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Abstract

We propose an efficient polynomial time algorithm to match anelasti-
cally deforming shape to an image. It is based on finding a globally optimal
geodesic in the product space spanned by the image and the prior contour.
To this end a branch-and-bound scheme is combined with shortest path tech-
niques.

We compare this algorithm with a recently proposed ratio minimization
approach. While we show that generally the ratio is the better model, for
many instances the two perform similarly. We identify a class of problems
where the proposed method is likely to be faster.

1 Introduction and Related Work

For decades researchers have striven to develop machine vision algorithms which can
compete with or even outperform the human visual system. Despite many efforts this
remains a challenging problem.

The human visual system makes heavily use of prior world knowledge. As a con-
sequence researchers have endeavored to integrate such prior knowledge into computer
vision tasks. Among these tasks, in this paper we address twovery prominent ones: image
segmentation and the tracking of deformable objects.

In both areas a critical issue is to make the methods robust against getting stuck in
poor local minima. For tracking usually one reverts to stochastic optimization techniques
such as particle filtering [1, 9] or Kalman filtering [8]. Yet,these techniques neither offer a
guarantee to find the global minimum nor a means to verify whether a computed solution
is optimal.

For the more general problem of image segmentation with prior knowledge such tech-
niques are not common - the search space is simply too large tobe sampled in a dense way.
Instead, meanwhile there are a number of globally optimal algorithms at hand. These will
be reviewed in greater detail in the following. For completeness we mention some local
methods [12, 3, 7, 16, 19, 2, 5] based on contour evolution.

Among the global methods we differentiate between those based on a single template
and those based on a set of templates. To our knowledge, the only global method in the
latter category is the recent region-based work of Cremers et al. [6].



Concerning methods based on a single template, as far as we know the work of Felzen-
zwalb [10] provides the only global method which can includeregion-based terms. Its
practical relevance is however limited due to the quadratically increasing memory con-
sumption.

More practicable global methods are based on matching contours to images. After
the pioneering work of Coughlan et al. [4] on open contours, recently the authors of this
paper achieved contour closing [18]. This latter method is based on minimizing ratio
functionals.

In this paper we propose an efficient alternative algorithm to match closed, deformable
curves to images. The underlying principle is to find a globalgeodesic in the product
space spanned by the image and the prior curve. Its optimization algorithm is based on
a combination of branch-and-bound and shortest path techniques. Experimentally we
show that this novel method gives solutions that are comparable to those given by ratio
optimization, but is faster for a certain class of problems.

2 Matching Shapes to Images via Global Geodesics

In this section, we will cast the problem of matching a deformable contour to an image as
a problem of finding a globally minimal geodesic in the space spanned by the image and
the contour. Let

S: S
1 → IR2 (1)

be a given closed template curve andI : (Ω ⊂ IR2) → IR be a given image containing an
object whose boundary is similar to the shapeS up to elastic deformations. The goal
is to find the boundary curveC : S

1 → Ω of the object and an orientation-preserving
correspondence functionm: S

1 → S
1 which puts into correspondence pairs of points onC

and onS. The joint computation ofC andmallows to impose measures of shape similarity
which take into account the correspondence of parts that wasshown to be of importance
for reproducing human notions of shape similarity [11, 14].

Clearly the joint space of all segmentationsC and all correspondence functionsm
contains exponentially many solutions. It is therefore of utmost importance to appropri-
ately parameterize this space and – if possible – identify polynomial-time algorithms to
determine the best among all possible solutions. In the following, we will propose such
an algorithm.

The assignment of curve pointsC(s) ∈ Ω and correspondencesm(s) ∈ S
1 to all points

of the templateS is equivalent to a mapping:

Γ : S
1 → Ω×S

1, (2)

which assigns to each points∈ S
1 a pointΓ(s) = (C(s),m(s)). Geometrically this map-

pingΓ can be seen as a cyclic path in the spaceΩ×S
1 – see Figure 1.

Among all such mappings how should one define an optimal one? In the following
we specify three requirements:

• Edge detector:We want the contourC in the image to pass through areas of high
intensity gradient|∇I |. The computer vision literature offers a wealth of suitable
data terms. Yet, for simplicity we only consider the function

g(x)=1/(1+ |∇I(x)|),



which assigns low values to high image gradients.

• Shape similarity: We want the shapeC in the image to be similar to the template
shapeS. Again among a wealth of possible similarity measures we chose the simple
one that encourages all pairs of corresponding edglets to have the same tangent
angleα ∈ S

1. More specifically we want the squared cyclic difference (onthe
manifoldS

1) |αC(s)−αS(m(s))|2
S1 to be small for alls∈ S

1. While this measure
provides invariance to translation, it is clearly not invariant to global rotations of
the templateS. We will come back to this aspect later.

