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Abstract. Many man-made and natural structures consist of similar elements
arranged in regular patterns. In this paper we present an unsiwggeapproach
for discovering and reasoning on repetitive patterns of objects in a Singlge.
We propose an unsupervised detection technique based on a votimgesohe
image descriptors. We then introduce the concepétbicelets: minimal sets of
arcs that generalize the connectivity of repetitive patterns. Latticeletseackfor
building polygonal cycles where the smallest cycles define the soughpgiof
repetitive elements. The proposed method can be used for patterctiorednd
completion and high-level image compression. Conditional Random Faeéls
used as a formalism to predict the location of elements at places wherarthey
partially occluded or detected with very low confidence. Model compyess
achieved by extracting and efficiently representing the repetitive stesciuithe
image. Our method has been tested on simulated and real data and tti@tuzn
and qualitative result show the effectiveness of the approach.

1 Introduction

Man-made and natural environments frequently containafetgnilar basic elements
that are arranged in regular patterns. Examples includgtactural elements such as
windows, pillars, arcs, or structures in urban environmesuch as equidistant trees,
street lights, or similar houses built in a regular distatweach other. There are at
least two applications where models of repetitive striegtiare useful pieces of infor-
mation: occlusion handling and data compression. For thadg pattern information
can be used to predict the shape and position of occludedvardafidence detections
of objects in the same scene. This introduces a scheme imidvelevel detections
are mutually reinforced by high-level model informatiowrfnodel compression, rep-
resenting the repetitive structure by a generalized oljedtpattern description makes
it possible to represent the structure of interest in thegenzery efficiently.

In this paper, we present a technique to find such repetititieeims in an unsuper-
vised fashion and to exploit this information for occlusimendling and compression.
Specifically, we evaluate our method on the problem of bugdacade analysis.

The contributions of this paper are:

1. Unsupervised detection of mutually similar objects.9elb contours are extracted
and robustly matched using a growing codebook approaclrauspy the Implicit
Shape Models (ISM) [1].



2 L. Spinello, R. Triebel, D. Vasquez, K. O. Arras, R. Siegwart

2. Analysis of pattern repetitions by the conceptaificelets: a selected set of fre-
qguent distances between elements of the same object categtite Cartesian
plane. Latticelets are generalizations of the repetitiattepn.

3. A probabilistic method to geometrically analyze cycliereent repetitions. Using
Conditional Random Fields (CRF) [2], the method infers migsobject occur-
rences in case of weak hypotheses. Element detection plibbahd geometrical
neighborhood consistency are used as node and edge features

Our method is a general procedure to discover and reasorpetitiee patterns, not
restricted to images. The only requirement is that a metboddtecting similar objects
in a scene is available and that a suitable latticelet paenmation is available in the
space of interest, e.g. the image or Cartesian space.

To the authors’ best knowledge, there is no other work initeeatture that pursues
the same goals addressing the problem in a principled way.

This paper is organized as follows: the next section digsussated work. Section 3
gives an overview of our technique while in Section 4, theepes of element discovery
is explained. Section 5 presents the way we analyze regepiitterns and Section 6
describes how to use CRFs for the task of repetitive stradhierence. Section 7 shows
how to obtain an high-level image compression with the psepanethod. In Section 8
the quantitative and qualitative experiments are pregdioliowed by the conclusions
in Section 9.

2 Related Work

In this work we specifically analyze repetitions from a sengtatic image. The work
of [3] uses Bayesian reasoning to model buildings by archital primitives such as
windows or doors parametrized by priors and assembledhegkke a 'Lego kit'. The
work of [4] interprets facades by detecting windows with &Wlapproach. A prede-
fined training set is provided. Both works address the probhth a Markov Chain
Monte Carlo (MCMC) technique. Unlike our approach, they dbexploit information
on the connectivity between the detected elements. Our weels ISM in an unsu-
pervised fashion without a priori knowledge. We considesetl contours to create
codebooks that generalize the appearance of repeatednttemiereby, we are able to
recognize such elements with high appearance variabilapks to the Hough-voting
scheme. In the field of computer graphics, grammar basea@uoal modeling [5-7]
has been formally introduced to describe a way of represgmtian-made buildings.
Most of these works do not discover patterns but reconstnec8D appearance of the
facade and require human intervention.

Approaches based on RANSAC [8] and the Hough transform [@& lh@en used to
find regular, planar patterns. More sophisticated methelds the assumption of the
regular pattern using Near-Regular Textures (NRT) [10, $ihilar to our work is [12]
in which the authors propose a method to find repeated patitera facade by using
NRT with MCMC optimization using rules of intersection betn elements. They are
able to extract a single pattern based on a 4-connectiutiigéa Our approach allows
detection of arbitrary patterns without relying on a fixedd®lo Further, it can detect
multiple object categories and associate for each catagahtyple repetition patterns.
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Fig. 1. Schematic overview of the algorithm.

