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Abstract

We propose the first tractable convex formulation of the
vectorial Mumford-Shah functional which allows to com-
pute high-quality solutions independent of the initializa-
tion. To this end, we generalize recently introduced con-
vex formulations for scalar functionals to the vector-valued
scenario in such a way that discontinuities in the different
color channels preferably coincide. Furthermore, we pro-
pose an efficient solution which makes the overall optimiza-
tion problem as tractable as in the scalar-valued case. Nu-
merous experimental comparisons with the naive channel-
wise approach, with the well-known Ambrosio-Tortorelli
approximation, and with the classical total variation con-
firm the advantages of the proposed relaxation for contrast-
preserving and edge-enhancing regularization.

1. Introduction

1.1. The Mumford-Shah Problem

Regularization is of central importance in image analy-
sis and beyond as it provides a prior for a number of other-
wise ill-posed inverse problems. The Mumford-Shah func-
tional [19] is a prototypical form of all regularizers which
aim at combining a smoothing of homogeneous regions
with the enhancement of edges: Given Ω ⊂ Rn a bounded
open set, the vectorial Mumford-Shah problem is given by

min
u,K

{∫
Ω

|u− f |2 dx + α

∫
Ω\K
|∇u|2 dx + λ|K|

}
(1)

where f : Ω → Rk is the input image, α, λ > 0 are
weights, and u = (u1, . . . , uk) : Ω → Rk is the unknown
which is assumed to be smooth except on a possible jump
set K. This set is the same for all components ui and intro-
duces a coupling of the channels. The norm of the gradient
|∇u|which appears in (1) is the Frobenius (euclidean) norm
|∇u|2 =

∑
i |∇ui|2, and the norm in the term |u−f | is also

euclidean.
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Figure 1. We propose a convex relaxation and an efficient imple-
mentation for the vectorial Mumford-Shah functional. It allows to
compute piecewise smooth approximations of color images inde-
pendent of initialization. Compared to the Total Variation (cen-
ter), the Mumford-Shah model (right) preserves image contrast.

The Mumford-Shah problem has been intensively stud-
ied in the applied math community [18]. In practice its
applicability is substantially limited because of its non-
convexity. As a consequence, researchers typically revert to
the (also non-convex) phase-field approximation of Ambro-
sio and Tortorelli [3, 4]. Extensions of this approximation
to color images have been proposed in [7]. Alternatively
it is often replaced with the convex total variation (TV).
However, the tendency of TV to lower the contrast at edges
and oversmooth flat regions (the “staircasing” phenomenon)
makes it a poor substitute to more elaborate functionals—
see Fig. 1. In [15] a different approach for color channels
coupling is proposed by means of Riemannian Geometry.

1.2. Related Work

In the recent past, several authors have overcome the is-
sue of non-convexity by suggesting convex relaxations for
respective functionals [1, 11, 8]. Specific examples include
the convex relaxation for the two-region piecewise-constant
Mumford-Shah model [10], for multilabel problems with
convex regularizer [22, 21], for the multi-region piecewise
constant Mumford-Shah [16, 9, 24], and—possibly most
closely related to this work—a convex relaxation for the
scalar piecewise smooth Mumford-Shah model [20]. The
key idea in convexifying multilabel problems is typically to
derive from (1) a variational problem involving the entire
graph of the function u (or, rather, the characteristic func-
tion of the sub-graph). This approach allows to naturally
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incorporate the jump set K. In this new setting, respec-
tive problems can be well approximated by convex ener-
gies, which are relatively easy to solve (except, of course,
that the complexity is increased). Some of these approaches
were clearly inspired from the Markov random field (MRF)
community where researchers have introduced graph cut al-
gorithms for minimizing discrete version of such energies
[12, 14, 6, 13]. In the MRF community, the Mumford-Shah
regularizer corresponds to a truncated quadratic penalizer.

