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Abstract

This paper presents a novel approach to detect and track peoplararizhsed on the com-
bined information retrieved from a camera and a laser range scannggr dlata points are
classified by using boosted Conditional Random Fields (CRF), while the ilveggd detec-
tor uses an extension of the Implicit Shape Model (ISM), which learnsdelsmok of local
descriptors from a set of hand-labeled images and uses them to votenters of detected
objects. Our extensions to ISM include the learning of object parts and tenmpéesks to ob-
tain more distinctive votes for the particular object classes. The detectmmsbioth sensors
are then fused and the objects are tracked using a Kalman Filter with multiple motgbn mo
els. Experiments conducted in real-world urban scenarios demonstrafécitteveness of our

approach.

1 Introduction

One research area that has turned more and more into the focus oftidteteg the last years

is the development of driver assistant systems and (semi-)autonomsugngaarticular, such
systems are designed to operate in highly unstructured and dynamic eneitts Especially

in city centers, where manyftierent kinds of transportation systems are encountered (walking,
cycling, driving, etc.), the requirements for an autonomous system ayehigh. One key
prerequisite is a reliable detection and distinction of dynamic objects, as wal ascurate
estimation of their motion direction and speed. In this paper, we address tiepr by
focusing on the detection and tracking of people and cars. Our systawlistic car equipped
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with cameras and a 2D laser range scanner. As we will show, the uséeredi sensor
modalities helps to improve the detection results.

The system we present employs a variety dfesient methods from machine learning and
computer vision, which have been shown to provide robust performamesextend these
methods obtaining substantial improvements and combine them into a complete system
detection, sensor fusion and object tracking. We use supervisedigaechniques for both
kinds of sensor modalities, which extract relevant information from laagelHabeled training
data sets. In particular, the major contributions of this work are:

e Several extensions to the vision based object detector of Leibe et 8b][2bat uses
a feature based voting scheme denoted as Implicit Shape Models (ISMn&ar im-
provements to ISM are the subdivision of objects into parts to obtain a mteeahitiated
voting, the use ofemplate mask® discard unlikely votes, and the definition safper-
featuresthat exhibit a higher evidence of an object’s occurrence and are meig tik
be found.

e The application and combination of boosted Conditional Random Fields (fOR&lps-
sifying laser scans with the ISM based detector using vision. We use a Kdlitian
(KF) with multiple motion models to fuse the sensor information and to track the objects
in the scene.

This paper is organized as follows. The next section describes warksthelated to ours.
Sec. 3 gives a brief overview of our overall object detection and imgcgystem. In Sec. 4,
we introduce the implicit shape model (ISM) and present our extensions5$kescribes our
classification method of 2D laser range scans based on boosted CordR#mom Fields.
Then, in Sec. 6 we explain our sensor fusion techniques and our Bé&dhabject tracker.
Finally, we present experiments in Sec. 7 and conclude the paper.

2 Redated Work

This section presents the scientific literature related to people and vehiclgialetelt is
organized in three parts: the first discusses range-based appsp#ioh second image-based
methods, and the last one presents the related work in the area of multimtetdiateusing
camera and laser range data.

2.1 Range-based methods

Several approaches can be found in the literature to identify a persob las2r data. A
popular approach is to extract legs by detecting moving blobs that appéara minima in

the range data [Fod et al., 2002, Scheutz et al., 2004, Schulz et al], 2008 characterize
people by computing geometrical and motion features. When motion feateresett, people
that do not move can not be detected. The work of Topp and ChristeR868][overcomes
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this problem, obtaining good results in an cluttered indoor environmeitinél et al. [2003]
consider the problem of classifying beams in range scans that areedflgcdynamic objects.
An expectation maximization (EM) estimation is run in order to determine which beasm h
been reflected by a dynamic object as a person. The work of Xavidr g085] is also
based on the identification of people by geometrical features on the range Fhe data
is segmented into clusters and a set of heuristics is applied in order to distirmpiigseen
lines, circles and legs. The first work that formulates the problem of tiegepeople as a
learning problem in a principled manner has been developed by Arrh20@7]. Here, the
authors use geometrical and statistical features extracted from clubtiies i@nge scan to
learn an AdaBoost classifier. Excellent results have been presemtewidor environments.
Also, Luber et al. [2008] make use of learning techniques for detectidgracking several
classes of objects using unsupervised creation of exemplar models tén &dek, Arras et al.
[2008] use a multi-hypotheses tracker to adaptively address the probtssulusions and self-
occlusions when tracking multiple pedestrians in range data. More redestiyt al. [2009]
present an approach to track groups of people using distance clgsiedra multi-hypotheses
tracking system.

Detection of people in 3D range data is recently gaining attention in the robaiios c
munity. Navarro-Serment et al. [2009] use a ground detector, PCksaim@and geometrical
descriptors classified by Support Vector Machines for detecting péape3D data retrieved
from several nodding laser rangefinders. In an own work [Spinekh,e2010], we detect peo-
ple in 3D point cloud data using a part-based voting approach with barttaméd AdaBoost
classifiers. This method is more general as it does not need any gretertat, and yields
very accurate detection results.

A very successful work in the field of vehicles detection using range idatee one of
Petrovskaya and Thrun [2008], focussing on the tracking and deteatioultiple vehicles
via a model-based approach. It encompasses both geometric and dymepadips of the
tracked vehicle in a single Bayes filter. Other approaches based onrgagjore and classi-
fication are the one of Zhao and Thorpe [1998] and Streller et al. [200& first enforces
a rectangular model of a car in range data by using heuristics on exttartsdind uses an
Extended Interactive Motion Model for tracking. In the latter, severaionanodels are used
and applied to simple geometrical models of vehicles.

2.2 Camera-based methods

In the area of image-based object detection, and people detection in [gaytibere mainly
exist two kinds of approaches (see Enzweiler and Gavrila [2009] furgey). One uses
the analysis of aletection windowor templategGavrila and Philomin, 1999, Viola et al.,
2003], the other performsgarts-basedietection [Felzenszwalb and Huttenlocher, 200felo
and Forsyth, 2001]. The detection window approach uses a scalaldewihat is scrolled
through the image. For each step, a classification of the image area undetebgon win-
dow is obtained. A template-based detection technique is similar to the previassyitbd
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approach, but in this case a simple distance measure is computed betwedgethaehe im-
age under the template silhouette and the silhouette itself. Part-based detedtiodsvam

at independently detecting parts to obtain location hypotheses for entirgbjéhere exist
plenty of computer vision based people detection systems described in thetéekdere, we
refer to the most successful ones. Leibe et al. [2005] presented ge-based people detector
using Implicit Shape Model$lSM) with excellent detection results in crowded scenes. This
method is based on a databasdag of words called codebook, extracted from standard de-
scriptors, that vote for object centers. A mean shift mode estimation is uskfit@ object
hypotheses in the continuous space and a minimum description length methdelctase
winning ones. In earlier works, we showed already extensions of thisotetith a better
feature selection and an improved nearest neighbor search [Spinallp2208a,b]. Another
image-based person detection algorithm that obtained remarkable detestidts has been
presented by Dalal and Triggs [2005]. This method is based on the dassifi of special
image descriptors called Histogram of Oriented Gradients (HOG), computzdimcks of
different sizes and scales in a fixed size detection window. The HOG desgsiptsed on a
collection of normalized image gradients on each cell. The resulting high dinmahsiector

is then classified with a linear support vector machine (SVM). Zhu et a@QgRthen refined
this detector by using a fast rejector-based SVM cascade to discarce8enpe of a person in
the detection window.

