 GB) and is about 50–500 times slower than our approach.

Because of the empirical nature of the coupling, it is not clear how the com-
puted solutions u mathematically relate to the original model (3), or even to
(1). In fact, the computed solutions are actually not piecewise constant, but
vary smoothly over large areas.

Convex Relaxation Methods. In the recent past, several authors have over-
come the issue of non-convexity by suggesting convex relaxations for respec-
tive functionals [1, 10]. Convex relaxations for the piecewise constant Mumford-
Shah functional were proposed in [13, 7, 22]. Convex relaxations for the piecewise
smooth Mumford-Shah model were proposed for the scalar [16] and for the vec-
torial case [18]. The key idea is to rewrite the multi-label problem as a binary
labeling problem in a higher-dimensional space. Relaxation of the binary con-
straint leads to a convex problem which can be minimized optimally. Subsequent
binarization provides an approximate solution of the original problem.

Some of these approaches were clearly inspired by the Markov random field
(MRF) community, where the discrete variant of the Mumford-Shah regularizer
is typically referred to as a truncated quadratic penalizer [4, 12, 19].

Unfortunately, these methods to compute approximate minimizers are cur-
rently far from real-time capability because the added label space dimension
drastically increases memory and run time. For the Mumford-Shah model the
run time even grows quadratically in the number of considered color values. Thus,
the problem of computing good approximate minimizers of the Mumford-Shah
energy in real-time remains an important challenge.
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1.3 Contribution

In this paper, we propose a novel algorithm to e�ciently compute approximate
minimizers of the full Mumford-Shah functional (1). It combines several impor-
tant advantages:

– The Mumford-Shah energy is minimized directly, instead of alternatingly.
Therefore there is a clear correspondence between the computed solutions
and the original functional.

– In contrast to other methods like the Ambrosio-Tortorelli approximation
or the L

0

-Smoothing, our method naturally combines the piecewise smooth
and the piecewise constant approximation. In the latter case, the solution is
guaranteed to be piecewise constant, in contrast to the L

0

-smoothing.

– The method runs in real-time. For VGA 640⇥480 images, the achieved frame
rates are 15–20 Hz for piecewise smooth approximations, and still about 5–10
Hz for almost piecewise constant ones (↵ large).

– The algorithm is easy to implement It is based on a simple state-of-the-art
primal-dual algorithm. In order to apply it to the non-convex MS regularizer,
we reformulate one step of this algorithm in a slight but crucial way. All
computations remain simple and elementary.

2 Proposed Finite-Di↵erence Discretization

Similar to [21] we work with an already discretized image domain ⌦. We propose
to minimize the energy

min
u

E
MS

(u) =
X

x2⌦

|u(x)� f(x)|2 +R
MS

(ru(x)) (6)

with
R

MS

(g) := min
�

↵|g|2,��. (7)

Just as in the term |ru| in (1), the gradient norm in (7) is the Euclidean one,
regarding the matrix g = ru = (ru

i

)
1ik

2 (Rd)k as an element of Rdk. The
gradient discretization can be done in several meaningful ways. In our implemen-
tation we used forward di↵erences as they give visually good results at minimal
implementation costs. Another possibility is to use a “staggered grid”, where the
gradient is computed in the middle point between four pixels [22].

The idea of (6) is to model the edge set explicitly in terms of the function
u itself. Namely, the edge set K consists here of all points where the minimum
value is � in (7), i.e. where the gradient is large enough:

K
MS

:=
n

x 2 ⌦
�

� |ru(x)| �
p

�/↵
o

. (8)

Indeed, for x 2 K
MS

we have R
MS

(ru(x)) = �, while for x 62 K
MS

we have
R

MS

(ru(x)) = ↵|ru(x)|2.
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In the cartoon limit ↵ ! 1 expression (7) becomes (4). Applying this regu-
larizer in (6) yields piecewise constant approximations of the input image. This
model is the same as (3) which is considered in [21]. Note that in contrast to
convex relaxation methods [16, 18] we do not need to discretize the range of
u : ⌦ ! Rk into a finite set in order to compute solutions, and therefore fully
avoid the corresponding dramatic increase in memory consumption and compu-
tation time. The model (6) can be regarded as a natural discretization of the
Mumford-Shah energy (1) for a discrete image domain, as will be explained next.