While the above works are predominantly focused on
functionals over scalar-valued functions (greyscale im-
ages), the present work is focused on the case of multicom-
ponent signals, i.e. color or multi-spectral images. The ma-
jor challenge in formulating convex relaxations for vecto-
rial models is that the straight-forward channel-by-channel
application of respective scalar approaches [20] invariably
produces suboptimal results because the individual color
channels cannot be treated independently: Indeed, the jump
set K in (1) combines all color channels, as it denotes all
points in the image plane where the signal is discontinuous,
no matter in which color channel.

A convex relaxation for the vectorial case has been given
in [17] using the method of calibrations. However, it utilizes
the full three-dimensional label space for color images and
is therefore by no means tractable, neither in memory, nor in
computation time. Moreover, it appears infeasible to actu-
ally devise a numerical algorithm for solving the relaxation
of [17] because it depends only on a part of the solution.

1.3. Contributions

In this paper, we propose a convex representation for the
vectorial Mumford-Shah functional (1) which captures the
coupling among the different color channels correctly. It
combines several important advantages:

• It is the first tractable convex relaxation for the vec-
torial Mumford-Shah functional. We propose an ef-
ficient implementation of the method for which both
memory and runtime scale linearly with the number of
channels. In particular, channel coupling is achieved
with the same runtime as for the channel-wise version.

• The proposed method indeed favors solutions where
discontinuities in the individual color channels coin-
cide. As a consequence, in contrast to the channel-wise
approach it does not introduce artificial color edges in
the solution.

• In comparison to the channel-by-channel solution, the
commonly employed Ambrosio-Tortorelli approxima-
tion [3, 4] and TV, the method leads to improved and
more natural results for discontinuity-preserving de-
noising of color images and various other applications.

2. Preliminaries
Let Ω ⊂ Rn be a bounded open set. For vectorial func-

tions u ∈ L1(Ω;Rk) the total variation of u is defined by

TV (u) =

∫
Ω

|Du| := sup
{∫

Ω

k∑
i=1

ui divϕi dx :

ϕ ∈ C∞c (Ω; (Rn)k), |ϕ(x)| ≤ 1 ∀x ∈ Ω
}
.

(2)

The space of functions of bounded variation, i.e. where
TV (u) < ∞, is denoted by BV (Ω;Rk) [2]. If u ∈
BV (Ω;Rk), we denote by Ju its “essential” jump set. This
is where one cannot unambiguously define u(x), but rather
two values u− = (u−1 , . . . , u

−
k ) and u+ = (u+

1 , . . . , u
+
k )

and a normal vector νu(x), indicating the direction of the
jump and pointing towards the u+ side. Note that when two
or more components ui jump at a point, the jump direction
νu(x) is indeed the same forHn−1-a.e. x. One says that u is
a special function of bounded variation, u ∈ SBV (Ω;Rk),
if the distributional gradient can be decomposed as

Du = ∇u dx+ (u+(x)− u−(x))⊗ νu(x)Hn−1|Ju (3)

into a continuous part and a jump part, which is the jump
times the Hausdorff (n−1)-dimensional measure restricted
to the jump set Ju. Here, (u+−u−)⊗νu denotes the matrix

((u+
i − u

−
i )νju)1≤i≤k , 1≤j≤n. (4)

The “weak” Mumford-Shah functional is well-defined
for functions in SBV (Ω;Rk) and given by

MSα,λ(u) =

∫
Ω

|u−f |2 dx+α

∫
Ω\Ju
|∇u|2 dx+λHn−1(Ju).

(5)

3. The Convex Representation
3.1. Scalar Case

Given a function u : Ω → R, its corresponding graph
function 1u : Ω× R→ {0, 1} is defined as

1u(x, t) =

{
1 if u(x) > t

0 else.
(6)

For the scalar case k = 1, the authors of [1] introduce
the convex functional

F(v) := sup
σ∈K

∫
Ω×R

σ(x, t) ·Dv(x, t), (7)

defined for v ∈ BVloc(Ω × R), where the constraint set is
given by

K :=
{
σ | (σx, σt) ∈ C∞c (Ω× R;Rn × R)

σt(x, t) ≥ 1
4α |σ

x(x, t)|2 − (t− f(x))2,∣∣∣ ∫ t′

t

σx(x, s) ds
∣∣∣ ≤ λ ∀x ∈ Ω, t < t′

}
.