Unlike human bodies, cars have relatively uniform characteristics intateusuch as four
wheels, a certain number of pillars, two bumpers, etc. The appearativesefparts changes
due to diferent car models, view points and lighting conditions. The methods already dis
cussed for people detection are also used for detecting cars. Leibg2QG¥] detect and
track people and cars using a stereo system and an ISM approach adiection hypothe-
ses are selected via an optimization that takes into account overlaps beteteetions and
between object categories. Zheng and Liang [2009] compute 'striprésatio describe im-
age locations with arcs, edge-like and ridge-like patterns that are fidgdéieund on vehicles.
They learn a complexity-aware RealBoost to produce a fast and aeclaasification method.
Papageorgiou and Poggio [2000] detect cars and people by usingaromplete set of Haar
features classified with a support vector machine method.

2.3 Multimodal approaches

Most existing people detection methods based on caaretéaser range data depend on hard
constraints or on hand-tuned thresholding. Cui et al. [2005] use multgde $ganners at foot
height and a monocular camera to obtain people tracking by extractinghfiéstep candidates.
Zivkovic and Kidse [2007] employ a range-based leg detector and boosted Haaefetum
camera images to detect people by using a probabilistic ruleset. Both methetés tiser
data points using a Canny edge detector and they extract unrobust igeigee$ to detect
body parts. These approaches, based on simplistic processing oadatardly suited for
outdoor scenarios due to the presence of clutter in image and range dateovier, in such

4



e Earlyfusion e

Range

Appearance i, Image
data

Multiple Motion Model Based Detector data
Kalman Filters

Implicit Shape Model
Extended

Boosted Conditional
Random Field

Figure 1: Overview of the method.

environments a large illumination variability caffect the descriptiveness of features that
are based on simple intensity-based descriptors such as Haar featheesvork of Schulz
[2006] uses probabilistic exemplar models learned from camera and kseand it applies

a Rao-Blackwellized patrticle filter (RBPF) to track a person’s appearanthe data. The
RBPF tracks contours in the image based on Chamfer matching as well aslpsiats in the
laser scan and computes the likelihood dfetient prototypical shapes in the data. However,
in outdoor urban scenarios occlusions are very likely, thus a contouthmgtepproach is
not an appropriate choice for dealing with partial object visibility. NevesthldRBPF is a
computationally demanding technique, especially when tracking multiple objectsdens.
Douillard et al. [2008] employ a Conditional Random Field (CRF) learne@Dnaser data
and robust image features to detect multiple classes of objects (i.e. capse,peegetation).
Promising results are obtained, but occlusions and overlapping objecttida hypothesis,
critical for yielding good results in any frame, are not handled by the dfgor The work

of Premebida et al. [2009] does not implement tracking of objects but it&es several
centralized and decentralized fusion rules with standard vision and lassstars. Wender
and Dietmayer [2008] employ a camera and a laser scanner to detect frard of a robotic
platform. They use simplistic heuristic rules on range data for estimating the oileirgd the
vehicle (front, side etc). Thus, they apply an AdaBoost-based imagetdeti@ined with Haar
features on dferent car viewpoints.

3 Overview of Our Method

Our system consists of three main components (see scheme in Fig. 1):
e an appearance-based detector that processes data from a camera imag
e arange based detector that processes data from a laser rangefinder

e a tracking module that fuses the information from both sensor modalities anitips
an estimate of the motion vector for each tracked object.



The laser-based detector is based on a Conditional Random Field (foRR)jated with
a boosted set of geometrical and statistical features of 2D laser ratayeldee image based
detector extends the multiclass version of the Implicit Shape Model (ISM)edfd_et al.
[2007]. The vision-based detector operates only on regions of int@bésined by projecting
range data into the image to constrain the position and scale of the detectabts (ihg“early
fusion” step). The tracking module applies a Kalman Filter with twitedent motion models,
fusing the information from camera and laser. In the following, we desc¢hibeparticular
components in detail.

Mathematical notations Throughout this paper we use the following mathematical nota-
tions:

e avectoris denoted with a bold letter, e.g.
e amatrixis denoted with a bold capital letter, for example

e setsare denoted with calligraphic capital letters, for exanpld he cardinality of a set
C is expressed by the notatid@]|.

e numerical constants are denoted with capital letters.

4 Appearance Based Detection

Our vision-based people detector is mostly inspired by the work of Leibé §Q05] on
scale-invariant Implicit Shape Models (ISM). In summary, an ISM congistsset/ of local
region descriptors calledodebookand a setV of displacements and scale factors, usually
namedvotes for each descriptor. The idea is that each descriptor can be foutiftexrent
positions inside an object and atffédrent scales. Thus, a vote points from the position of
the descriptor to the center of the object as it was found in the training databféin an
ISM from labeled training data, the descriptors are computed at interggt gasitions and
then clustered, usually using agglomerative clustering with a maximal distamreshdhddy.
Then, the votes are obtained by computing the scale and the displacemeat aijjéicts’
center to the descriptors. A training dataset consists in a collection of imaddsreary image
masks defining the area and the position of the objects in each image. Fotehgoe new
descriptors are computed on a test image and matched against the desurifftercodebook.
The votes that are cast by each matched descriptor are collected ivatiBD spaceand a
maximum density estimator is used to find the most likely position and scale of art.objec

In previous works, we presented already several improvements ofghdasd ISM ap-
proach [Spinello et al., 2008b,a]. Here, we show some more extensid@dViofo further
improve the classification results. These extensions concern both thim¢ean the detec-
tion phase and are described in the following.



4.1 |SM Extension: Generating a Superfeature Codebook

In the standard ISM formulation, the process of generating a codelmeskribt include any
feature selection. This has two potential disadvantages: first, a cddétroa given object
category may contain many entries, and second, each entry may castuwabtgyqof votes.

One possibility to reduce the number of codebook entries is to increase thecgishreshold

¢ when creating the codebook. However, in this case each entry in thbamdeepresents a
larger variability of descriptors which leads to more votes per entry. Whealing a code-
book to new descriptors found in a test image, usually the same distandeolldrés is used

as when generating the codebook. Thereforg i large, more matches are found for a given
new descriptor. Bothféects result in a larger number of votes, which increases the number of
false positive detections.

