British Machine Vision Conference 2008, Leeds, U.K.

Image Segmentation with Elastic Shape Priors
via Global Geodesics in Product Spaces

Thomas Schoenemann, Frank R. Schmidt and Daniel Cremers
Department for Computer Science
University of Bonn, Germany

Abstract

We propose an efficient polynomial time algorithm to matchetasti-
cally deforming shape to an image. Itis based on finding aalplptimal
geodesic in the product space spanned by the image and tecpritour.
To this end a branch-and-bound scheme is combined withestqgrath tech-
nigues.

We compare this algorithm with a recently proposed ratioimization
approach. While we show that generally the ratio is the bettedel, for
many instances the two perform similarly. We identify a sla$ problems
where the proposed method is likely to be faster.

1 Introduction and Related Work

For decades researchers have striven to develop machioe aigorithms which can
compete with or even outperform the human visual system.piBesany efforts this
remains a challenging problem.

The human visual system makes heavily use of prior world kedge. As a con-
sequence researchers have endeavored to integrate sockrmvledge into computer
vision tasks. Among these tasks, in this paper we addresgwy@rominent ones: image
segmentation and the tracking of deformable objects.

In both areas a critical issue is to make the methods robwshstggetting stuck in
poor local minima. For tracking usually one reverts to ststic optimization techniques
such as particle filtering [1, 9] or Kalman filtering [8]. Yéhese techniques neither offer a
guarantee to find the global minimum nor a means to verify twred computed solution
is optimal.

For the more general problem of image segmentation withr griowledge such tech-
nigues are not common - the search space is simply too latgeesampled in a dense way.
Instead, meanwhile there are a number of globally optingadrithms at hand. These will
be reviewed in greater detail in the following. For comptetes we mention some local
methods [12, 3, 7, 16, 19, 2, 5] based on contour evolution.

Among the global methods we differentiate between thosedas a single template
and those based on a set of templates. To our knowledge, hglobal method in the
latter category is the recent region-based work of Crenteab §].



Concerning methods based on a single template, as far asometka work of Felzen-
zwalb [10] provides the only global method which can includgion-based terms. Its
practical relevance is however limited due to the quadadiyicncreasing memory con-
sumption.

More practicable global methods are based on matching aonto images. After
the pioneering work of Coughlan et al. [4] on open contowsently the authors of this
paper achieved contour closing [18]. This latter methodasell on minimizing ratio
functionals.

In this paper we propose an efficient alternative algorithmatch closed, deformable
curves to images. The underlying principle is to find a glajpabdesic in the product
space spanned by the image and the prior curve. Its optimizatgorithm is based on
a combination of branch-and-bound and shortest path tqabei Experimentally we
show that this novel method gives solutions that are coniypata those given by ratio
optimization, but is faster for a certain class of problems.

2 Matching Shapes to Images via Global Geodesics

In this section, we will cast the problem of matching a defabie contour to an image as
a problem of finding a globally minimal geodesic in the spgueEnsied by the image and
the contour. Let

S:st— R? 1)
be a given closed template curve dndQ c R?) — R be a given image containing an
object whose boundary is similar to the sh&pap to elastic deformations. The goal
is to find the boundary curv€ : S* — Q of the object and an orientation-preserving
correspondence function: St — S* which puts into correspondence pairs of point<on
and onS. The joint computation of andmallows to impose measures of shape similarity
which take into account the correspondence of parts thashasn to be of importance
for reproducing human notions of shape similarity [11, 14].

Clearly the joint space of all segmentatiodsand all correspondence functions
contains exponentially many solutions. It is therefore fiost importance to appropri-
ately parameterize this space and — if possible — identifyrfmonial-time algorithms to
determine the best among all possible solutions. In theviaflg, we will propose such
an algorithm.

The assignment of curve poir@$s) € Q and correspondencegs) < St to all points
of the templateSis equivalent to a mapping:

r:st— oxst 2)

which assigns to each poist S* a pointl(s) = (C(s),m(s)). Geometrically this map-
pingl™ can be seen as a cyclic path in the sp@ceS* — see Figure 1.