(8)
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Figure 2. Vectorial versus channel-wise Mumford-Shah. The
vectorial MS model penalizes jumps only once if two or more
components jump at the same place. As a consequence, the correct
representation (right) favors component edges to coincide leading
to coherent segmentations. This is not the case for the channel-
wise MS model (center) even for large weights λ.

It is then shown that for any u ∈ SBV (Ω),

F(1u) = MSα,λ(u). (9)

The key advantage of this representation is that F(v) is
convex in v. This can be used to numerically minimize
MSα,λ [20] with interesting practical applications.

3.2. Contribution: Vectorial Case

In the vectorial case k ≥ 1, we consider k graph func-
tions 1u(x, t) = (1u1

, . . . ,1uk
) corresponding to the k

channels ui. We propose the following convex relaxation
(in v = 1u) of the Mumford-Shah functional (5):

F(v) := sup
σ∈K

k∑
i=1

∫
Ω×R

σi(x, t) ·Dvi(x, t), (10)

with the convex set

K :=
{
σ
∣∣ (σxi , σ

t
i) ∈ C∞c (Ω× R;Rn × R),

σti(x, ti) ≥ 1
4α |σ

x
i (x, ti)|2 − (ti − fi(x))2,

k∑
j=1

∣∣∣∣ ∫ t′j

tj

σxj (x, s) ds

∣∣∣∣ ≤ λ (11)

∀1 ≤ i ≤ k, x ∈ Ω, tj < t′j

}
.

The central part of the generalization is the second con-
straint of (11). Intuitively, the upper bound λ corresponds
to the local penalization if each uj jumps from tj to t′j . Let
us explain how the setK is derived. First, if ui ∈ SBV (Ω),
one can check (following the representation in [1]) that∫

Ω×R
σi ·D1ui

=

∫
Ω

σxi (x, ui(x)) · ∇ui(x)− σti(x, ui(x)) dx

+

∫
Jui

(∫ u+
i (x)

u−i (x)

σxi (x, s) ds

)
· νui(x) dHn−1(x). (12)
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Figure 3. Coupling of edge sets. In contrast to the channel-
by-channel Mumford-Shah (center), the vectorial Mumford-Shah
model (right) favors discontinuities in respective channels to coin-
cide. This is confirmed by the respective discontinuity sets K for
each color component (lower row), where black lines represent
edges in all three channels.

If σi satisfies the first constraint in (11), then standard con-
vex duality shows that

σxi (x, ui(x)) · ∇ui(x)− σti(x, ui(x))

≤ (ui(x)− fi(x))2 + α|∇ui(x)|2
(13)

a.e. in Ω, with equality at x if and only if σti = |σxi |2/(4α)−
(t−fi)2 and t = ui(x). The right hand side of (13) summed
up over all i are the first two integrands in (5). On the other
hand, if σ satisfies the second constraint in (11), then one
has a similar inequality for the jump part. Indeed, recalling
that Ju =

⋃k
i=1 Jui , one can check that

k∑
i=1

∫
Jui

(∫ u+
i (x)

u+
i (x)

σxi (x, s) ds

)
· νu(x) dHn−1(x)

≤
∫
Ju

k∑
i=1

∣∣∣∣ ∫ u+
i (x)

u−i (x)

σxi (x, s) ds

∣∣∣∣ dHn−1(x) (14)

≤ λHn−1(Ju) .