Connection to the Mumford-Shah Energy (1). For 2D scalar images, i.e. k = 1
and d = 2, in [9] Chambolle considered a variant E

l

1 of the Mumford-Shah
energy (1) where the usual Euclidean length |K| of the edge set is replaced by
the l1-norm length L

l

1(K). Intuitively, if K were approximated by small line
pieces, everyone of which being either horizontal or vertical, L

l

1(K) would be
the usual length of this approximation. It was shown that, if the image domain
is discretized into a finite rectangular grid of pixel width h, the discrete energies

Eh(u) =
X

x2⌦

h2 |u(x)� fh(x)|2 +Rh

MS

�ru(x)
�

(9)

� -converge to E
l

1 for h ! 0, with

Rh

MS

(g) := min
�

↵|g
1

|2, 1

h

�
�

+min
�

↵|g
2

|2, 1

h

�
�

(10)

and fh(x) := 1

h

2

R

Pixel x

f continuous(y) dy. The gradient r is discretized by for-
ward di↵erences. For instance, for the approximation of E

l

1 by (9) we can choose
h = 1, assuming the continuous domain has the size of the pixel grid.

Our proposed energy (6) is motivated by (9). Indeed, observe that penalizing
g
1

= @
x

u and g
2

= @
y

u separately in (10) (no coupling) results in the l1-norm
length L

l

1(K) for the edge set length. A natural conjecture is that, changing
the coupling to the l2-norm as in the proposed model (7), one would obtain the
usual l2-norm length |K|. Experiments suggest that this is indeed the case, since
the obtained solutions do not show visible signs of grid dependance.

In addition to considering the l2-coupling of the gradient in (7), we simulta-
neously extend the approach to the vectorial case k � 1, again by considering
the l2-norm of all possible derivatives of u in (7).

3 Minimization Algorithm

3.1 Algorithm for Convex Regularizers R

To give a motivation for our algorithm, we first consider the energy minimization
problem (6) for convex regularizers R in place of R

MS

. First we need a few
definitions. For a function R : Rd⇥k ! R the Legendre-Fenchel convex conjugate

[17] is defined as
R⇤(p) := sup

g2Rd⇥k

hp, gi �R(g), (11)
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where h·, ·i is the standard scalar product on Rd⇥k. A well-known fact about
the convex conjugate is that for convex and lower-semicontinuous R it holds
R = (R⇤)⇤, i.e.

R(g) = sup
p2Rd⇥k

hp, gi �R⇤(p). (12)

For general R, expression (12) gives the convex envelope of R, which is the largest
convex function pointwise below or equal to R. The proximal operator [8] of R
is defined as

prox
⌧, R

(g̃) := argmin
g2Rd⇥k

|g � g̃|2
2⌧

+R(g) (13)

for parameters ⌧ > 0 and arguments g̃ 2 Rd⇥k.

Primal-Dual Algorithm. Consider now the energy (6) with a convex (and lower-
semicontinuous) regularizer R instead of R

MS

. The first step is to use (12) as a
means of variable decoupling. We get

E(u) = sup
p:⌦!Rd⇥k

X

x2⌦

|u(x)� f(x)|2 + ⌦

p(x),ru(x)
↵�R⇤�p(x)

�

. (14)

Taking the minimum of (14) over u, we obtain a classical saddle-point problem.
The state-of-the-art primal-dual algorithm [8] is developed especially for this
kind of problems. Furthermore, we can use the accelerated Algorithm 2 of [8]
since the data term D(u) :=

P

x2⌦

|u(x) � f(x)|2 in (14) is uniformly convex
with constant � = 2: for any u and u0, D(u) � D(u0)+ h2f, u�u0i+ �

2

ku�u0k2.
The update equations are as follows:

pn+1 = prox
�n, R

⇤ (pn + �
n

run) , (15)

un+1 = prox
⌧n, D

�

un + ⌧
n

div pn+1

�

, (16)

✓
n

= 1p
1+4⌧n

, ⌧
n+1

= ✓
n

⌧
n

, �
n+1

= �
n

/✓
n

, (17)

un+1 = un+1 + ✓
n

(un+1 � un). (18)

The divergence div p = (div p
i

)
1ik

for p : ⌦ ! Rd⇥k = (Rd)k is defined as the
negative adjoint of the gradient [6]. The starting values u0 and p0 are arbitrary,
with u0 = u0 and time steps ⌧

0

�
0

krk2 < 1. Since krk <
p
4d [8], we can set

⌧
0

= 1

2d

, �
0

= 1

2

. As proved in [8], the iterates (un, pn) converge to a solution of
the saddle-point problem (14) with energy rate O(1/n2).

The proximal operator for u in (16) can be easily computed explicitly:

prox
⌧, D

(ũ) =
ũ+ 2⌧f

1 + 2⌧
. (19)

Reformulation of (15) by Moreau’s Identity. Note that the only place where the
regularizer enters the algorithm is step (15), and this dependancy is in terms of
the convex conjugate R⇤. Plugging in an arbitrary, possibly non-convex regular-
izer R, through (12) this means that the algorithm would work as if the convex
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Algorithm 1: Fast Mumford-Shah Minimization

Input: Image f : ⌦ ! Rk, parameters 0 < ↵,�  1 and " > 0 (d = dim⌦)

Initialize: u0 = f , u0 = u

0, p0 = 0, ⌧
0

= 1

2d , �0

= 1

2

1 for n � 0 until kun+1 � u

nk < " do

// Dual ascent in p

2 p̃(x) = p

n(x) + �nru

n(x)

3 p

n+1(x) =

(
2↵

�n+2↵ p̃(x) if |p̃(x)| 
q

�
↵ �n(�n + 2↵)

0 else

// Primal descent in u

4 ũ(x) = u

n(x) + ⌧n div pn+1(x)

5 u

n+1(x) =
�
ũ(x) + 2⌧nf(x)

�
/

�
1 + 2⌧n

�

// Extrapolation step

6 ✓n = 1p
1+4⌧n

, ⌧n+1

= ✓n⌧n, �n+1

= �n/✓n

7 u

n+1 = u

n+1 + ✓n

�
u

n+1 � u

n
�

8 end

envelope of R were given as the regularizer instead of R. For example, the convex
envelope of R

MS

is the zero function, so the algorithm for R
MS

would behave
as if there were no regularization at all.

To make the algorithm applicable also to non-convex R, the central idea is
to reformulate step (15) by reducing the proximal operator of R⇤ to that of R.
For this, we make use of Moreau’s identity [17]:

prox
�, R

⇤ (p) = p� � prox 1
� , R

(p/�) . (20)

Applying this to (15), the algorithm only becomes written in a slightly di↵er-
ent way. For convex R the sequence un is still the same and all convergence
guarantees still hold.

3.2 Proposed Algorithm for the MS-Energy

The main advantage of reformulating the step (15) by (20) is that the algorithm
now becomes applicable also to non-convex regularizers, because only R itself
enters the right hand side of (20), and not R⇤. We propose to apply the refor-
mulated algorithm to the Mumford-Shah case with the non-convex regularizer
R

MS

in (7).
It remains to compute the right hand side of (20), and for this we need to

compute the proximal operator

prox
⌧, RMS

(g̃) = argmin
g2Rd⇥k

|g � g̃|2
2⌧

+min
�

↵|g|2,��.
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Fig. 5. Convergence of the proposed algorithm. For di↵erent values of ↵ and
� the algorithm steadily decreases the energy (6) (solid lines) to a limit energy E

⇤,

here approximated by E

⇤ = E(u10

6
). Experimentally the convergence rate is roughly

O(1/n2) (dashed lines).