Among all such mappings how should one define an optimal ondfel following
we specify three requirements:

e Edge detector: We want the contou€ in the image to pass through areas of high
intensity gradientdl|. The computer vision literature offers a wealth of suitable
data terms. Yet, for simplicity we only consider the funatio

9(x)=1/(1+[01(x)]),



which assigns low values to high image gradients.

e Shape similarity: We want the shap€ in the image to be similar to the template
shapeS. Again among a wealth of possible similarity measures weseltioe simple
one that encourages all pairs of corresponding edgletsve tee same tangent
anglea € S*. More specifically we want the squared cyclic difference o@
manifoldS*) [ac(s) — as(m(s))|2, to be small for alls € S*. While this measure
provides invariance to translation, it is clearly not ingat to global rotations of
the templates. We will come back to this aspect later.

e Regularity: The correspondence functiomassigns to each point on the template
Sits corresponding point on the cur@ In order to impose regularity of the as-
signment, we only consider orientation-preserving repatarizations and disfavor
local stretching or shrinking in the assignment procesgp8se we have a piece
dC of the curveC which corresponds to a pieckSof the prior curveS. Then the
length distortion is given by the ratjdC|/|dS. We use the penalty function

ld¢| i ld¢|
AT S
—_— | = 7 e 1
l'I'J(|d3> m) -1 IfK§m<l ) (3)
[ otherwise

whereK is a predefined constant limiting the maximum length digtort

With these notations the optimal assignment (C,m) is defined as a global minimizer
of the geodesic energy

Egeo ) = / [9(C) + A W) + viac — asomfZ, | dC (4)
s1
This is a geodesic energy since minimization results in thbaj geodesic with winding

number one on a manifold
Mc RxS'xR?x R

where theM only allows pathg™ : St — M which correspond to a combinati@x m x

C' xm, i.e. the last two components are induced by the first two. ithaithlly one

requires tha€’ be non-zero andv be positive. Functional (4) can then be written as:
. 1

EgedI”’ € M) = / [(c' m C"m")A(C’ C”nf’)T} ® dt )

r/

where

2 (1 0
_ _ 21 [ loxz Uzxs
A = [g(c:)+/\w(n¥)+v|ac asom|Sl] (OM 04x4)
with | the identity matrix. Although the above mat#xis only positivesemidefinite, the
arising product is never 0 due to the requiremen€arit therefore allows the interpreta-
tion as geodesic energy.

1Formally one would take the phase spaddR?) x T(S*) whereT () denotes the tangent bundle.



Figure 1: The structure of the graph: for any point on then@@ntour there ar& copies
of the image in the graph. If a cycle in the graph passes tlirgugh a frame, this defines
an assignment of a pixel in the image to the respective poirthe prior contour.

3 Geodesic Energy versus Ratio Functionals

Geometrically our approach can be interpreted as follovescansider the product space
formed by the image plan@ and the correspondence function— see Figure 1. The
intensity| of the input image and the tangent angesof the given template induce a
deformation of the space providing a norm as discussed abdve computation of an
optimal matching hence boils down to the computation of gsad(shortest) paths w.r.t.
the given norm.

We compare this approach with our recent work [17] where wesicter a ratio func-
tional. This can be interpreted as an approach which aimsdinfj cycled™ with minimal
averagecost. It can be written in the following manner:

Egeo(C, )

Eratio(C,m) = ICl2

:/[g(C)+/\LP(n'{)+v|aC—asom|§l ds  (6)
s1

The major difference is that hedsis used wherdC appears in (4). This (partly) removes
the bias towards smaller curves.

The global optimum of the ratio energy (6) is found by comibinthe Minimum Ratio
Cycle algorithm of Lawler [15, 13] with a recursive splitistrategy [18]. The underlying
algorithmic principle is iterated negative cycle detegtitn the next section we show how
to efficiently minimize the geodesic energy.

4 Efficiently Finding the Global Geodesic

In this paper we show how to find the global optimum of a diszeet version of the
geodesic energy (4), where the cont@ueconsists of a discrete number of image pixels.
Likewise, the prior contou§ is discretized into an ordered set of points. The order is
obtained by picking an arbitrary point and assigning it thenber 0, then enumerating
the other points in a clock-wise sense.
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Figure 2: By cutting the graph at one place, an acyclic gragibtained. Distance calcu-
lations in this graph are straightforward and highly paiahble.

4.1 Optimization via Finding Cycles in Graphs

In the discrete setting, the simultaneous optimizationr awage contou€ and matching
mis mapped to the problem of finding the optimal cycle in theiselike graph shown in
Figure 1. In the following we give a brief overview of how tlgsaph is constructed. For
further details we refer to [18].

By design of the¥()-function, a point on the prior conto® may correspond to at
mostK pixels on the image conto@. TheseK choices are represented Kyframes of
nodes, where each frame contains a node for each pixel imihgd .