• Regularity: The correspondence functionm assigns to each point on the template
S its corresponding point on the curveC. In order to impose regularity of the as-
signment, we only consider orientation-preserving reparameterizations and disfavor
local stretching or shrinking in the assignment process. Suppose we have a piece
dC of the curveC which corresponds to a piecedSof the prior curveS. Then the
length distortion is given by the ratio|dC|/|dS|. We use the penalty function

Ψ
(

|dC|
|dS|

)

=











|dC|
|dS| −1 if K ≥ |dC|

|dS| ≥ 1
( |dC|
|dS|

)−1
−1 if 1

K ≤ |dC|
|dS| < 1

∞ otherwise

, (3)

whereK is a predefined constant limiting the maximum length distortion.

With these notations the optimal assignmentΓ = (C,m) is defined as a global minimizer
of the geodesic energy

Egeo(Γ) =
∫

S1

[

g(C)+ λ Ψ(m′)+ ν|αC−αS◦m|2
S1

]

dC (4)

This is a geodesic energy since minimization results in the global geodesic with winding
number one on a manifold1

M ⊂ IR2×S
1× IR2× IR

where theM only allows pathsΓ′ : S
1 → M which correspond to a combinationC×m×

C′ ×m′, i.e. the last two components are induced by the first two. Additionally one
requires thatC′ be non-zero andm′ be positive. Functional (4) can then be written as:

Egeo(Γ′ ∈ M) =
∫

Γ′

[

(C′ m′ C′′m′′)A(C′ m′ C′′m′′)⊤
]

1
2

dt (5)

where

A =
[

g(C)+ λ Ψ(m′)+ ν|αC−αS◦m|2
S1

]2
·

(

I2×2 02×4
04×2 04×4

)

with I the identity matrix. Although the above matrixA is only positivesemi-definite, the
arising product is never 0 due to the requirement onC′. It therefore allows the interpreta-
tion as geodesic energy.

1Formally one would take the phase spaceT(IR2)×T(S1) whereT(·) denotes the tangent bundle.



Figure 1: The structure of the graph: for any point on the prior contour there areK copies
of the image in the graph. If a cycle in the graph passes through such a frame, this defines
an assignment of a pixel in the image to the respective point on the prior contour.

3 Geodesic Energy versus Ratio Functionals

Geometrically our approach can be interpreted as follows: we consider the product space
formed by the image planeΩ and the correspondence functionm – see Figure 1. The
intensity I of the input image and the tangent anglesαS of the given template induce a
deformation of the space providing a norm as discussed above. The computation of an
optimal matching hence boils down to the computation of geodesic (shortest) paths w.r.t.
the given norm.

We compare this approach with our recent work [17] where we consider a ratio func-
tional. This can be interpreted as an approach which aims at finding cyclesΓ with minimal
averagecost. It can be written in the following manner:

Eratio(C,m) =
Egeo(C,m)

‖C‖2
=

∫

S1

[

g(C)+ λ Ψ(m′)+ ν|αC−αS◦m|2
S1

]

ds (6)

The major difference is that heredsis used wheredCappears in (4). This (partly) removes
the bias towards smaller curves.

The global optimum of the ratio energy (6) is found by combining the Minimum Ratio
Cycle algorithm of Lawler [15, 13] with a recursive splitting strategy [18]. The underlying
algorithmic principle is iterated negative cycle detection. In the next section we show how
to efficiently minimize the geodesic energy.

4 Efficiently Finding the Global Geodesic

In this paper we show how to find the global optimum of a discretized version of the
geodesic energy (4), where the contourC consists of a discrete number of image pixels.
Likewise, the prior contourS is discretized into an ordered set of points. The order is
obtained by picking an arbitrary point and assigning it the number 0, then enumerating
the other points in a clock-wise sense.
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Figure 2: By cutting the graph at one place, an acyclic graph is obtained. Distance calcu-
lations in this graph are straightforward and highly parallelizable.

4.1 Optimization via Finding Cycles in Graphs

In the discrete setting, the simultaneous optimization over image contourC and matching
m is mapped to the problem of finding the optimal cycle in the torus-like graph shown in
Figure 1. In the following we give a brief overview of how thisgraph is constructed. For
further details we refer to [18].

By design of theΨ()-function, a point on the prior contourS may correspond to at
mostK pixels on the image contourC. TheseK choices are represented byK frames of
nodes, where each frame contains a node for each pixel in the imageI .