Although this energy is not convex, its simple structure allows us to find an
explicit formula for the minimizer:

prox
⌧, RMS

(g̃) =

(

1

1+2⌧↵

g̃ if |g̃| 
q

�

↵

(1 + 2⌧↵) ,

g̃ else .

Inserting this into (20) results in

prox
�, R

⇤
MS

(p̃) =

(

2↵

�+2↵

p̃ if |p̃| 
q

�

↵

�(� + 2↵) ,

0 else .
(21)

For the piecewise constant limit case ↵ ! 1, the right hand side of (21) simpli-
fies to

prox
�, R

⇤
MS0

(p̃) =

(

p̃ if |p̃|  p
2��,

0 else .
(22)

We obtain Algorithm 1 for the minimization of the proposed Mumford-Shah
functional (6). The algorithm always converges experimentally, with roughly
O(1/n2) energy rates, see Fig. 5. Although we do not have a proof of convergence
yet, nonetheless we can prove the boundedness of un for the piecewise smooth
case ↵ < 1:
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Optimal AT, " = 0.08

Proposed AT, " = 0.1

Convex relaxation AT, " = 0.12

Fig. 6. Denoising quality in dimension d = 1 with ↵ = 1000 and � = 0.3. Our
approach yields a solution most closely resembling the optimal solution. We do not have
any further parameters, while in contrast the AT method is highly sensitive w.r.t. ".

Proposition 1. The sequence (un, pn) generated by Algorithm 1 is bounded and

thus compact for ↵ < 1, for instance it has a convergent subsequence.

Proof. See supplementary material.

We terminate once the solution does not change significantly anymore. This
will always be the case for any choice of the parameters, as stated in the following
proposition:

Proposition 2. Algorithm 1 always terminates, i.e. ku
n+1

� u
n

k n!1�! 0.

Proof. See supplementary material.

We set " = 5 · 10�5. To reduce run time, we compute kun+1 � unk only once
every 10 iterations, the norm here being defined as

kũk :=
1

|⌦|
X

x2⌦

X

1ik

|ũ
i

(x)|. (23)

We use a parallel CUDA implementation on the NVIDIA GTX 680 GPU.
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Fig. 7. Energy optimality in dimension d = 1. For the proposed method, in
practice the obtained energy is always at most 5% o↵ the optimal energy E

opt

. The
AT and convex relaxation methods both yield higher energies. In addition, the "-
dependancy of AT is sensitive for big ↵ (red lines), and the convex relaxation method
needs a su�ciently fine range discretization into n levels (red lines).

4 Experiments

4.1 Energy in One-Dimensional Case

In dimension d = 1 the MS energy (6) can be e�ciently minimized using dynamic
programming [9]. Fig. 6 compares the results of our approach, convex relaxation
[18] and the Ambrosio-Tortorelli approximation, with our result most closely
resembling the optimal solution (input is the lower row of the image in Fig. 3).
In fact, in practice our obtained energy is always at most 5% o↵ the optimal
energy, see Fig. 7.

4.2 Comparison with Convex Relaxation

The method [18] computes relaxed solutions of (1) through convexification. Since
it discretizes the color space, it requires huge amounts of memory (> 2 GB for
VGA resolution and 32 levels for each channel) and is slow (30–300 seconds). In
contrast, we only need about 15 MB and the run time is real-time. In general,
our results are always visually similar with [18], see Fig. 4, which indicates the
appropriateness of our method for solving the MS model. While the results of
[18] are often too smooth and blurry, even for the piecewise constant case ↵ = 1,
our model yields results with visually well-defined sharp transitions.

4.3 Comparison with Ambrosio-Tortorelli

The AT approximation has an additional parameter ". It is not clear how to
choose a suitable " given � and ↵ in order to obtain “true” minimizers of the
MS model (1). The results depend on " and this dependancy becomes more
and more sensitive for larger ↵, see Fig. 2 and 6. In contrast, our method comes
without any additional parameters, is stable in � and ↵, and also turns out to be
about 5–10 times faster. While the AT model requires alternating minimization
and the two involved subproblems can be solved only approximately, we propose
a direct well-defined algorithm which is also applicable for the case ↵ = 1.
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Input [21],  = 1.01 Proposed

Fig. 8. Grid artifacts of L

0

-Smoothing [21]. The method [21] (center, � = 0.035)
measures edge lengths with the anisotropic l

1-norm. This leads to significant artifacts
as result edges tend to align with coordinate axes. We use the l2-norm (right, � = 0.82,
↵ = 1), yielding more natural results.