This derivation shows that at least

F(1u) ≤ MSα,λ(u). (15)

Beyond this inequality we will in fact show in Theorem 1
below that the proposed relaxation (10) indeed coincides
with the original Mumford-Shah model (5). The proof will
utilize a crucial efficient reformulation of the constraint set
(11) which we introduce next.
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Figure 4. Piecewise smooth approximation without color artifacts. A comparison on the Leonardo da Vinci’s “Dama con l’ermellino”
shows that the channel-wise solution introduces independent discontinuities in the color channels, thereby producing colors not present
in the original image (blue on the cheek and green in the hair for example). In contrast, the proposed convex relaxation of the vectorial
Mumford-Shah model provides more natural color transitions.

3.3. Efficient Constraint Set Reformulation

In practice, the range of each channel ui must be dis-
cretized into ni ≥ 1 levels. In its original formula-
tion (11), the constraint set K requires O(n2

1 · · ·n2
k) con-

straints, which is not feasible in practice. However, it turns
out that these can be equivalently reformulated using only
O(n2

1 + . . . + n2
k) constraints. Thus, the proposed relax-

ation (10) has the key advantage that its minimization is
just as tractable as the simple channel-by-channel model.
In Section 4 we will also propose an approximation which
has even linear instead of quadratic complexity.

The idea of the constraint set decoupling is to introduce
auxiliary variables mi : Ω→ R for each 1 ≤ i ≤ k.

Proposition 1. The constraint set K in (11) is equivalent to
the following constraint set:

K′ :=
{

(σ,m)
∣∣ (σxi , σti) ∈ C∞c (Ω× R;Rn × R),

σti(x, ti) ≥ 1
4α |σ

x
i (x, ti)|2 − (ti − fi(x))2,∣∣∣∣ ∫ t′i

ti

σxi (x, s) ds

∣∣∣∣ ≤ mi(x), (16)

k∑
j=1

mj(x) ≤ λ ∀i, x ∈ Ω, ti < t′i

}
.

Proof. Let (σ,m) ∈ K′. Then obviously also σ ∈ K. On
the other hand, if σ ∈ K, define mi : Ω→ R by

mi(x) := sup
ti<t′i

∣∣∣∣ ∫ t′i

ti

σxi (x, s) ds

∣∣∣∣. (17)

Then we have
∑k
j=1mj(x) ≤ λ by the second inequality

of (11), and together clearly (σ,m) ∈ K′.

Theorem 1. Let u ∈ SBV (Ω;Rk). Then

F(1u) = MSα,λ(u) . (18)

Proof. The inequality (15) has already been shown above,
so it remains to show F(1u) ≥ MSα,λ(u).

Consider k continuous functions mi : Ω → R for 1 ≤
i ≤ k with

∑k
i=1mi(x) ≤ λ for all x and minxmi(x) > 0

for all i. For each i, consider the non-uniform variant of the
scalar Mumford-Shah functional:∫

Ω

|ui−fi|2 dx+α

∫
Ω\Jui

|∇ui|2 dx+

∫
Jui

mi(x) dHn−1(x),

(19)
which is denoted by MS

α,mi(·)
i (ui). Then, it can be quite

easily shown that the vectorial MS functional (5) is

MSα,λ(u) = sup
m∈M

k∑
i=1

MS
α,mi(·)
i (ui) (20)

where M is the set of all m’s satisfying the above con-
straints. Moreover, for fixed mi, an adaption of the proofs
in [1, 20] will show that a representation similar to (9) holds,
specifically

MS
α,mi(·)
i (ui) = sup

σ∈Kmi(·)
i

∫
Ω×R

σ(x, t) ·D1ui
(x, t) (21)

for ui ∈ SBV (Ω), where Kmi(·)
i is defined as in the

scalar case (8) but with λ replaced by mi(x). Theo-
rem 1 then follows from (20) and (21) because supK′ ≥
supm∈M sup

σi∈K
mi(·)
i

, as m is more general in (16).
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Figure 5. Inpainting test case: the cracktip problem. (a) Grey inpainting domain and colors prescribed on the boundary. (b) Ambrosio-
Tortorelli method can get stuck in bad local minima. (c) Ambrosio-Tortorelli method for a good initial guess. (d) Channel-wise MS
introduces faulty red colors in the center. (e) Vectorial MS produces a good approximation to the cracktip solution.