The arising directed graph consiststof |§ frames. Directed edges connect nodes
only across frames and are directed in a clock-wise senseedvier, when cutting the
graph at frame 0, an acyclic graph is obtained. For miningizhee geodesic energy it
suffices to have one edge weight per edge (as opposed to twairfonizing ratio func-
tionals), representing a certain part of the integral.

By construction each pair of image contour and alignmentesmonds to a cycle in
the graph. The reverse is not true: some cycles do not regrasalid pair of alignment
and image contour. Thegevalid cycles wrap around multiple times in the torus. The task
is therefore to find the optimaialid cycle in the graph, i.e. to optimize over all cycles
that wrap around exactly once.

4.2 Optimal Paths

Before describing how to find the optimal closed (cyclic) wam and matching function,
we consider the slightly easier problem to optimize opewesir These can be optimized
by means of dynamic programming [4].

Let £ be the set of image pixels, and suppose we know som¥ set” of pixels
which are likely correspondences for point O on the priortean For each pixek € X
we can determine the optimapencurve ending inx and starting in some pixel iK. To
this end, the torus-like graph is cut open at frame 0. Addélty, another copy of frame
0 is added and the cut edges are connected to the respedie indhis new frame. This
process is visualized in Figure 2.

Shortest paths in the arising acyclic graph are then condpUie this end, the initial
distance labels in frame 0 are set to 0 for all pixels X and toco otherwise. Dynamic
programming now allows to compute the shortest paths. Trerm@éed cost in the last
frame are termednd distances the following.

Since this distance calculation for open curves is the Hasisolving the problem
with closed curves, we point out a few important propertiee resulting end distances
and the corresponding shortest paths. These will be neadbd next section.



1. Ashortest path represents a valid cycle in the torusgitaph if and only if its start
and end node represent the same image location (by consiruct shortest path
will ever correspond to an invalid cycle). The cost of suchathmives an upper
bound on the minimal geodesic for closed curves, i.e. on ¢is¢ af the optimal
valid cycle in the torus-like graph.

2. For all pixelsx € X, the end distance atrepresents a lower bound for aycles
wherex is the first image pixel aligned to the prior point 0.

3. Ifnox € X has a distance label smaller or equal to some known uppedauthe
optimal cycle, then this optimal cycle cannot align a pixeXito the prior point O
(more precisely, no such pixel will be tlfiest pixel aligned to 0).

4.3 A Branch-and-bound Algorithm for Contour Closing

In this section we solve the problem of matchicigsedcontours to images. A simple
approach would be an exhaustive search over the initiabspandence, where for each
correspondence the optimal curve is determined via theeabesgcribed dynamic pro-
gramming approach.

To overcome the quadratic run-time of this approach we tésa@rbranch-and-bound
scheme, where the distance calculation for open curvessémdetermine lower bounds
on the cost of the optimal cycle. In general branch-and-d@echemes do not give poly-
nomial time algorithms. We therefore emphasize that thegsed methods a polyno-
mial time algorithm: its worst case complexity is quadratithe number of image pixels.
In practice we observe a linear run-time.

The basic principle is to successively split the set of imaigels &2 into disjoint sub-
sets while maintaining a lower bound for each subset. Aalditily a single upper bound
is maintained which is updated every time a cycle is founce algorithm terminates as
soon as no lower bound is below the upper bound.

The algorithm starts with an infinite upper bound and a sipghition of the pixel set,
Z itself. Its lower bound is set to 0. The algorithm then itaelty selects a component
with lower bound below the upper bound. For this componeatdgptimal open curves
are determined (see previous section). Pixels with an estdritie above the upper bound
are removed from further consideration. For the remaininglp the shortest paths are
extracted. If cycles have formed, the respective pixelsatse removed and the upper
bound is updated.

If afterwards there are pixels remaining in the componéety ire split into two parts.
Numerous possibilities exist for the splitting rule, andfe end they are all heuristic.
To avoid unnecessary further splitting, we make sure thathrt and end node of the
lowest cost path are separated (in practice the start noslesuelly removed in the above
described process). Additionally we strive to get equaltgd parts. The lower bounds
for each part are set to the minimum of the respective distéatmels.

This process is continued until no components are left togss. In the end the upper
bound reflects the optimal energy. To get the optimal sahutioe additionally stores the
corresponding cycle each time the upper bound is updated.



geodesic energy for frames ,BD, 90.
Figure 3: Tracking a passing car. Both functionals are abtketl with contour deforma-
tion and changes in scale and lighting.