4.4 Comparison with L0-Smoothing

The method [21] is devised for the piecewise constant case ↵ = 1, but the
solutions depend on a parameter  > 1. To reduce smooth variations, it must
be chosen near 1, which increases the run time significantly. In contrast, our
method is directly applicable with ↵ = 1 and the solutions are guaranteed to
be piecewise constant, see Fig. 3. Because of the heuristic decoupling there is
no clear relation between the parameter � in (5) (through (4)) and the original
parameter � in (1). Since in (5) the g-subproblem is solved exactly, one can see
that R

0

(g) then measure edges in the anisotropic l1-norm. This leads to grid
artifacts, see Fig. 8, in contrast to our primal-dual formulation.

4.5 Real-Time Unsupervised Image Segmentation

The proposed method naturally includes the piecewise constant limit ↵ = 1,
see Fig. 3. This allows one to segment an image with automatic selection of the
most suitable color models in real-time. In contrast, results of the L

0

-Smoothing
always have smooth variations, which can only be avoided at considerable in-
crease of run time. Also, [21] approximates (1) worse and worse when increasing
the edge set penalization �. This leads to artifacts such failing to get rid of small
scale structures (grass) despite an overall smooth solution.

4.6 Real-Time Video Cartooning

The proposed method remains fast even when approaching the cartoon limit of
the MS model (1), i.e. for large ↵, with more than 20 frames per second on three
GPUs, and still about 5–10 frames per second on a single GPU. This allows us
to apply the MS model to videos in real time, processing them frame by frame,
see Fig. 9 and the supplementary material.

To reduce artificial solution variations from frame to frame, we employ tem-
poral regularization at each pixel, yielding the energy

E
MS

(u) + �
X

x2⌦

|u(x)� u
prev

(x)|q (24)
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Fig. 9. Video cartooning. The cartoon limit ↵ ! 1 of our method allows to compute
real-time cartoonings of video sequences (top: an input frame, bottom: cartooned
frame), � = 1.5, ↵ = 500, � = 0.4 in (24). Average processing frame rate: 10.3 Hz.

with a small � > 0, e.g. 0.4, and q = 1.5. This only a↵ects the proximal operator
(16), so that line 5 of the Algorithm 1 becomes slightly altered, see supplementary
material. A practical side e↵ect, in addition to regularization, is that this further
accelerates the convergence of our algorithm.

The exponent q = 1.5 performs best in practice, having an e↵ect between
q = 2, where the results are blurry due to uniform averaging, and q = 1, where
the previous frame influence is too strong, see supplementary material. Further-
more, to accommodate for low contrast edges, we use an adaptive variant of (7):
min

�

↵|g|2,�w(x)� with w(x) := exp
�� |rf(x)|/s� and s := 1

|⌦|
P

x2⌦

|rf(x)|.

5 Conclusion

We proposed an algorithm which allows to e�ciently minimize the piecewise
smooth and piecewise constant Mumford-Shah model. Using Moreau’s identity
to simplify respective proximal operators, we were able to generalize a recent
primal-dual algorithm from convex to non-convex optimization. The resulting
method computes piecewise smooth or piecewise constant approximations of
color-images at 15-20 Hz at VGA resolution. Compared to existing convex re-
laxation methods, it does not require a discretization of color values and it is
orders of magnitude faster. In contrast to the popular Ambrosio-Tortorelli ap-
proach, it does not require an epsilon-approximation and pursues a direct rather
than an alternating minimization scheme. Numerous experiments demonstrate
that the proposed algorithm is well-suited to perform discontinuity-preserving
smoothing and real-time video cartooning.
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Evgeny Strekalovskiy and Daniel Cremers?