The goal of asuperfeaturecodebook is to overcome these disadvantages by collecting
more informed descriptors that cast stronger votes. We define sapggeg as features that
are stable in image space and in descriptor space. This means that aatypetis frequently
found in the training set, at approximately the same image position with respeet dbject
center, and its variability in descriptor space is low. This definition ensuet$dahsuperfea-
tures a high evidence of the occurrence of the object is combined with gohadpiability to
encounter an interest point. L@t be defined as the set of all interest points found inside the
segmentation masks in the training data. Each eleme@t aé a three-dimensional vector,
where the dimensions are the relative displacemg&xitAy) between the location of the inter-
est point and the object center, and the ssad¢ which the interest point has been detected.
Let furthermorex be a function that maps frod@* to the D-dimensional descriptor spa’.

In the training phaseg is computed for all interest points in the labeled images. To compute
superfeatures, we perform four steps. First, we determine points tliatkey dense areas of
O™* by applying mean-shift mode estimation [Comaniciu et al., 2001]. This way,btairoa
reduced seD* of interest points, i.e.:

O* = ms(anpy’pS90+)’ (1)

where ms{ indicates the mean shift estimator with uniform ellipsoidal ketkiedf semiaxes
Px.py andps. We sefoy = py in order to give equal importance to interest points found in both
directions. In our implementation we usg= py = 5 andps = 0.2. Thus,0" consists of theM
modes],...,0}, of the interest point distribution i@* as found by the mean-shift estimator.

Inthe second step, we determine for each nmjdbe sety; of image descriptors that have
been computed at interest points inside the kernel arofynce.

Ji ={x(p) Ip€ O nK (0}, 2)

whereX(o;) denotes the ellipsoidal kernel centered at the n@déhen, we apply agglom-
erative clustering with average linkage to the descriptorg;in.e.

7



{C1,C2,...} = ac(dq, i), (3

where ag-) represents a function that computes agglomerative clustering with distaash-th
old ¢4, andC1,C», ... are the resulting clusters in descriptor space.

In the last step, we remove all clusters with cardinality smaller than a threshadd
store the centroids of those clusters that are bigger than the median ofrdieatity of the
remaining clusters into the descriptor g¢t or formally

I7 ={cn(C) |IC € € A [ICl| > md(€)}. 4)

Here,¢ denotes the set of all clusters that are bigger tharen() computes the centroid of a
cluster, and mdj returns the median cluster cardinality. The resulting superfeature cokieb
I*is defined as

I = LMJL*. (5)
i=1

The computation of the set of vot8sg" for 7* follows the same procedure as in standard ISM.

The resulting superfeature codebaGkhas less elements than the standard ISM codebook
and each entry is associated to less votes. Figure 2 shows a visualagiquiant the superfea-
ture codebook generation. It is interesting to see that the superfeathegently reflect the
skeleton of the object. In case of a pedestrian, superfeatures are ta&sthyin theA-shaped
area between the legs, and nearby the shoulders. Even though thiissresictly related to
the kind of interest point detector (e.g. Harris and Hessian interest poakscated either on
corners or on blobs), it intuitively reflects distinctive local areas foeckng pedestrians. This
result is in agreement with other local weighting methods found in the area geHinased
people detection (see e.g. the discussion of Dalal and Triggs [2005gdrigh classification
weight that such areas receive).

4.2 |SM Extension: Learning Object Parts

The aim of this procedure is to further enrich the information retrieved in thiey process

by distinguishing between fierent object parts from which the vote has been cast. The seg-
mentation into parts is computediiine during the training process for each object category.
Here, an object part is defined as a sector of a circle, where the céeteras aligned with

the center of the bounding box that encompasses all training instance®bjezt class. This
definition of an object part is motivated by the fact that the displacemertdngestored in an
ISM vote for object centers. Hence, a natural way to distinguish thessistéhe training data

is with respect to the orientation of their displacement vectors.
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Figure 2: Generation of a superfeature codebook. Suparé=saare stable features in image and
descriptor space. First, all interest points from the trejrdata are accumulated in a continuous
space. Then, high density areas are found using mean std# estimation. In the next step, we
consider the descriptors associated to the clusteredspanit segment them using agglomerative
clustering. From the resulting clusters, we select thoaedle larger than the median and store
them together with the votes from the associated interaatpm the superfeature codebook. In
this example, we used Shape Context descriptors computeesaidth interest points (in red) for
the class 'pedestrian’. The position of the superfeatureslepicted in green.

To distinguish appropriate object parts, we perform three steps. Weagkain with the
accumulated se®* of interest points from the training data set. Then, we compute the orien-
tation angle of each displacement vector with respect to the horizontal limegithe center
of the bounding box that encompasses all object instances (see FAJl @jentation angles
are collected in a sefl. Finally, we applyk-means clustering [Lloyd, 1982] to the elements of
A. The problem here is that the numbérof clusters is not given beforehand. We solve this
by re-running the clustering algorithm with increasing valuek aind evaluating the resulting
clusters with the Bayesian Information Criterion (BIC) [Schwarz, 1978 BIC can be used



Algorithm 1. K-means clustering with estimation of the number of cluster

Input: Set of orientation anglegl from voters
Output: Optimal set of clusterd*

Ke1

Doig ¢~ —o0

Prew ¢ —o0

Ae—10

while bpew > boig do

W — A

A «—kMeans (A, K)

Dold < Pnew

Phew < —2In(Rﬁ§;§ﬁD) +KIn(JA|)  Compute BIC using residual sum of squares (RSS)
K«~K+1

end
return A*

for model selection from a class of parametric models witfedent numbers of parameters.
It represents a balanced score based on the likelihood of the model aunigdexity. Our
overall clustering method is summarized in Algorithm 1. We note that the ResSiumalof
Squares (RSS) of clusters obtained with khmeans algorithm decreases monotonically with
growing K. The RSS is exactly 0 wheld = ||A||, i.e. when each data point defines its own
cluster. The BIC is used to tradéf@ low residual error with a low model cost. Once the
BIC does not increase any longer, the maximum is found and the praopss Jo perform
k-means clustering oifl, we need to take care of the fact that the orientation angles are pe-
riodic, i.e. 0 needs to be identified withr2 Fortunately, ink-means clustering only relative
distances between points and clusters are required. Thus, we casereatd element ifl by

a corresponding point on the unit circle and use the arc length betweesuthigpoints as the
distance metric for clustering. When clustering is complef&ds represented by a collection
of angle intervals:A = (ay,...,ax], wherea = [@j-1,;) IS an angle interval that defines an
object part.

An example of the outcome of our clustering algorithm is shown in Fig. 4. Note tha
although our algorithm does not explicitly search for a semantical submived the object
(e.g.: legs, arms, etc. in case of the pedestrian object category), ithredess resembles this
automatically without human interaction. In Sec. 4.4 we describe how we usextieisded
shape information for hypothesis selection.
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Figure 3: Subparts are computed by accumulating interastgateratively runningk-means
clustering, and using the BIC to score the cluster result.

