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Abstract. We address the problem of describing the mean object for a
set of planar shapes in the case that the considered dissimilarity measures
are semi-metrics, i.e. in the case that the triangle inequality is generally
not fulfilled. To this end, a matching of two planar shapes is computed by
cutting an appropriately defined graph the edge weights of which encode
the local similarity of respective contour parts on either shape. The cost
of the minimum cut can be interpreted as a semi-metric on the space of
planar shapes. Subsequently, we introduce the notion of a mean shape
for the case of semi-metrics and show that this allows to perform a shape
retrieval which mimics human notions of shape similarity.

1 Introduction

To decide whether two given objects are similar to one another and to cluster
subsets of similar objects is an important challenge in Computer Vision. In
the last years, this problem has been tackled for shapes by defining dissimilarity
measures [6]. These measures proved themselves as useful in the context of shape
recognition, clustering, classification and statistical modeling [5,9]. In particular,
the study of metrics has been very promising to generalize statistical concepts
like average objects or standard deviations [9]. But not every useful dissimilarity
measure is a metric [3,2]. Indeed, most of them are semi-metrics, i.e. they violate
the triangle inequality. But how can the statistical concept of a mean shape be
defined, if there is no metric at hand? Since an embedding into an Euclidean
space is not possible, we will approach the question of defining a template for
a given collection of shapes only by studying the given semi-metric. The semi-
metric that we like to study exemplarily is an energy functional that arises in
the context of shape matching.

1.1 Dissimilarity Measures for Shapes

In order to abstract from location and rotation, the term shape refers to a com-
plete class C of closed curves c : S

1 → R
2 embedded in the plane R

2. This
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class shall be invariant under rigid body transformations, i.e. translations and
rotations. The set of all these shapes form a Riemannian manifold [8]. Any con-
tinuous transformation from one shape into another can be represented by a
path in this curved space and geodesics, i.e. paths of minimal length, define a
metric on these spaces [8,5]. Since only such paths are allowed that are placed
inside the manifold, we are talking of intrinsic paths.

From a practical point of view, we often like to compare two different planar
shapes. This task of matching two different shapes has been approached by
minimizing a given functional [7]. Such a matching functional can be used as
dissimilarity measure, just like the intrinsic length presented above.

1.2 Dissimilarity Measures and Statistics

Since the classical mean for a collection of objects is only defined if these objects
are elements of a vector space, the generalization of a mean object has been of
broad interest. In the case of manifolds, the Karcher mean [4] was introduced
as minimum of an energy function and the concept of this metric-oriented mean
has been applied to shape spaces [5]. Since distance functions that are robust
to outliers will typically violate the triangle inequality [3], we are interested in
such semi-metrical distance functions. Semi-metrics have been already consid-
ered for segmentation tasks [7,2]. But to the best of our knowledge, there are
no statistical approaches for semi-metrics since there is no canonical definition
of a mean object. In this paper, we will overcome this limitation by presenting
a generalization of the Karcher mean for semi-metrics to which we will refer as
shape template. These templates will be used to describe the center of a cluster
and to perform the task of retrieving similar shapes from a given database. Be-
cause the definition of a mean within a manifold does not use the exterior vector
space, such a template provides an intrinsic mean.

This paper is organized as follows. In Section 2, we propose an approximation
scheme for matching an arbitrary collection of shapes. In Section 3, the result
of this synchronistic shape matching will be used to construct a template for a
given shape cluster. This cluster template will be used to retrieve similar shapes
from a database. In Section 4, we analyze the runtime of the given methods and
show some retrieving results for the well known LEMS database. In particular,
we experimentally verify that this proposed intrinsic mean gives rise to superior
retrieval rates. In Section 5, we will provide a conclusion of our work.