The arising directed graph consists ofK · |S| frames. Directed edges connect nodes
only across frames and are directed in a clock-wise sense. Moreover, when cutting the
graph at frame 0, an acyclic graph is obtained. For minimizing the geodesic energy it
suffices to have one edge weight per edge (as opposed to two forminimizing ratio func-
tionals), representing a certain part of the integral.

By construction each pair of image contour and alignment corresponds to a cycle in
the graph. The reverse is not true: some cycles do not represent a valid pair of alignment
and image contour. Theseinvalid cycles wrap around multiple times in the torus. The task
is therefore to find the optimalvalid cycle in the graph, i.e. to optimize over all cycles
that wrap around exactly once.

4.2 Optimal Paths

Before describing how to find the optimal closed (cyclic) contour and matching function,
we consider the slightly easier problem to optimize open curves. These can be optimized
by means of dynamic programming [4].

Let P be the set of image pixels, and suppose we know some setX ⊆ P of pixels
which are likely correspondences for point 0 on the prior contour. For each pixelx∈ X
we can determine the optimalopencurve ending inx and starting in some pixel inX. To
this end, the torus-like graph is cut open at frame 0. Additionally, another copy of frame
0 is added and the cut edges are connected to the respective nodes in this new frame. This
process is visualized in Figure 2.

Shortest paths in the arising acyclic graph are then computed. To this end, the initial
distance labels in frame 0 are set to 0 for all pixelsx ∈ X and to∞ otherwise. Dynamic
programming now allows to compute the shortest paths. The determined cost in the last
frame are termedend distancesin the following.

Since this distance calculation for open curves is the basisfor solving the problem
with closed curves, we point out a few important properties of the resulting end distances
and the corresponding shortest paths. These will be needed in the next section.



1. A shortest path represents a valid cycle in the torus-likegraph if and only if its start
and end node represent the same image location (by construction no shortest path
will ever correspond to an invalid cycle). The cost of such a path gives an upper
bound on the minimal geodesic for closed curves, i.e. on the cost of the optimal
valid cycle in the torus-like graph.

2. For all pixelsx ∈ X, the end distance atx represents a lower bound for allcycles
wherex is the first image pixel aligned to the prior point 0.

3. If nox∈ X has a distance label smaller or equal to some known upper bound on the
optimal cycle, then this optimal cycle cannot align a pixel in X to the prior point 0
(more precisely, no such pixel will be thefirst pixel aligned to 0).

4.3 A Branch-and-bound Algorithm for Contour Closing

In this section we solve the problem of matchingclosedcontours to images. A simple
approach would be an exhaustive search over the initial correspondence, where for each
correspondence the optimal curve is determined via the above described dynamic pro-
gramming approach.

To overcome the quadratic run-time of this approach we resort to a branch-and-bound
scheme, where the distance calculation for open curves serves to determine lower bounds
on the cost of the optimal cycle. In general branch-and-bound schemes do not give poly-
nomial time algorithms. We therefore emphasize that the proposed methodis a polyno-
mial time algorithm: its worst case complexity is quadraticin the number of image pixels.
In practice we observe a linear run-time.

The basic principle is to successively split the set of imagepixelsP into disjoint sub-
sets while maintaining a lower bound for each subset. Additionally a single upper bound
is maintained which is updated every time a cycle is found. The algorithm terminates as
soon as no lower bound is below the upper bound.

The algorithm starts with an infinite upper bound and a singlepartition of the pixel set,
P itself. Its lower bound is set to 0. The algorithm then iteratively selects a component
with lower bound below the upper bound. For this component the optimal open curves
are determined (see previous section). Pixels with an end distance above the upper bound
are removed from further consideration. For the remaining pixels the shortest paths are
extracted. If cycles have formed, the respective pixels arealso removed and the upper
bound is updated.

If afterwards there are pixels remaining in the component, they are split into two parts.
Numerous possibilities exist for the splitting rule, and inthe end they are all heuristic.
To avoid unnecessary further splitting, we make sure that the start and end node of the
lowest cost path are separated (in practice the start node was usually removed in the above
described process). Additionally we strive to get equally sized parts. The lower bounds
for each part are set to the minimum of the respective distance labels.

This process is continued until no components are left to process. In the end the upper
bound reflects the optimal energy. To get the optimal solution one additionally stores the
corresponding cycle each time the upper bound is updated.



prior ratio functional for frames 10,50,90.

geodesic energy for frames 10,50,90.

Figure 3: Tracking a passing car. Both functionals are able to deal with contour deforma-
tion and changes in scale and lighting.