TU Munich, Germany

1 Video Cartooning

1.1 Temporal Regularization

In Section 4.6 of the paper, an additional temporal `q-regularization in

E

q,�

MS

(u) := D

q,�(u) +R

MS

(ru(x)) (1)

with the data term

D

q,�(u) :=
X

x2⌦

|u(x)� f(x)|2 + �

��
u(x)� uprev(x)

��q (2)

is suggested with q = 1.5 and a � > 0. To use it in the proposed Algorithm 1,
this amounts to computing the new proximal operator (16) for the line 5 of the
algorithm.

Prox Operator. The solution u := prox
⌧, D

q,� (ũ) is given by

u(x) = (1� t(x))uprev(x) + t(x)u0(x) (3)

where

u0(x) :=
ũ(x) + 2⌧f(x)

1 + 2⌧
(4)

is the solution without temporal regularization, and

t(x) := argmin
t�0

⇢
(t� 1)2

2
+ ⌧̂(x)tq

�
2 [0, 1] (5)

=

8
>><

>>:

max(0, 1� ⌧̂) if q = 1,
1

1+2⌧̂ if q = 2,
1�

3⌧̂
4 +

p
1+( 3⌧̂

4 )2
�2 if q = 1.5

(6)

with ⌧̂(x) := �⌧

1+2⌧ |u0(x)� uprev(x)|q�2.

? This work was supported by the ERC Starting Grant ”ConvexVision”.
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Regularization E↵ect for Di↵erent q. With q = 1 the influence of uprev is too
strong if the current-frame solution without regularization u0(x) is similar to
the previous-frame solution uprev(x). In practice, parts of the solutions tend to
”stick” to their location over several frames. If the new value without regular-
ization u0(x) is similar to the previous-frame solution uprev(x), then ⌧̂(x) is big
and from (6) we see that t(x) = 0 and u(x) = uprev(x), i.e. the old value persists.

With q = 2 the previous solution uprev always has the same influence on the
current solution u(x), even if u0(x) � uprev(x) is big. In practice, the previous
frame appears as a ”ghost” image overlaid over the current solution.

Value q = 1.5 performs the best in practice. If the current-frame solution
without regularization u0(x) is similar to the previous solution uprev(x), u0(x)
still has an influence on the actual current-frame solution u(x). On the other
hand, for dissimilar u0(x) and uprev(x), uprev(x) has almost no influence on
u(x).

1.2 Included Video

The included video shows cartooning results using our method on a real-world
sequence (807 frames). Two frames of the sequence together with their cartoon-
ing versions are shown in Fig. 9 of the paper. The image resolution is VGA
(640⇥ 480). The parameters are set to � = 1.5 and ↵ = 500, where ↵ is chosen
large in order for the results to be almost piecewise constant. For this sequence
and these parameters, the proposed algorithm achieves an average frame rate of
12.6 Hz on a single GPU, and 25.1 Hz using three GPUs in parallel.

The temporal regularization has an accelerating e↵ect on convergence, mak-
ing the algorithm about 22% faster: Without temporal regularization, the frame
rate is 10.3 Hz on one GPU, and 20.1 Hz using three GPUs.

Edge Highlighting. For visualization of regions of piecewise smoothness, we over-
lay the edge set K

MS

(Eq. (8) of the paper) onto the result image u. If x 2 K

MS

then |ru(x)| �
p
�/↵, and for forward di↵erences we always have |ru(x)| 

p
2,

so that

1  |ru(x)|p
�/↵


p
2p

�/↵

(7)

and thus

0  log

✓
|ru(x)|p

�/↵

◆
 log

✓ p
2p

�/↵

◆
. (8)

Therefore

c · log
✓
|ru(x)|p

�/↵

◆
2 [0, 1] (9)

with c :=
�
log

p
2p

�/↵

��1
, and the value (9) increases with increasing |ru(x)|, so

that it can serve as an edge indicator.
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For x 2 K

MS

we multiply the RGB value u(x) by

1� c · log
✓
|ru(x)|p

�/↵

◆
2 [0, 1] (10)

For x 62 K

MS

the value u(x) is left unchanged. This paints the points x 2 ⌦

with strong edges darker.