3.4. Generalizations and Variants

One can generalize the Mumford-Shah model (5), re-
placing the data term |u − f |2 and the regularization term
α|∇u|2 with separable terms of the form

∑k
i=1 %i(x, ui(x))

and
∑k
i=1 ϕi(∇ui) with convex ϕi, respectively. This

amounts to replacing the first constraint in (16) with

σti(x, t) ≥ ϕ∗i (σ
x
i (x, t))− %i(x, t) (22)

for all i, x, t. Here, ϕ∗i (q) := supp p · q − ϕi(p)
is the Legendre-Fenchel conjugate of ϕi. Then, pro-
vided %i is continuous, and ϕi is convex and superlinear,
i.e. limt→∞ ϕi(tp)/t =∞ for p 6= 0, Theorem 1 will hold.

For example, the data term %i(x, ui) = |ui−fi| is suited
to remove salt-and-pepper noise, while |u−f |2 is applicable
for Gaussian noise. More generally, one is free to choose
possibly non-convex data terms. With ϕi(∇ui) = αi|∇ui|2
one can choose different gradient weightings αi > 0.

4. Implementation
In order to minimize F(1u) and thus MSα,λ(u), we use

the convexity of F and instead directly minimize over the
graph function v = 1u. The overall problem becomes

inf
v∈C

sup
(σ,m)∈K′

k∑
i=1

∫
Ω×R

σi(x, t) ·Dvi(x, t). (23)

The constraint set for the solutions

C :=
{
v ∈ BVloc(Ω× R; [0, 1])k |

vi(x, t) = 1 ∀t ≤ ai, vi(x, t) = 0 ∀t > bi,

vi(x, ·) non-increasing
}

(24)

is the convex hull of the valid graph functions, i.e. we re-
lax the binary constraint vi(x, t) ∈ {0, 1} allowing values
in-between. The scalars ai < bi define the range of the
channels ui : Ω → Γi := [ai, bi]. Theorem 1 assures that

if we have a binary solution v = 1u of (23), then u must
indeed be a global optimum of the vectorial MS model (5).

Discretizing the domain Ω and the channel range sets Γi,
we solve the saddle-point problem (23) by the fast primal-
dual algorithm of [20]. This is basically a gradient descent
in v and gradient ascent in σ, m, with reprojections onto the
constraint sets. For the projection onto C in (24), observe
that σti is allowed to be arbitrarily large in (16) and thus the
supremum in (23) already ensures ∂tvi(x, t) ≤ 0, i.e. that
vi(x, ·) is non-increasing. Other constraints are pointwise.

To project onto K′ in (16), observe that introducing aux-
iliary variables pi : Ω × Γni → Rn with ∂tpi(x, t) =
σxi (x, t) for all x, t, the second constraint in (16) becomes

|pi(x, t′)− pi(x, t)| ≤ mi(x). (25)

Finally, we enforce both conditions on p using Lagrange
multipliers and convex duality, adding the terms

inf
ξ,η

∫
Ω

∑
i, t<t′

ξi(x, t, t
′) (pi(t

′)− pi(t)) + ηi(x, t, t
′)mi(x)

+ inf
µ

∫
Ω

∑
i, t

µi(x, t)
(
∂tpi(x, t)− σxi (x, t)

)
(26)

to the energy, with auxiliary variables µ : Ω×Γi → Rn and
(ξ, η) : Ω×Γi×Γi → Rn×R such that pointwise |ξ| ≤ η.
The overall saddle-point problem (23) is then minimized
over v, ξ, η, µ and maximized over σ,m, p.