5 Extensions

So far we have focused on a translation-invariant approacimfage segmentation with

prior knowledge. In practice the desired amount of invaréatlepends on the application:
for tracking one may not want full translational invariaree® small motions are more
likely. For other applications one might want to includeatainal invariance.

It turns out that the results for the ratio functionals cawver to the geodesic energy:
when tracking objects one can reduce the search space tdlavsnamw around the pre-
vious contour — see [18]. Rotational invariance is inclubge sufficiently fine sampling
of the rotation angle. When moving to the next rotation apgihe can use the previously
determined energy as initial upper bound. This boosts padace significantly, since a
tight upper bound allows to exclude many paths quite earthénoptimization process.
In the same manner the choice among multiple prior contaamse handled.

6 Global Geodesics vs. Ratio Minimizers in Tracking
and Image Segmentation

In this section we evaluate the proposed method for shapediisacking and image seg-
mentation. We give a comparison to the ratio energy, indgdhe quality of the com-
puted global solutions as well as on the respective runimingst The memory consump-
tion is equal for both approaches.

Both methods were implemented on a GPU to exploit the péizateon properties.
We use a Geforce 8800 GTX and the CUDA 1.1 programming framewo

6.1 Tracking

For tracking one usually deals with small deformations aardexploit spatial coherence.
We therefore seK = 2 andA = v = 0.5 and allow each point to move a distance of 15



prior

global geodesics for frames 25, 50, 75 and 100.
Figure 4: For tracking in bad weather, both functionals armpetitive, with slightly
better results for the line energy.

prior contour

prior contour ratio minimizer global geodesic

Figure 5: If there are few low-contrast places, both enerfijiel the object reliably. How-
ever, for difficult tasks the geodesic energy reveals arigeo bias towards short curves.

pixels in each direction. Real-time performance is highégicable and both approaches
are made real-time capable by using the tight initializafrom [18].

Figure 4 demonstrates that both methods are able to traakia lsad weather — over
a hundred frames and more. Moreover, they are both esdgméal-time capable: ratio
minimization yields 25 fps, minimizing the geodesic ene2dyb fps. A close inspection
of the resulting segmentations showed that the geodesigyegé/es slightly better re-
sults: it gives a better location of the mirror of the car affigo has the better overall
displacement.

A quite different tracking task is shown in Figure 3: here tloatour undergoes sig-
nificant deformation and scale changes. The results of bodhgees are so similar that
it is impossible to weight one functional over the other. Wigspect to the run-time the
geodesic energy is 30% faster.



ratio energy with geodesic energy with
rotational invariance. rotational invariance.

Figure 6: Both energies can handle rotational invariance.

6.2 Image Segmentation

For image segmentation one must deal with translationriamee and stronger deforma-
tions (we seK = 3 andA = v = 0.25). Here it becomes apparent that the ratio energy
(6) is the better model since it is not so strongly biased td&/gahorter curves: Figure 5
reveals that the ratio excels in cases where the global geo@d fails. Yet, such differ-
ences are only observed for a combination of a significardrdedtion and many places
with low contrast. For easier tasks (such as the first row guifé 5 the two approaches
yield virtually the same results. Here the geodesic evepaytdgrms the ratio: it is min-
imized in 42 seconds where the ratio needs 12 seconds with standaadization and
9.7 s with the initialization from [18]. We found these run-gmto be quite stable when
testing other images in the sequence. Apparently minirgittie geodesic energy is faster
when many parts of the contour correspond to strong edges.

The situation changes when including rotational invaréain Figure 6: minimizing
the ratio energy is now roughly 50% faster. This value wasrnieined by averaging the
run-times for several frames. None of the two approachesagtees that the algorithm
terminates after a single distance calculation if thereoisolution with cost below the
initial upper bound. Yet, it seems that the ratio minimiaatis less likely to make multiple
calls.

7 Discussion and Conclusion

We introduced a geodesic formulation to match deformaldessto images. The arising
optimization task can be solved globally in polynomial -eeffvely linear — time using a
combination of branch-and-bound and shortest path teabsiq

The proposed method is inferior to the previously proposgio ienergies. It hence
justifies the ratio normalization. Yet, in many cases the approaches give similar re-
sults. If the optimal contour passes through many strongedge geodesic is usually
faster to minimize, particularly if there are strong defatians.

In cases where the solution is less obvious the ratio mirdtign is usually faster.
This also holds when multiple prior contours are given, ewpen including rotational
invariance.
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