2 Proof of Proposition 1

Proof. Boundedness of p:
First, let us prove that (pn) is bounded. Consider the update equation for

p

n+1 in line 3 of the algorithm. If |p̃(x)| 
q

�

↵

�

n

(�
n

+ 2↵), then

|pn+1(x)| = 2↵

�

n

+ 2↵
|p̃(x)|  2↵

�

n

+ 2↵

r
�

↵

�

n

(�
n

+ 2↵)

= 2

r
↵�

�

n

�

n

+ 2↵
 2

p
↵�.

(11)

Otherwise, pn+1(x) = 0 and the same bound holds. Together with p

0 = 0 we
obtain that p is uniformly bounded:

kpnk2  2
p

↵�|⌦| 8 n � 0 (12)

with kpk2 :=
pP

x2⌦

|p(x)|2.

Boundedness of u:
Using this, we will now prove that also u is bounded. Lines 4 and 5 of the

algorithm can be written as

u

n+1 =
u

n + 2⌧
n

z

n

1 + 2⌧
n

(13)

with z

n : ⌦ ! Rk defined by

z

n := f + 1
2 div p

n+1
. (14)

Due to (12), also the discrete divergence is bounded:

kdiv pn+1k2  kdivk · kpn+1k2  2kdivk
p
↵�|⌦|. (15)

Therefore,

kznk2  kfk2 + 1
2kdiv p

n+1k2  kfk2 + kdivk
p

↵�|⌦| =: M
z

.

(16)

Define

M :=max(ku0k2,Mz

). (17)
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We will prove by induction that

kunk2  M n � 0. (18)

The bound holds for n = 0 by (17). If (18) holds for some n � 0, then (13), (16)
and (17) yield

kun+1k2  kunk2 + 2⌧
n

kznk2
1 + 2⌧

n

 M + 2⌧
n

M

z

1 + 2⌧
n

 M + 2⌧
n

M

1 + 2⌧
n

= M.

(19)

This proves (18) for all n � 0. Together with (12), it follows that the sequence
(un

, p

n) is uniformly bounded. ut

3 Proof of Proposition 2

Proof. Subtracting u

n

on both sides of (13) we get

u

n+1 � u

n =
2⌧

n

(f + 1
2 div p

n+1)

1 + 2⌧
n

, (20)

thus

kun+1 � u

nk2  ⌧

n

2kfk2 + ⌧

n

kdiv pn+1k2
 ⌧

n

2kfk2 + ⌧

n

kdivk kpn+1k2 (21)

Case ↵ < 1: From (12) it follows:

kun+1 � u

nk2  ⌧

n

2kfk2 + ⌧

n

4
p

↵�d|⌦|. (22)

In [8, Corollary 1] it is shown that

n⌧

n

! 1 for n ! 1, (23)

for instance, we have
⌧

n

! 0 . (24)

Thus, the claim follows directly from (22).

Case ↵ = 1: Just as (11) we first get the pointwise bound

|pn+1(x)| 
p
2��

n

, (25)

so that
kpn+1k2 

p
2��

n

|⌦| . (26)

With ⌧

n

�

n

= ⌧0�0 for all n this means

kpn+1k2 
p
2��0⌧0|⌦|
p
⌧

n

. (27)

Plugging this into (21), we get

kun+1 � u

nk2  ⌧

n

2kfk2 +
p
⌧

n

kdivk
p

2��0⌧0|⌦| (28)

which goes to zero because of (24). ut
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4 Additional Results

4.1 Result for Di↵erent Parameters

Fig. 1 shows the e↵ect of choosing di↵erent parameters for the proposed Mumford-
Shah minimization algorithm. As expected, for increasing ↵ the solution becomes
more and more ”flat” between the edges, and is piecewise constant for ↵ = 1.
An increasing � penalizes the just set length more and more, so that the number
of color discontinuities is reduced and the solution becomes smoother over larger
regions.