2 Shape Matching

In this section, we will present a method to solve the shape matching task for
more than two given shapes. To this end, we first present the shape matching
method developed in [10] for two different shapes by cutting a specific planar
graph. Subsequently, we consider the more general problem of simultaneously
matching multiple shapes and propose an efficient approximative solution.
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Fig. 1. Matching. Left hand side: Matching two shapes amounts to computing a
correspondence between pairs of points on both shapes. Right hand side: Instead of
looking for a mapping M : C1 → C2, a matching m = (m1, m2) : S

1 → S
1 × S

1 is
defined on the parameterization domains.

2.1 Matching of Two Shapes Via Graph Cut

As a shape C we understand the class of closed curves c : S
1 → R

2 that is
invariant under rigid body motions. These shapes form the shape space S. Since
it is well known that the curvature κ : S

1 → R is a unique description of every
shape C, the shape space can be described in terms of these curvature functions1:

S :=
{

κ : S
1 → R

∣∣∣∣
∫

S1
exp

[
i

∫ t

0
κ(τ)dτ

]
dt = 0

}
(1)

By the definition of S, all rigid body motions are eliminated and we can fo-
cus on the non-rigid shape transformations. To decide whether two shapes are
similar, we want to detect local transformations like stretching and contraction.
Therefore, we are looking for a correspondence mapping that maps the points
of one shape to the corresponding points on the second shape. Since the points
of a shape define an arbitrary subset of the plane R

2, it is much simpler to
find the correspondence directly on the parameterization domain S

1 – see also
Figure 1. To ensure that a matching covers both parameterization domains ex-
actly once, a matching consists of two orientation preserving bijective mappings
m1, m2 : S

1 → S
1 that simultaneously sample the points of both parameteriza-

tion domains. The space of all these sampling mappings will be called Diff+(S1).
Given two shapes C1 and C2 with their curvature functions κ1 resp. κ2, we are
interested in a matching m ∈ Diff+(S1)×Diff+(S1) that minimizes the following
functional

Eκ2
κ1

(m) =
∫

S1
[(κ1 ◦ m1 − κ2 ◦ m2)(s)]2dm(s). (2)

In this functional, the data term (κ1 − κ2)2 is therefore integrated along the
matching s �→ (m1(s), m2(s)). Since dm(s) = ‖m′(s)‖ ds holds, the smoothness
1 For a detailed study of this manifold, we are referring to [5].
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C2

Fig. 2. Left hand side: Sampling two shapes C1 and C2 by N points, we receive a
squared graph (filled vertices). If we copy the bottom line onto the top and the received
construction to the right (blank vertices), every matching can be represented by a path
from the matching vertex (a, 0) to the vertex (a + N, N). By identifying (a, 0) with
(a + N, N), every matching becomes a shortest cycle. Right hand side: Every cycle
in G describes a cut on the dual graph G∗ (dashed edges). A minimal graph cut in G∗

has therefore the same weight as the shortest cycle in G.

term m′ is directly coupled to the data term. Using (2), a distance function on
the shape space S can be defined as follows.

Definition 1 (Shape Distance). Given two shapes C1, C2 ∈ S with their cur-
vature functions κ1 : S

1 → R and κ2 : S
1 → R resp., we will call

dist(C1, C2) := min
m∈Diff+(S1)2

Eκ2
κ1

(m)
1
2 (3)

the distance of these shapes. Every matching fulfilling this minimum will be called
a minimal matching of C1 and C2.

It is well known that the calculation of this semi-metrical distance can be done
by finding the shortest path in a graph. In Figure 2, the appropriate graph
G = (V, E, w) is sketched. The vertices (x1, x2) ∈ V represent a possible match
between c1(x1) and c2(x2) and the data term of this vertex is (κ1(x1)−κ2(x2))2.
Therefore, the weight w of any edge (x1, x2) → (y1, y2) carries the value of the
path integral along this edge. If we sample each shape by N points, any path from
(a, 0) to (a + N, N) describes a matching. Hence, dist(C1, C2) can be calculated
by finding an initial correspondence (a, 0) and afterwards the path of minimal
weighted length from (a, 0) to (a+N, N). Given an initial correspondence (a, 0),
the classical way to calculate the shortest path length is the Dynamic Time
Warping (DTW) method which takes linear time in the size of the given graph.
Testing all initial correspondences leads therefore to a runtime of O(N3) [3,7].