4.3 |1SM Extension: Learning Shape Templates

Based on a similar reasoning as described in the previous section, weserapother exten-
sion to the standard ISM approach to distinguish the votes with respect tquladitiy. The aim
of this is to discarautlier votesi.e. those that are cast from interest points located in unlikely
areas for a given object class. Outliers are caused by training exawiftesn unusual shape
where some interest points lie outside the most likely shape of the object. &wopé there
might be training examples of the class “pedestrian”, where a persometyrextends the
arms. Then, if there are interest points detected on an arm, the resultitacdiment vector
stored inV will be very rare and thus correspond to an unlikely vote. Later, in thectiete
phase, this causes problems, because such an unlikely vote is treateddamgnevay as likely
ones, causing many false positive detections.

A first attempt to detect and remove outlier votes has already been madeteydieal.
[2005]. There the authors compute a combined optimization between exsegieentation
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Figure 4. Clustered object parts (colored sectors) and tephasks, overlaid as brightness val-
ues, for the classgmedestriarandcar-sideview Both are computed from the training set. Note that
even though the object parts are computed unsupervisggxhéit some semantic interpretation.

and silhouette matching via Chamfer matching [Borgefors, 1988]. Thisappris computa-
tionally expensive and influenced by noise due to the nature of contouhimgitdn contrast,
we propose a probabilistic approach. Instead of relying on the objdbtmistte to determine
outliers, we use the entire binary shape masks from the training data. Byngligih shape
masks for a given object class so that their center points coincide ararputing the average
mask, we obtain a gray value maskwith pixel values between 0 and 1. This procedure is
similar to the one used to produce eigenfaces [Sirovich and Kirby, 198i8se pixel values
can be interpreted as prior probabilities for the location of interest pointsigitten object
class. We denot&. as thetemplate maskf the object class. Naturally, all training images
used to create the template mask are given in scale 1, but we can obtain templkseatna
different scales by scalin: using bilinear interpolation.

An example of the template masks which we obtained for the classes “pedeatniin
“car-sideview” is shown in Fig. 4. Here, the template masks are visualiZedgigness values
together with the part clustering method presented in the previous secti@anA® seen, the
average shapes of both object classes are clearly visible.

4.4 |SM Extension: Multiclass Hypothesis selection

After learning standard codebookKs, superfeature codebook$, segmented object pa,
and template masks. for each object class= 1,...,C from the training data as described
before, we incorporate these information into the detection step. Hereaveetb perform
some further adaptation to the standard ISM approach, as we assume alassliproblem.
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Before however, we formulate the detection step mathematically.

After computing interest points and shape descriptors for a given teseirttegylatter are
matched with all codebook&: and7¢, and the modes of the voting space are computed using
mean-shift, as described above. bet= (X, Ve, S) be a resulting mode, i.e. a possible center
location ,Yc) of an object of class and its scalex.. We will refer toh. as ahypothesiof
classc. Furthermore, leX be the interest point locations of all voters that were responsible
to create hypothesis.. As in standard ISM, each vote has an assigned voting stremgth
In the following, we will include the voting strength as an additional dimensionegtsint
location vector, i.ex; = (X, Vi, S,w;). Using this, we define @oting scoreas

VS(hC) = Z ZbiWiTc(Xi,yi,hc), Where bi = (6)

Xi€X¢

1 if x; results from7¢
0 if x; results fromZ

andTc(X,Y;, he) is the evaluation of the template mask at positigny) after placing its center

at (X, Yc) and rescaling it withs. (see above). This means that the quality of a hypothesis is
influenced by four values, namely the number of votes, their stramgtivhether they arise
from a superfeature match, and the prior quality of the voters obtainetthe shape template
Tc. Unlikely votes with respect to the shape template receive a very low weightteeir
contribution to the hypothesis score is strongly reduced.

Furthermore, for each object clas&e make use of the information of the learned subparts
Ac. The idea is to obtain an information about the amount of parts that havedeésrted.
Intuitively, a foreground object is expected to have most of the partsdeddicted, instead,
an occluded object appears with less parts. To account for fferetit object parts from
which votes may be cast, we first formulate the voting scoge which isrestrictedto an
interval ax = (ak_1, k) of orientations of vote vectors, wheke=1,...,K is the index of the
corresponding object part, i.e.

M—%)
Xi — Xc

W= Y wTdxyhd and a(x) = arcta @

Xi€Xc, ak-1<a(Xi)<ak

All part-based scores are then collected iK-dimensional vecta# defined as

£(he) = (vsi(he), ..., vsk(he)). (8)

Intuitively, this is a weighted histogram of votes where each bin correlsptma learned
object part, or equally a sector of vote orientations.

To find the best hypothesis we define a partial orden all hypotheses based on a function
Ar as

K
hi <hj e A (&(h).£(h))) <O where A (£(hi).£(h))) = > sign(&(h) - &hi)  (9)
k=1
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Algorithm 2: Multiclass detection with ISMe

I nput:
¢ Interest points; and corresponding shape descripyréfom a new test image

e codebookd,..., ¢, superfeature codebooks, ..., 7. and votesVy,...,Vc
for all C object classes

e minimal hypothesis scoremin

Output: Set of optimal object hypothesés*

H* — 0

Pwin « o0

while hyin > omin dO

forc=1toCdo

D « FindMatches (I, {di})

Dy « FindMatches (Z¢,{di})

Y « CollectVotes (Dc, DE, Vi)

He « ms(ox, py,ps, Yc) Mean-shift operation, returns set of hypotheses
Findhg s.t. he < hg Vhe € He, he # g Best hypothesis for clags see Eqn. (9)
I'c < ComputeHypothesisArea (hg) see Eqn. (10)

end

h* < argmax,(I'.,....I'c)
hwin < vs(h®)

H* — H*Uh*

end
return H*

whereéi(h;) indicates the value contained in the Wirof the histogram for the hypothesis
h;. Intuitively, the functionA, measures for which of the hypothetical objects the individual
object parts are stronger represented in the voting space. Usingdiqne(can determine the
hypothesis¢ with the highest order of all hypotheses for clasn case of ambiguity we use
the one with the highest global score ys(

However, to determine the strongest hypothesis across all objectglagsean not simply
compare the scores, as they are basedfd@rdnt codebooks with flerent numbers of entries.
Instead, we use another measure based on the @bgatthat is covered by a hypothesis. The
idea here is that all point locations iy of votes that were responsible flog, can be viewed
as small patches inside an object that contribute to the entire shape of tbe jisjeas pieces
of a puzzle. To formulate that, we define a square regi@r) around eaclx; with side length
proportional to the scalg. For the hypothesis; we can then define the relative area covered
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Figure 5: An urban environment with cars, pedestrian anérotijects as it is perceived by a
2D laser.Left: Laser beams are shown in red, circles represents the neglgsoints. Gray beams
indicate out of range data due to material reflections, slate éfects and particular object poses.
Center: Resulting JDC clustering of the scene. Orange lines depictsecutive points segmented
in the same clusteRight: A Delaunay triangulation is build on the centroids of thgreents. This
defines a graph among segments.

by all vote patches as
aredUy,cx, (%))

I Y) I T(xy.he) > 051"
where the function areg(computes the area of the joint region, and the denominator approx-
imates the area of the object by counting all points in the shape template thatedyetdik
be inside the shape. Care has to be taken in the case of overlappingygatiselses. Here,
we compute the set intersection of the interest points in the overlappingradesssign their
corresponding values alternately to one and the other hypothesis.