Linear Complexity Approximation. The quadratically
many constraints (25) are satisfied if the stricter condition

|pi(x, t)| ≤ 1
2 mi(x) ∀t ∈ Γi (27)

holds for all x ∈ Ω and 1 ≤ i ≤ k. These constraints can be
implemented as in the first line of (26). Using (27) instead
of (25) yields a less tight relaxation of the Mumford-Shah
functional. However, the time and memory complexities
are reduced substantially from quadratic to just linear. In
the special case k = 1 and α = ∞, i.e. scalar partitioning,
the approximation (27) corresponds to the relaxation [24].
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Figure 6. Denoising test case. Total Variation leads to a loss of contrast and staircasing (piecewise constant regions) at the lower right
corner. The Ambrosio-Tortorelli method optimizes only locally, missing the blue region. In contrast, the proposed convex relaxation of the
vectorial Mumford-Shah model provides the best reconstruction.

5. Experimental Results

In the following, we will provide experimental compar-
isons of the proposed vectorial Mumford-Shah relaxation
with several alternative algorithms on a variety of inverse
problems. The channels ui are obtained from the com-
puted graph functions vi in (6) by taking the 0.5-isolevel.
When comparing channel-wise and vectorial MS, we set
λchannel-wise = λvectorial/3, so that both functionals are two
different convex relaxations of the same energy (5), since
channel-wise MS counts common boundaries up to three
times.

On NVIDIA GTX 480, a typical runtime for 128 × 128
color images with 32 levels for each color channel is about
20 seconds. For comparison, the channel-wise version runs
in 19, the proposed relaxation with the simplified constraint
set (27) in 3.5, Ambrosio-Tortorelli approximation in 1, and
TV in 0.02 seconds. Thus, the proposed method accounts
for the channel coupling while remaining as efficient as the
simple channel-by-channel version.

5.1. Piecewise Smooth Approximations

Fig. 2 shows a synthetic 128× 128 image with three dif-
ferent blobs for each color channel. In the piecewise smooth
approximation, the vectorial MS model clearly favors so-
lutions where the edge sets coincide. This is not the case
for the channel-wise variant, which processes one color at a
time and is thus “color blind” w.r.t. color as a whole. This is
further confirmed in Fig. 3 on a real world image by directly
visualizing the edge sets of the different colors (coloring
them accordingly). We used a 8×8×8 color discretization.

In Fig. 4 we compute piecewise smooth approxima-
tions for the 256 × 256 image “Dama con l’ermellino” by
Leonardo da Vinci using vectorial MS and channel-wise
MS. The parameters are α = 100 and λ = 0.1, with a
32 × 32 × 32 discretization. The large parameter α makes
the approximation nearly piecewise constant, showing sig-
nificant color artifacts of the channel-wise MS model, as
opposed to the vectorial one.

5.2. Denoising

To compare various regularizers, we devised a synthetic
denoising test case in Fig. 6, degrading the 128 × 128 test
image by adding severe 30% noise. The result using simple
total variation regularization produces loss of contrast and
staircasing effects are visible in the grey lower right part.
The result of the Ambrosio-Tortorelli method [4] is also
shown. It is a non-convex approximation of the Mumford-
Shah energy and thus merely allows to compute a local min-
imum, missing the blue region. Finally, the proposed vec-
torial MS relaxation provides more natural results than the
other approaches (32×32×32). Fig. 1 further demonstrates
the loss of contrast of TV on a real world image.

5.3. The Cracktip Problem

Among the fascinating aspects of the Mumford-Shah
functional is that it allows to model open boundaries. In
the scalar case, for inpainting a circular domain with a
Mumford-Shah regularizer and specific values prescribed
on the boundary, a well-known analytical solution is the so-
called cracktip function [5], in polar coordinates f(r, ϕ) =
c
√
r sin ϕ

2 for some c > 0. In the vectorial case, applying
different linear transformations to f for each color channel,
one can easily see that the “color cracktips” are also solu-
tions of the MS problem. It is thus interesting to see, how
well this solution is recovered with different algorithms.