On the other hand, if we identify any possible initial matching (a, 0) with
(a+N, N), the graph becomes a cylinder and the formerly shortest path describes
a shortest cycle on this cylindrical graph. Whitney proved in [12] that for any
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planar graph G, there is a one-to-one relationship between cycles on G and
cuts in the dual graph G∗. Therefore, the value of a minimal edge cut will be
dist(C1, C2)2. Mathematically, this can be summarized in the following theorem.

Theorem 1. Let C1 and C2 be two shapes with their curvature functions κ1 :
S

1 → R and κ2 : S
1 → R resp. Then, the following equation holds

dist(C1, C2)2 = min
X∗⊂E∗

X∗ edge set of
a graph cut in G∗

∑
e∗∈X∗

w(e) (4)

Proof. For a detailed proof, we are referring to [10]. ��

To calculate the graph cut, we use the algorithm presented in [1]. In Section 4,
we will analyze the runtime of this method in comparison to the shortest path
method. We will demonstrate that for similar shapes the graph cut method is
favorable over the shortest path method.

2.2 Synchronistic Shape Matching

After introducing the shape matching of two shapes, the question arises how a
whole collection of shapes can be set in correspondence. Since any shape carries
some artifacts according to the chosen discretization, a matching between two
shapes could emphasize these artifacts and hence provide a matching that does
not coincide with the human notion of point correspondence. If a synchronistic
matching of a whole collection of shapes is to be achieved, the noisy artifacts
of one shape shall be inhibited by the other shapes. To provide a synchronistic
shape matching is therefore a challenging task and the goal of this subsection.

Analogously to (2), we define a functional for the synchronistic shape match-
ing. Given a collection T = {C1, . . . , Cn} of n shapes, a matching m consists
of n different mappings mi ∈ Diff+(S1) that minimize the pairwise curvature
differences. Let κ1, . . . , κn be the curvature functions of the shapes C1, . . . , Cn

resp. Then, we like to minimize the following functional.

ET (m) =
∫

S1

n∑
i,j=1

[(κi ◦ mi − κj ◦ mj)(s)]2dm(s) (5)

To calculate any synchronistic shape matching is a computationally chal-
lenging task. Analogously to Section 2.1, we can find the matching mapping
m ∈ Diff+(S1)n by searching for a closed circle in a n-dimensional grid. If we
use a sampling rate of 100 points for every shape, we would need ten billion grid
points to match a small collection of five shapes. Since this is too expensive, we
are interested in an approximation scheme.

Given a matching mapping m = (m1, . . . , mn), the mapping (mi, mj) ∈
Diff+(S1)2 describes a matching between the two shapes Ci, Cj ∈ T . Since
mi,j := (mi, mj) does not necessarily minimize (2), we can reformulate the
functional (5) as a compromise between (2) and the property that mi,j and
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Fig. 3. Synchronistic Shape Matching. If we compare the first two shapes, we
receive a matching that cannot detect the two missing fingers. If we add a third shape
(middle), the matching can be improved using (6). The last two images represent the
matching according to γ = 10−6 and γ = 10−4. Note that the location of the sixth and
eighth shape point have been changed.

mj,k describe mi,k. As abbreviation, we like to introduce m̃i,j := m2
i,j ◦ (m1

i,j)
−1

for a given pairwise matching mi,j = (m1
i,j , m

2
i,j). With this notation, mi,j be-

comes the graph of m̃i,j and the described compromise can be formulated as the
following functional.

ET ((mi,j)i,j=1,...,n) =
n∑

i,j=1

Eκj
κi

(mi,j)+ (6)

γ·
n∑

i,j,k=1

∫
S1

‖(m̃i,j − m̃k,j ◦ m̃i,k)(s)‖2 dmi,j(s),

Note that (6) is a major relaxation of (5). Instead of the n matching functions
m1, . . . , mn, we are dealing now with the n2 binary matching functions mi,j =
(m1

i,j , m
2
i,j) ∈ Diff+(S1)2. To solve (6), we start with the matchings mi,j that

minimize (2). Then iteratively, every matching mi,j is improved according to
(6) using the predefined mi,j . Since we assume that all shapes are similar, we
use the proposed graph cut method to solve the binary matchings during the
whole iteration process. This is done according to the result in Section 4 that
for similar shapes the graph cut method outruns the DTW method. In Figure 3,
we see how the synchronistic shape matching improves a given matching.