Once an optimal hypothedig across all classes is found, we remove all the votes coming
from those features that contributedig because we assume that an image feature belongs
to just a single object. The scores are then recomputed until a minimumesggrie reached.
Algorithm 2 summarizes the individual steps.

(10)

c

5 Structure Based Detection

For the detection of objects in 2D laser range scans, several appsohate been presented
in the past [see for example Arras et al., 2007]. Most of them have thewdistage that they
disregard the conditional dependence between data in a close neigbthohh particular, they
can not model the fact that the ladebf a given laser segmed; is more likely to bel; if
we know thatlj is the label ofS; given thatS; andS; are neighbors. One way to model this
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conditional dependency is to use Conditional Random Fields (CRFfgfbaet al., 2001],

as shown by Douillard et al. [2008]. CRFs represent the conditiomdatmility p(l | s) using

an undirected cyclic graph, in which each node is associated with a hidddom variable

li and an observatiog. In our casel; is a discrete label that ranges over &ealient classes

(pedestrian, car and background) ané a feature vector extracted from the 2D segm®nt

in the laser scan. A preprocessing step on range data has been deforddrimo produce

segments for the CRF detector. We use a simple clustering technique to gany points,

called Jump Distance Clustering (JDC). It is fast and simple to implement: if thikdEan

distance between two adjacent data points exceeds a given thresheldchuster is generated

otherwise the point is added to the current cluster (see Fig. 5-censaf).diister, or segment,

is defined as the set of poinf. Moreover we compute a Delaunay triangulation between the

centroids of each segmeSt in order to create a graph that connects clusters, see Fig. 5-right.
Assuming a maximal clique size of 2 for the graph, we can compute the condiaia

ability of the labeld given the observatiorsas:

N

1

P19 =5 [ [ets ) [ | vs.s01), (11)
i=1 @i,))e&

whereZ(s) = Xy Hi'\ilgo(s,li') [Tijee(s,s;. i, I]) is usually called theartition function & is

the set of edges in the graph, apdndy represent node and edge potentials. To detergine

andy we use the log-linear model

o(s.li) = enhh (12)
w(s,splis1j) gHetels silidi), (13)

wheref, andf, are feature functions for the nodes and the edges in the graph,ardiue
are feature weights that are determined in the training phase. The compuofatierpartition
function Z is intractable due to the exponential number of possible labelingsstead, we
compute theseudo-likelihoogwhich approximateg(l | s) and is defined by the product of all
likelihoods computed on thearkov blanke{direct neighbors) of nodei.e.

esl) || wspslih)

sieN(s)
| ~ pl(l = ' o
p( 19~ pi(l|s) 1:1[2(90(5,”) [ ] wisis1i15) -
G SieN(s)

Here,N(s) denotes the set of direct neighbors of noda the training phase, we compute the
weightsu = (up, ue) that minimize the negative log pseudo-likelihood together with a Gaussian
shrinkage prior as proposed by Ramos et al. [2007]:

(U-0)T(u-0)

= (15)

L(u) = —logpl(l'|s)+
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For the minimization ofL, we use the L-BFGS gradient descent method [Liu and Nocedal,
1989]. Once the weights are obtained, they are used in the inferense fghfind the labelk
that maximize Eqgn. (11). Here, we do not need to compute the partition furtesiit is not
dependent oh We use max-product loopy belief propagation (BP) to find the distributbns
each label;. The final labels are then obtained as those that are most likely for edeh no

In our case the Delaunay triangulation among segments defines the stmictoeenet-
work. We use a set of statistical and geometrical features for the nbttess GRF, e.g. width,
circularity, standard deviation, kurtosis, etc. [for a full list see Spinatid Siegwart, 2008].
However, we do not use these features directly in the CRF, becaustated by Ramos et al.
[2007] and also from our own observation, the CRF is not able to hamxtidinear relations
between the observations and the labels. Instead, we apply AdaBoeshfFand Schapire,
1997] to the node features and use the outcome as features for the @RfurFparticular
classification problem with multiple classes, we train one binary AdaBoosifitagor each
class against the others. As a result, we obtain for each claset ofM weak classifier$i®
(in this case decision stumps) and corresponding weiglfficiemtsa; so that the sum

M
ge(s) = ) afhi(s) (16)
i=1

is positive for observations assigned with the class lal@@id negative otherwise. Note that

the absolute value @, can be interpreted as a classification quality. To obtain a classification
likelihood, we apply the logistic functioa(x) = (1+e )1 to g.. We do this for two reasons:

first the resulting values are between 0 and 1 and can be interpretedldgmdékis of corre-
sponding to class. Second, by applying the same technique also for the edge features, the
resulting potentials are better comparable. Thus, the node feature fufctbthe segment
featuress and the label; is computed as

fn(s. 1)) = a(gi(s))- 17)

For the edge featurdg we compute two values, namely the Euclidean distance between the
centroidsc; andc; of the segments; andS;, along with a valuey; defined as

gij (s, s)) = sign@i(s)g;j(sj)) - (Igi(s)I + 19 (s))))- (18)
Thus, the value ofji; has a positive sign if AdaBoost classifigsands; into the same class,
and otherwise it is negative. The absolute valug;pfs the sum of the classification qualities

of AdaBoost. Ifgi(s) andg;(s;) are far from O thery;; has a high value, and viceversa. To
summarize, we define the edge features as

o @lici-cil) a@is. s il =1
fe(s,s,,l.,lj)_{ (0J J0)T J other\/\;ise (19)

The intuition behind equation (19) is that edges that connect segments wihlalbels have
a non-zero feature value and thus yield a higher potential. The latter is sormeéfaged to
as the generalized Potts model [see Potts, 1952].
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6 Object Tracking and Sensor Fusion

In this section we explain how to combine the two sensor modalities togethere Radgmage
data is used for “early fusion” and then combined in the tracking systemeditefusion step
consists in a technique to constrain the vision-based detector in salient isgiges. The
tracker combines detection results from camera and laser data and seldasatassociation.