5 Extensions

So far we have focused on a translation-invariant approach for image segmentation with
prior knowledge. In practice the desired amount of invariance depends on the application:
for tracking one may not want full translational invarianceas small motions are more
likely. For other applications one might want to include rotational invariance.

It turns out that the results for the ratio functionals carryover to the geodesic energy:
when tracking objects one can reduce the search space to a small window around the pre-
vious contour – see [18]. Rotational invariance is includedby a sufficiently fine sampling
of the rotation angle. When moving to the next rotation angle, one can use the previously
determined energy as initial upper bound. This boosts performance significantly, since a
tight upper bound allows to exclude many paths quite early inthe optimization process.
In the same manner the choice among multiple prior contours can be handled.

6 Global Geodesics vs. Ratio Minimizers in Tracking
and Image Segmentation

In this section we evaluate the proposed method for shape-based tracking and image seg-
mentation. We give a comparison to the ratio energy, including the quality of the com-
puted global solutions as well as on the respective running times. The memory consump-
tion is equal for both approaches.

Both methods were implemented on a GPU to exploit the parallelization properties.
We use a Geforce 8800 GTX and the CUDA 1.1 programming framework.

6.1 Tracking

For tracking one usually deals with small deformations and can exploit spatial coherence.
We therefore setK = 2 andλ = ν = 0.5 and allow each point to move a distance of 15



prior ratio minimizers for frames 25, 50, 75 and 100.

global geodesics for frames 25, 50, 75 and 100.

Figure 4: For tracking in bad weather, both functionals are competitive, with slightly
better results for the line energy.

prior contour ratio minimizer global geodesic overlay of contours

prior contour ratio minimizer global geodesic

Figure 5: If there are few low-contrast places, both energies find the object reliably. How-
ever, for difficult tasks the geodesic energy reveals a (stronger) bias towards short curves.

pixels in each direction. Real-time performance is highly desirable and both approaches
are made real-time capable by using the tight initialization from [18].

Figure 4 demonstrates that both methods are able to track a car in bad weather – over
a hundred frames and more. Moreover, they are both essentially real-time capable: ratio
minimization yields 25 fps, minimizing the geodesic energy24.5 fps. A close inspection
of the resulting segmentations showed that the geodesic energy gives slightly better re-
sults: it gives a better location of the mirror of the car and often has the better overall
displacement.

A quite different tracking task is shown in Figure 3: here thecontour undergoes sig-
nificant deformation and scale changes. The results of both energies are so similar that
it is impossible to weight one functional over the other. With respect to the run-time the
geodesic energy is 30% faster.



ratio energy with geodesic energy with
rotational invariance. rotational invariance.

Figure 6: Both energies can handle rotational invariance.

6.2 Image Segmentation

For image segmentation one must deal with translation-invariance and stronger deforma-
tions (we setK = 3 andλ = ν = 0.25). Here it becomes apparent that the ratio energy
(6) is the better model since it is not so strongly biased towards shorter curves: Figure 5
reveals that the ratio excels in cases where the global geodesic (4) fails. Yet, such differ-
ences are only observed for a combination of a significant deformation and many places
with low contrast. For easier tasks (such as the first row in Figure 5 the two approaches
yield virtually the same results. Here the geodesic even outperforms the ratio: it is min-
imized in 4.2 seconds where the ratio needs 12 seconds with standard initialization and
9.7 s with the initialization from [18]. We found these run-times to be quite stable when
testing other images in the sequence. Apparently minimizing the geodesic energy is faster
when many parts of the contour correspond to strong edges.

The situation changes when including rotational invariance as in Figure 6: minimizing
the ratio energy is now roughly 50% faster. This value was determined by averaging the
run-times for several frames. None of the two approaches guarantees that the algorithm
terminates after a single distance calculation if there is no solution with cost below the
initial upper bound. Yet, it seems that the ratio minimization is less likely to make multiple
calls.

7 Discussion and Conclusion

We introduced a geodesic formulation to match deformable shapes to images. The arising
optimization task can be solved globally in polynomial – effectively linear – time using a
combination of branch-and-bound and shortest path techniques.

The proposed method is inferior to the previously proposed ratio energies. It hence
justifies the ratio normalization. Yet, in many cases the twoapproaches give similar re-
sults. If the optimal contour passes through many strong edges the geodesic is usually
faster to minimize, particularly if there are strong deformations.

In cases where the solution is less obvious the ratio minimization is usually faster.
This also holds when multiple prior contours are given, e.g.when including rotational
invariance.
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