3 Shape Classification Given a Synchronistic Matching

In this section, we will present a way to describe a shape cluster using the
synchronistic shape matching of Section 2.2. For this purpose, we present a
generalization of the Karcher mean [4] for the space S in respect to the semi-
metric dist(·, ·). Afterwards, we show that this template improves the retrieval
result considerably.

3.1 Cluster Template

Given a set T = {C1, . . . , Cn} of training shapes, we want to tackle the problem
of finding the center of this shape cluster. Thus, we are looking for a template
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CT that is close to all shapes in T . The next definition describes this task as a
minimization problem.

Definition 2 (Template). Given a collection T = {C1, . . . , Cn} of shapes with
the curvature function κ1, . . . , κn resp. Moreover, let (mi,j)i,j=1,...,n be a mini-
mum of (6). Then a minimum κT of the functional

κ �→
n∑

i=1

∫
S1

[(κ ◦ m1
1,i − κi ◦ m2

1,i)(s)]
2dm1,i(s). (7)

is called a template of the cluster T .

Note that we used the synchronistic shape matching for a realignment of all
shapes in the training set T . Therefore, the Euler-Lagrange equation of (7) is
linear and the template is therefore easy to calculate. While the intrinsic mean
constructed above will generally not correspond to a meaningful shape, we shall
demonstrate that it form an excellent basis for shape retrieval.

3.2 Cluster-Based Retrieval

In the Section 3.1, we presented a method to find a template CT for a given
cluster T . Now, we want to retrieve from a database those shapes that are
similar to the shapes of T . Therefore, we have to decide if an arbitrary shape
fits to a given cluster T . We are doing this by calculating the distance of a given
shape C to the template CT . If this distance is small enough, we classify C as an
element of T . If different clusters T1, . . . , Tk are at hand, we choose the following
algorithm:

1. Given a shape C ∈ S, calculate for every i = 1, . . . , k the distances di =
dist(C, CTi).

2. Find i0 := argmini di.
3. If di0 < λi0 , classify C as a shape of cluster Ti0 .
4. Otherwise, state that C cannot be classified properly.

The choice of λi for a given cluster Ti is important for the appropriate descrip-
tion of the class Ti. In fact, we may choose λi differently for different clusters.
In Section 4, we will present a representative example to show how well this
classification method works.

4 Experimental Results

In this section, we will analyze the proposed methods on real shapes. For this
purpose, we use the shapes that are provided by the LEMS laboratory of the
Brown University [11] and apply the curvature descriptor introduced in [10].
In detail, we analyze the runtime of the graph cut algorithm in comparison
to the classical method using Dynamic Time Warping (DTW). Afterwards, we
demonstrate how well shapes can be retrieved with the help of the introduced
cluster template.
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Fig. 4. Runtime comparison. The runtime of the DTW and the proposed graph cut
method are plotted against the sampling rate of both shapes. In the first two cases the
graph cut matching works faster than the classical DTW approach. The plots indicate
that the graph cut method should be favored over DTW if one expects similar shapes.
Otherwise, one should benefit of the granted constant DTW runtime.

Fig. 5. Clustering. On the left hand side, the pairwise dissimilarity of six given
shapes according to dist(·, ·) are color-coded. On the right hand side, 40 shapes are
projected into the Euclidean plane based on their pairwise distance. In general, this
projection will not preserve pairwise distances since dist(·, ·) is not a metric. But even
this approximation indicates that the distance function incorporates the human notion
of shape similarity.