An important factor in our multisensor system is the extrinsic calibration beto@eera
and laser. The internal camera parameters are estimated using the cdibeaiaczamethod
by Zhang [1999]. Then, we employ the method explained by Pless andyZ2a@4] to cal-
ibrate the 2D laser rangefinder with the camera. The procedure consstaltianeously
collecting image and range data of a planar checkerboard placed irofranbbot at difer-
ent positions and orientations. For each pose of the planar pattern, thedneettstrains the
extrinsic parameters by registering the laser scanline on the planar paitiethevestimated
plane computed from the image. The solution uses nonlinear optimization that misitméze
re-projection error.

6.1 Earlyfusion: using laser segmentsto bound the voting space

The early fusion method is concerned with the definition of constraints in thie bting
space of the image-based detector, in order to generate more precisehypjetheses. The
idea is to project segments extracted from the laser data as 3D boxes intitigespace. If
we consider a single laser segment, it could be projected as a box with & éeigh a fixed
value, a width defined by the extremal points of the segn¥gnand a depth defined by the
scale toleranc&s. These 3D boxes define boundaries in the voting space for hypothesis
selection for the image detector. Before the image hypothesis selection ikewegrly fusion
takes place and removes hypotheses that are not compatible with the hesintlae generous
dimensions of the boxes allow the survival of imprecise detections in positibscale.

In order to consider range-images in the early fusion process, wetoeeds, for each
object class. Precisely, we need to compitgeas a function of the laser segment distance. We
assume, for practical reasons, that the relationship between thesertaldasis linear, even
though this is not true due to lens distorsions. The idea is to perform a lirestrdguares
regression that relates the objects’ pixel heigbtsvith the object distancas®:

of = Brws +Ba, (20)

where f1,82) are the parameters of the line computed with the regression from a collettion o
measured object heights and distances. Thus, we are able to contalbecanateddistance
for each object category from a given input scale (and viceversa).

The scalew® estimated for each segment distance is then converted into the depth of the
3D region of interest in the ISMe voting space in order to easily prune fiadage detection
hypotheses:

Bs, = (0 -5, w + %), (21)
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Voting space for object hypotheses

Votes for object
centers

Projected laser segments

Figure 6: Early laser-camera fusion. Laser segments ajegbed into the visual-based object
detection voting space as 3D boxes. Image detection hypegHecated into one of these regions
are considered valid, the others are discarded. Votes armensas red circles. Object hypotheses
x; are shown in yellow. For clarity, features voting for theetijcenters (defined by position and
scale) are shown only on the left pedestrian.

whered is a constant which is fixed beforehand. Animage detection hypothesissileced
valid if it is found inside one of the 3D boxes that define the constraints ofdtieg space. A
visual explanation can be seen in Fig. 6.
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The last part of the early fusion step solves the data association probteredn segments
and corresponding image hypotheses. We assume that each segmegs beebosingle object.
For each segment we compute the distance and compute the hallucinateccsoadéng to
Eqgn. (20). We solve the assignment problem in a greedy manner: gsegmeentS;, we assign
from all valid image detection hypotheses found in the projected segmemh&dhat one to
the segmens;, which minimizes the absolutefterence between the scale of the hypothesis
and the hallucinated scale. The remaining processing of hypothesis selectaetection in
camera images follows the technique explained in Section (4.4).

6.2 Combined detection using Kalman Filtering

The aim of multimodal object detection is to provide useful information to a ntwvigar
a driver assistance module. For this reason, a natural output choiceifaletector is to
label laser segments with their class probability. The proposed fusion metmobines the
detectors’ information and provides output that consists in laser segrogitibps and object
category labels.

We use tracking as a mean of integrating class probabilities over time and ddiaorel
algorithm output, to provide prediction information. We aim to design a reliabtitrg
method that does not rely on single data association hypotheses andatbatggacefully with
the number of objects. Several methods have been developed in the dréitddiature for
handling complex data association at a high computational cost, including Mplbithgsis
tracking [Reid, 1979, Cox and Hingorani, 2002] and JPDA filters [Bhalom and Li, 1995].
Our tracking algorithm is designed to be computationally inexpensive aresao@ll with the
motion model of several kinds of object categories.

In contrast to cars, which have a comparably simple motion model given by dkerA
mann model [Ackermann, 1818], pedestrians are much harder to degatilba single motion
model: they can stop, suddenly turn on spot, invert their trajectory etcrefidie, we use a
pedestrian tracker in which each track is described by multiple Kalman Filteais, roviding
a different motion model. The advantage of this method is that the number of estimatirsg filte
scales linearly with the number of objects to track. Moreover, multiple hypeshegjarding
object motions are produced for each time step. For this work we employekind@f mo-
tion models, described by linear velocity and Brownian motion. The motivatioadi@cting
Brownian motion is the ability to model sudden direction and speed changesd#ion that
occurs especially in case of people tracking. Nevertheless, a comstacity model, in short
intervals, well approximates a variety of smooth curved trajectories. Td@oped tracking
technique is a way of combining tracking filters and it is very generic: othé¢iomonodels,
linear and non-linear, could be also used.

Tracks are managed byteacking manageithat solves data association, and creates or
deletes tracks. We assume that each track is associated at most to onsegnggatN is the
number of laser segments present in a laser &Réme number of tracks anidl is the number
of Kalman Filters present for each track, each withféedént motion model. Data association,
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i.e. the problem of assigning laser segments to tracks, is solved in two sthpdirst step

is to compute which motion model to use for each track. In each track, the chstatween
the Kalman Filters (KF) prediction and th¢ laser segments centroids are computed. This
process generates for each trddMahalanobis distances for each observation [Mahalanobis,
1936]. In each track, the closest distance for each observation is éakkthe KF generating
that prediction is tagged. At the end of the first step of the associationesfdagments, every
track obtains a set dfl distances froniN observations.

The second step of data association is used to select which observassigigea to which
track. We want to assigN hypotheses t® tracks (whereN # R). A rectangular matrix of size
Rx N is generated in which rows represent track indices and columns obearvalices. The
previously computed distances are inserted as values of the assignmeéxt Tiregisolution of
the combinatorial minimal weight assignment has been found with the exterfditunéres’
method for rectangular assignment matrices proposed by Bourgeoiseasdlle [1971]. If
there are more segments than tracks, fRerN new tracks are created. Instead, if more tracks
than segments are present in a certain moment, the tracks that are notdupilata new
observation are maintained until their variance xyj reaches a fixed maximum threshold
Sxy-

We now give a mathematical formulation for the tracks and for the fusion adébection
outputs. We track cluster centroids in 2D range data using two KF, each diiffeeent motion
model:

(()'ZS’S‘,S),()'Z\S’VS)’(pl” pC)) (22)
((%5.9°).(p.... pc)). (23)

Xm1

Xm2

where ¢&,¥5) are the coordinates of the cluster centroif, {°) is its velocity andp, ..., pn
are the probabilities of alC classes. The observation vecigk);, at timek, consists of the
position of the cluster centroid and the category’s probability estimates @r @etection
modality:

Zi = ()?f,f/is,(cl,...,cn)l,...,(pl,..., pc)g). (24)