Fig. 5 shows the corresponding 128× 128 inpainting ex-
periment using a 64 × 64 × 64 color discretization. We set
the dataterm to % = 0 inside the circle and to M(u − f)2

outside with a big M > 0. As expected, the non-convex
Ambrosio-Tortorelli approximation greatly relies on the ini-
tial solution to produce acceptable results: With a bad ini-
tialization it generates strong artifacts (b). Yet, even with
a good initial guess, the same artifact emerges at a smaller
scale (c). The channel-wise MS model treats the color chan-
nels independently, and thus introduces faulty red colors in
the center (d). In contrast, the proposed convex relaxation
of the vectorial MS model provides a good approximation
of the color cracktip (e).
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Figure 7. Joint segmentation and color selection. In contrast to previous relaxations where the set of allowed color models must be
specified beforehand, the proposed approach automatically selects the appropriate color models during the segmentation process based on
the scale parameter λ. Color discretization is 16 × 16 × 16.

5.4. Unsupervised Image Partitioning

In the limiting case α → ∞ in (5), the smoothness con-
straint is enforced more and more leading to the well-known
piecewise constant approximation, also known as the mini-
mal partition problem. The first constraint in (16) reduces
to just σti(x, t) ≥ −(t − fi(x))2. Only one parameter λ
remains in the model (5), which controls the overall length
of the interfaces between the regions where u is constant.

The standard approach to compute such a multi-region
partitioning is by alternatingly determining a small number
of color models (with fixed regions) and optimizing for the
regions (with fixed color models). Of course, for such iter-
ative approaches results are invariably suboptimal and will
depend on the choice of the initial color models.

In contrast, the proposed convex relaxation allows to
jointly optimize over the regions of constancy and the cor-
responding colors in these regions in a single convex opti-
mization problem. In particular, the algorithm determines
the appropriate number of color models depending on the
input image and the scale parameter λ. Fig. 7 shows the
partitionings computed for various values of λ.

5.5. Joint Disparity and Segmentation

Our final experiment is a more advanced application of
the vectorial Mumford-Shah model (5) to the stereo image
analysis. Given a stereo image pair, the task is to jointly
compute a disparity map and a color segmentation, the cen-
tral idea being that discontinuities in disparity and color
tend to coincide. While this problem has been addressed
in the non-convex Ambrosio-Tortorelli framework [23], we
can apply the proposed convex relaxation of the vectorial
Mumford-Shah functional to compute solutions indepen-
dent of initialization.

The proposed problem simply corresponds to the case
of k = 4 channels corresponding to the three color and
one depth channel: u = (ucolor, udepth). For the data term
and gradient penalization we use the generalized variants of

Section 3.4. We use the data term from [23]:

%color
i (x, t) = (1− γ) (t− Iileft(x))2,

%depth(x, t) = γ
D∑
j=1

(t− dj(x))2

1 + (t− dj(x))2

(28)

with γ = 0.05 and D = 4 depth hypotheses dj : Ω →
R calculated as in [23, Section 5.1]. Furthermore, we set
ϕcolor
i (∇ui) = 2|∇ui|2 and ϕdepth(∇u) = 100|∇u|2.

Fig. 8 shows the jointly computed segmentation and
disparity for the 289 × 253 “sawtooth” test image of the
Middlebury stereo dataset. We set λ = 0.01, using a
16× 16× 16× 20 discretization. The clear correlation be-
tween the color and disparity edges, especially at the right
(non-occluding) boundaries of the sawtooths confirms the
advantage of the proposed model.

6. Conclusion
We proposed a convex relaxation for the vectorial

Mumford-Shah problem. In contrast to a naive sequen-
tial processing of each color channel, this approach al-
lows to correctly handle the coupling of all color chan-
nels with a single discontinuity set. As a consequence,
it assures that color discontinuities tend to coincide and
thus avoids color artifacts. Furthermore, the relaxation is
computationally tractable. We proposed an efficient algo-
rithmic implementation which allows to capture the color
coupling at no additional runtime. Experimental com-
parisons with the channel-wise application of the scalar
Mumford-Shah model, with total variation and with the
non-convex Ambrosio-Tortorelli approach confirm the su-
periority of the proposed Mumford-Shah relaxation for
contrast-preserving and edge-enhancing regularization in
vectorial inverse problems.
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