4.1 Runtime Comparison

The bottleneck of the classical DTW method is the search for an initial corre-
spondence. If a complete search over all possible initial matchings is done, the
runtime is always O(N3) for a fixed sampling rate of N points per shape. On
the other hand, the runtime of the graph cut method depends very much on
the input data. Figure 4 demonstrates the runtime of the graph cut method in
respect to the DTW method. The plots indicate that the matching of two shapes
is very fast with the graph cut method, if these shapes are similar to one an-
other. One the other hand for distinctively different shapes, the classical DTW
method outruns the graph cut method. Therefore, we used the DTW method to
cluster the whole database. But for the template calculation of a given cluster,
we always used the proposed graph cut method.
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Fig. 6. Shape-based Retrieval. Using one of the training shapes (boxed) as a repre-
sentative for retrieval gives an unsatisfactory retrieval performance: In order to extract
all hands from the data base one needs to determine the 15 best hits.

Fig. 7. Template-based Retrieval. We define a template based on the framed
shapes. The eleven best hits correspond to all hand shapes in the database. This shows
that the distance to the proposed intrinsic mean provides for superior retrieval perfor-
mance than using an individual template as done in Figure 6.

4.2 Proposed Retrieval Method

The presented retrieval method works in two phases – the learning phase and the
retrieval phase. In the learning phase, the shapes that define a shape class were
matched via the proposed synchronistic shape matching and thus define a tem-
plate. During the second phase, the distance between the calculated templates
and the unknown shapes from a database are calculated. According to this dis-
tance, the unknown shapes can be classified. On the left hand side of Figure 5,
we see an example of how well the dissimilarity measure function dist(·, ·) divides
the shape database into appropriate clusters. Nonetheless, the question how the
number of cluster can be estimated is still unsolved. Therefore, we applied a
4-means run for a subset of the LEMS database that is projected via multidi-
mensional scaling on the right hand side of Figure 5. Since Figure 5 illustrates
that the class ray and the class human are very easy in respect to the given
database, we want to analyze the retrieval for the class hand. Figure 6 shows
the classical retrieval according to one selected shape. We need 15 shapes to find
all eleven hand shapes. Since the database consists of only eleven hand shapes,
it is remarkable that the first eleven hits according to the template-based (cf.
fig. 7) retrieval are in fact these shapes. Note that the learned shapes are not
necessarily the best hits. Due to the semi-metric, the template can be closer to
some shapes than to others.
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5 Conclusion

In this paper, we introduced a generalization of the Karcher mean for semi-
metrical spaces. To this end, we approximate the computationally infeasible
simultaneous matching of n shapes by a consistent iteration of pairwise match-
ings. The latter problem can be solved by computing the minimal cut through
a graph whose nodes encode the local similarity of respective contour parts on
each shape. The presented experiments indicate that for the matching of similar
shapes, this graph cut approach provides a speed-up factor up to 4 relatively to
the classical method using Dynamic Time Warping (DTW). Just as humans have
no problem in finding the correspondence on two similar shapes, the proposed
method finds an initial match and the complete correspondence simultaneously
and faster than the usual approach via DTW.

In a shape retrieval experiment on the LEMS database, we demonstrated that
the proposed intrinsic mean for semi-metrical shape spaces provides for superior
retrieval performance than individual shape instances do.
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10. Schmidt, F.R., Töppe, E., Cremers, D., Boykov, Y.: Efficient shape matching via
graph cuts. In: Energy Minimization Methods in Computer Vision and Pattern
Recognition (to appear)

11. Sharvit, D., Chan, J., Tek, H., Kimia, B.: Symmetry-based indexing of image data-
bases (1998)

12. Whitney, H.: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54,
150–168 (1932)


	Introduction
	Dissimilarity Measures for Shapes
	Dissimilarity Measures and Statistics

	Shape Matching
	Matching of Two Shapes Via Graph Cut
	Synchronistic Shape Matching

	Shape Classification Given a Synchronistic Matching
	Cluster Template
	Cluster-Based Retrieval

	Experimental Results
	Runtime Comparison
	Proposed Retrieval Method

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