Here, ¢,9°) is an observation of a cluster centroid andenotes the number of sensors. Each
block (p1,..., pc) is the estimate given by the range or image based classifier.
The Kalman Filter is formulated by a prediction and an update step. Predictiomedt is
computed by
X(K)mi = AmiX(K— 1) (25)
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We write the state matricels,y,; in the case of two motion models and two classes as

1 0Ak 0 0O
01 0 Ak 0 O 1000
00 1 0 00O 0100

Am=l9 0 0 1 o0 o0| A0 0 1 0 (26)
00 0 0 10 0 00 1
00 0 0 01

If the matrix V! indicates the state covariance antithe sensor covariance, we compute
P(K)ri = AmiP(k—1)A + V2 (27)

The tracker manager selects which KF of each track is closer to the abiserz. Then

it solves the data association between the winning KF of each track and/atises using
the assignment optimization proposed by Bourgeois and Lassalle [19T&].odservations
are assigned to the tracks and the filters are updated. The observatssdisowupdate all
the filters of the track. The update step is calculated by computing the KalmarGgai

updatingx(k)mi and the covariance matrk i.e.

Kmi = PG (GPR,GT+V?)™ (28)
PMmi = (1 =KmiG)P(K)y (29)
XWmi = XK+ Kmi (2(k)a— GX(K);) (30)

wherez(k), represents the assigned observation vector to the track. The rGatriedels
the mapping from states to the predicted observation and is defif@d=4€; G ...G1 )",
whereGy maps to pose observations and thg map to class probabilities per sensor. For
example, for one laser, one camera and constant velocity we have:

0

10000 000010
10000) GSl‘(3‘32‘(000001)' (31)

St

7 Experimental Results

In this section, we present experimental results and quantitative compavisth other tech-
niques in order to validate our method.

7.1 Experimental Platform

To acquire the data, we employed our urban mobile platf®martter The robot is based on
a standard Smart car that has been equipped with distance laser seasm®as, a tlierential
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Num Frames 1675
Laser range data resolutior0.25deg

Image resolution 640x 480px

Laser positioning horizontal, 48cm from ground
Camera lens Telelens, 45deg f.0.v.

Num of car samples 510

Num of people samples | 376

Table 1: Urban Scenario testing dataset, collected in domm&irich, Switzerland

GPS unit, an Inertial Measurement Unit (IMU), an optical gyroscopksaveral processing
computers. For this work, we acquired data with a camera equipped with anteteid a 2D
laser range finder mounted in front. The camera was mounted on a metalthg woftop of
the vehicle and the logging system has been optimized to reduce frame drops.

7.2 Real World Dataset: Urban Scenario

We evaluated our technique on a challenging urban scenario dataseét We Rser angular
resolution to ®5 degrees in order to obtain a high resolution laser dataset. Data is collected
inside Zurich, Switzerland in a loop of circa&rh length to retrieve cars and pedestrians in

a real busy urban environment. We synchronized camera and laseiodataotal of 1675
frames. The imagery is manually labeled with rectangle boxes indicating pedssind cars.
Annotations in images are marked if at least half of an object is shown orbjeetovidth

in the image is greater than 80 pixels. Laser range data has been manudéy lapeising
associated image frames as reference for the ground truth. Labelintainezbby manually
selecting and assigning a class label to the segments in the range data. A MAELAB

scripts has been used to simplify this process.

7.3 ISMeimage detector training

Several ISM codebooks need to be trained due to the complexity of the mudtickas, pedes-
trians) classification task. Experience shows [Leibe et al., 2007] thaalaiews of pedestri-

ans generalize well to frofitack views. Therefore, we used a set composed of 400 images of
persons with a height of 200 pixels ati@rent positions, dressed withfldirent clothing and
accessories such as backpacks and hand bags in a typical urli@mem@nt. The category
‘car’ has been learned from 7ftBrent viewpoints as in Leibe et al. [2007] (see also Figure 7,
left). 200 training images are used for each view. Car codebooks anetkasing Shape Con-
text (SC) descriptors [Belongie et al., 2002] at Hessian-Laplace sitpmnts [Mikolajczyk

and Schmid, 2005]. The pedestrian codebook uses lateral views athes8(ptors at Hessian-
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Figure 7: Left: For car classification, we use codebooks from ffedent views. For training,
mirrored images are included for each view to obtain a widmecage.Right: For pedestrians
we use a codebooks of side views with mirroring. Lateral gidwave sfficient information to
generalize front@back views.

Laplace and Harris-Laplace interest points for more robustness. M&tesk SC due to their
low dimensionality (36D): this shortens the time for feature extraction, for giggoanerative
clustering of the codebook generation and for feature matching with coétsb In the work
of Leibe et al. [2006], the authors compare several descriptorsbjecbdetection and they
show that SC descriptors are very good features for object detection.

7.4 Boosted CRF range detector training

Our laser training data consists of 600 annotated scans containing Etestars and back-
ground randomly sampled from a typical urban scenario. 5158 car datesp2379 people
data points and 25251 background labeled points have been usedrfmgird here is no dis-
tinction of car views in the laser data as the variation in shape is low. The datgés limited

to a maximum range of 1B As a first step, the AdaBoost classifier of range data features
is trained on this set. Then we use the output of the trained classifier toqerodde feature
values for the CRF. Then, the CRF is trained in order to set the node gedestures weights.
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7.5 Quantitative and Qualitative evaluation

In this section we present results in form of precision-recall curvelsey summarize the
complete performance of a classifier:

. TruePos
Precision= 4 Recall= TruePos (32)

TruePos+ FalsePos TruePosFalseNeg

Precision-recall curve has the advantage of computing a classifierperice measure with-
out knowing the number of true negatives. Specially in case of image age data classifi-
cation, setting this number can be ambiguous because the quantity of posshedgatives
in such data is not easy to define.

We run a comparison of the proposed multiclass image detection algorithms wiihewizr
ous work [Spinello et al., 2008b], as shown in Figure 13. Our visiondasgéticlass detection,
named ISMe2.0 in the plots, is compared to the standard ISM, our previals slass detec-
tor ISMel.0 and with an AdaBoost detector trained on Haar features JABEl can see that
our method yields the best results. It is important to see that the multiclass méditaanso
higher recall values than the previous ISMel.0, mostly due to the refineimémtduced in
the hypothesis selection step, namely the object subparts and the shapegempla

We then run the system for the challenging Urban Scenario dataset.tiReddstection
with camera is shown in Fig. 8-left.

In the evaluation of results we compare the performance of severatalstby using equal
error rate (EER) error metric on a precision-recall graph. EER is aumneas compare the
accuracy of classifier. This measure is often used, especially in biompgriesLi, 1988]
and in computer vision [Leibe et al., 2005]. In general, the classifier withotiest EER is
most accurate. EER is the point in which false positive rate and false nwegate have the
same value. The lower the EER, the more accurate the system is consideeedtee higher
the diagonal crossing point in the precision-recall curve, the lower,Ei#Rless the errors
computed by the classifier.