4.2 Piecewise Constant Approximations

Fig. 2 shows the computed segmentations with automatic color model selection,
using the proposed algorithm with ↵ = 1 and � = 0.2. We highlight the edges
as described in Section 1.2, with

p
�/↵ replaced by 0.03 (because

p
�/↵ is zero

for ↵ = 1 ).

4.3 Comparison on Texture Images

Fig. 4 compares piecewise smooth approximations using the proposed approach,
the convex relaxation method, and the Ambrosio-Tortorelli approximation on a
texture image of Fig. 3. Note that the AT method is only applicable for ↵ < 1.
Fig. 5 compares piecewise constant approximation by L0-smoothing, which is
only applicable for ↵ = 1.

Only the proposed method and the convex relaxation are able to compute
quality solutions, which do not have speckle or grid artifacts. Note that the
convex relaxation needs to discretize the color channels into n levels for each
channel, with in practice n = 32 or n = 64. This leads to significant memory
consumption (GBs) and runtimes (30–120 seconds). Furthermore, in the piece-
wise constant case ↵ = 1 the solution still contains smooth variations, likely
because of a finite range discretization.

In contrast, the proposed method runs in real-time, does not discretize the
color range, and the solutions are indeed constant between the edges.

Thus, the proposed approach is the only one which computes quality solu-
tions quickly, outperforming the current state-of-the-art methods (AT, convex
relaxation, L0-smoothing).
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↵ = 10 ↵ = 102 ↵ = 103 ↵ = 1

�=0.05

�=0.1

�=0.2

�=0.5

�=1

�=2

Fig. 1. Mumford-Shah results using the proposed algorithm for di↵erent

parameters ↵ and �. The input image is the upper left image of Fig. 2. The number
of discontinuities decreases for larger �, resulting in just smoothing by quadratic regu-
larization for su�ciently large �. The solution becomes more cartoon-like for larger ↵,
i.e. smooth variations disappear and only sharp discontinuities remain.
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Input Piecewise smooth (↵ = 20) Piecewise constant (↵ = 1)

Fig. 2. Piecewise smooth and piecewise constant approximations using the

Mumford-Shah model. Results are computed using the proposed algorithm with
� = 0.1. Edges are highlighted as described in Section 4.2.
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Fig. 3. Input image for Fig. 4 and 5.
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Ambrosio-Tortorelli Convex relaxation Proposed

↵ = 100, � = 0.1, " = 0.17 ↵ = 100, � = 0.1 ↵ = 100, � = 0.1

↵ = 200, � = 0.2, " = 0.18 ↵ = 200, � = 0.2 ↵ = 200, � = 0.2

↵ = 1000, � = 0.2, " = 0.085 ↵ = 1000, � = 0.2 ↵ = 1000, � = 0.2

↵ = 1000, � = 0.5, " = 0.17 ↵ = 1000, � = 0.5 ↵ = 1000, � = 0.5

Fig. 4. Piecewise smooth approximations for a texture image input shown

in Fig. 3. Results using the proposed model, convex relaxation and the Ambosio-
Tortorelli approximation (edge highlighting as in Section 4.2). Our results is always
similar to the convex relaxation result, while the AT approximation depends on " (un-
clear how to choose suitably) and always has speckle in an otherwise smooth solution.
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L0-Smoothing Convex relaxation Proposed

� = 0.016,  = 1.01 � = 0.1 � = 0.1

� = 0.027,  = 1.01 � = 0.2 � = 0.2

� = 0.052,  = 1.01 � = 0.5 � = 0.5

� = 0.066,  = 1.01 � = 1 � = 1

Fig. 5. Piecewise constant approximations (↵ = 1) with the Mumford-Shah

model for a texture image in Fig. 3. Edge highlighting as in Section 4.2. The
proposed method computed similar solutions to the convex relaxation. In contrast,
the L0-smoothing prefers grid aligned edges, depends on a parameter , and there
is no clear relationship between the � of the Mumford-Shah model and the � of the
L0-smoothing approximation.