We compared our image detector with respect to a Haar-AdaBoost bassiier and, in
case of the pedestrian detector, with the Histogram of Oriented Gradiehisdgee developed
by Dalal and Triggs [2005]. In case of HOG and ABH we used the eadjoh technique
explained in Section 6.1 in order to reduce the image search space. Our rasiltelzctor,
shortly named ISMe, clearly outperforms the other methods. Precisionuat eqor rate
(EER) is: 6001% for ISMe, 5221% for HOG, 1117% for ABH. In general, if one is willing
to accept a high rates of false positives, the ISMe detector could achiev®% Recall. At
that values the dlierence with respect to the other methods is even more evident. We then
evaluated the laser based detector for pedestrian detection in Figuitet.8Tifiggre we show a
comparison between the Boosted CRF and a standard AdaBoost cléissiitdd DC segments
(AJDC) in order to visualize the introduced performance enhancemed¥C Alassifies JDC
segments regardless of the neighboorhood state. Itis interesting to natiteeticonsideration
of the segments’ neighborhood in the CRF plays an important role in the abilitgreeise the
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P-R: Camera based PED detection P-R: Laser based PED detection
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Figure 8: Quantitative evaluation for pedestrian detectiQur approach outperforms the other
methods for both sensor modalities. The image based datesticompared with Histogram of
Oriented Gradients detector (HOG) and an AdaBoost classifielg Haar features (ABH). We
show a comparison between Boosted CRF and AdaBoost classiiicdatiidC segments (AJDC)
in order to visualize the introduced performance enhanoéne

detection rate and reduces the number of false positives, the AJDCiswaveays below the
CRF one and it decreases earlier than the CRF curve. In this casaqmetiEER is 6423%
for the CRF and 509% for AJDC.

We then evaluated the performance of our system in case of car deteg®Rigure 10).
The ISMe car image detector outperforms the ABH detector. The latter lemstiz@ned on
trunks, sides and frontal views of cars. It is important to remark thatebelts shown in
Figure 10-left are averaged between the 7 car views of ISMe. thel Egua Rate is crossed
at 7254% for ISMe and 183% for ABH. The performance of the laser based classifier is
compared with AJDC in Fig. 10-right and also in this case CRF has bettdtsrastin respect
to AJDC. Precision at EER is 789% for CRF and 7387% for AJDC. Itis interesting to notice
that cars are in general easier to detect with respect to pedestriamisively, cars are rigid
objects with much less geometrical and visual variability than visually complesspeans.

Tracking and fusion for the pedestrian category is evaluated in Fig. 9.shWe the
precision-recall graph and a 'Recall-false positives per frame’ plotrder to show the per-
formance increase. It is interesting to see in the plot of Fig. 9-left thataheera and laser
detectors are very complementary sources of information: their combimgdbzdion allows
to have a fused detection that is higher that each single one; this phenoieewen more evi-
dent when precision is low. The tracked and fused precision at EER8%%9n Figure 9-right
we show that we improved also that: by fixing a certain false positive rategmee, we obtain
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P-R: Tracking and fusion PED class R-FPP: Tracking and fusion PED class
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Figure 9: Quantitative evaluation of tracking and fusiongedestrian detection. Precision-Recall
graph (left) and 'Recall-false positives per frame’ showt tha fusion method enhances the results
of single classifiers.

a higher Recall value. Tracking and fusion for cars is shown in Fig.Sitilar conclusions
to the sensor fusion on pedestrians could be given. Tracking allowtsea Betection rate than
each single classifier and a reduced number of false positives per; fpeentsion at EER is
78.4%. This value of precision is significantly higher than the pedestrian agtelge to the
higher performances of vision and laser detectors.

From this experiments we can draw some interesting conclusions. Imagageddata are
two very diferent sensor modalities, with venyfiirent characteristics. With this experiments
we proved that image and range based detectors can be combined foingiddused detector
that is more robust than its components. Range data has the advantage@$e and instan-
taneous target localization and it helps to distinguish objects that have a low infagmation
content, for instance people in shadow areas, or partial views oflogage, instead, plays an
important role when range data is ambiguous, for instance when a pemseived from the
side or in presence of clutter. Both of this examples show how single sertalities could
fail and how the multimodal fusion overcomes this flaws. Moreover it is intieiggso notice,
that in case of limited visibility, pogno light conditions or camera failure, this approach still
produces a usable output, see for instance Figure 12-middle or Figlretthin.

Certainly, this approach presents shortcomings. The technique is limited tarthe of
15m due to sparsity of the retrieved laser data points. At such distance crspanially
people are described by too few points to obtain good range data clagsifiessults. Severe
street slopes could also contributestoort-sightednessf the fused detector. This aspect has
been addressed in a previous work Spinello et al. [2008b] by using&lhg plane estimate
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P-R: Camera based CAR detection

P-R: Laser based CAR detection
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Figure 10: Quantitative evaluation for car detection. Capraach outperforms the other methods
for both sensor modalities. The image based detection igpaced with an AdaBoost classifier
using Haar features (ABH). We show a comparison between Bb&fR¥- and AdaBoost classifi-
cation of JDC segments (AJDC) in order to visualize the inioedl performance enhancements.
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Figure 11: Quantitative evaluation of fusion for car detatt Precision-Recall graph (left) and
'Recall-false positives per frame’ show that the fusion rodtenhances the results of single clas-

sifiers.

with a 3D laser.
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Some qualitative results are shown in Figure 12 where a passing car avgsang pedes-
trian are correctly detected and tracked. It is important to notice that eveghtimages and
laser data show very low contrast, partial occlusions and clutter, thensysémages to detect
and track the objects in the scene. For a video extracted from the exptyiseenExtension 1
(Appendix A).

8 Conclusions

We have presented a method to reliably detect and track multiple object ciassatsioor
scenarios using vision and 2D laser range data. We showed that tladl pezformance of
the system is improved using a multiple-sensor system. We have introduceal setensions
to the ISM based image detection to cope with multiple classes. We showed thatdtse
tion based on Boosted CRFs performs better than a simpler AdaBoost elaasdipresented
tracking results on combined data. Finally, we showed the usefulness approach through
extended experimental results and comparisons on real-world data.

Future developments of this research are concerned specially with theatiaagf long
range people detection. People at long range are described by omlypixtds in the image
and few to none laser points. The idea is to integrate small scale detection sgipatello
et al., 2009] in the multimodal system by considering a more advanced traalkiego cope
with very unreliable hypotheses. Other research directions involve tredagenent of robust
data association filters, like MHT or JPDAF, adapted to the multimodal deteciidnepn.
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A Index to Multimedia Extensions

The multimedia extensions to this article areldtp;Avww.ijrr.org.

Extension Type Description

1 Video Multimodal detection and tracking of people and cars
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