3 Overview

The first step of our algorithm (see Fig. 1) is to compute a stamdard descriptors
on a given input image. Then, we compute closed contoursrépaesent the candi-
dates for repetitive objects such as windows or pillars. Réeidea is that we do not
classify these objects using a model that was previoustpéebfrom training data, but
instead, obtain evidence of their occurrence by extractinglarities directly from the
given scene. The advantage of this is twofold: first, we adependent of a previously
hand-labeled training data set. Second, by grouping simigects into categories and
considering only those categories with at least two objestiainces, we can filter out
outlier categories for which no repetitive pattern can benth Our measure of mu-
tual similarity is based on the object detection approachdipeet al. [1]. In the next
step, we analyze repetitive patterns inside each categbiy.is done by analyzing the
Euclidean distances between elements in the image acciadutaa frequency map.
These relative positions are represented as edges incelgtiph in which nodes rep-
resent objects positions. The most dominant edges by wHiobaes in this graph can
be connected are found using a Minimum Spanning Tree atgornd grouped into a
set that we call latticelet. For reasoning on higher-leegletitions we extract a set of
polygonal repetitions composed of latticelet arcs. Sudyggmmal repetitions are used
to build a graph for predicting the position of occluded orakly detected elements.
An inference engine based on CRFs is used to determine ifcitii@nce of an object
instance at a predicted position is likely or not. In an imagmpression application,
we use a visual template of each object category, the medaskgoound color and the
lattice structure to efficiently store and retrieve a givepLit image.

4 Extraction of Mutually Similar Object Instances

In this section we explain the process of discovering réipgetelements present in an
image based on closed contours. As first step of the algoriitrape Context descrip-
tors [13] are computed at Hessian-Laplace interest paGastours are computed by
using the binary output of the Canny edge detector [14] eedoda Freeman chain
code [15]. We refer to the content in each contour as an objetzinceO.. Matching
contours in real world images can be very hard due to shadod/tos contrast areas.
We therefore employ an Implicit Shape Model-like (ISM) tairfue in which the con-
tours act as containers to define a codebook of includedigess: This way, we can
robustly match objects. In summary, an ISM consists of afdetal region descriptors,
calledcodebook, and a set of displacements, usually nametgs, for each descriptor.
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Fig. 2. Extraction of mutually similar objects. For each closed contour, a codedfatescriptors
is created that contains relative displacements to the object centers (dtes, the descriptors
of each object are matched against the descriptors in the image.

The idea is that each descriptor can be found at differentipos inside an object and
at different scales. Thus, a vote points from the positioa ofatched descriptor to the
center of the object as it was associated in the codebookraotien. In our case all
the descriptors found inside a contour are included in tlkelbook%; as well as the
relative displacement of the respective interest pointh waspect to the center of the
contour. To retrieve objects repetitions we match objecthe following way:

1. All descriptors found in the image are matched againstta@ctis codebookse.
Those with a Euclidean distance to the best mat&tithat is bigger than a thresh-
old 64 are discarded.

2. \otes casted by the matching descriptors are collecta®iD voting space

3. We use mean shift mode estimation to find the object cerdar &ll votes. This is
referred to as an object hypothesis.

To select valid hypotheses we propose a quality functiontibkances the strength of
the votes with their spatial origin. Votes are accumulateal ¢ircular histogram around
the hypothetical object center. The detection quality fiamcis given by:

S

g =w fh(aiaae) + (1*Wa) . ge g € [0, 1} (1)

& fh(ae, Oe)

whered, is the vote orientation histogram of the obj&&t; o; is the vote orientation
histogram of the hypothesis f}, is a function that applies aAND operator between
the bins of two histograms and sums the resulting not empiy. §i s are respectively
the score (number of votes received for the hypothesis) lemddore 0of0e. w; is the
bias that is introduced between the two members. This is pli$ied version of the cost
function explained in [16]. Detected objects are selected bimple minimum thresh-
old 64 on the detection qualitgj . All the objects matching witlde constitute the object
categoryr that is defined by a codebook composed by descriptors thatitmated to
each match and all the entriesé§. Thus, a more complete description of the visual
variability of the initial object instanc®e is achieved. It is important to notice that it
is not required that every object in the image has a closetbuomas soon as there is
at least one of its category. In other words: if an image ofcad& contains several
windows of the same type, only one of them is required to halesed contour. In this
work we aim to match objects with the same scale. Same ohjeesent at different
scales in the image are treated as different object catgori
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Fig. 3. Latticelet discovery process. Objects of the same category are detéatechplete graph
is built and the relative distances are accumulated in the Cartesian plane.

As a last step we use an hierarchical agglomerative clastevith average linkage
to group visually similar categories by using a measure rigest by their codebook

o L(tl 1) .

entriesd (Tc'g, Tj;) = M whereL computes the number of corresponding de-
min{ |t |, T,

scriptors from the two codebooks with a Euclidean distaridess tharnfy and

number of codebook entries.
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5 Analysis of Repetitive Objects

5.1 Latticelets

In this section we introduce the space frequency analysthéodiscovered object cate-
gories. We name the detected object locations in the imagedas. In order to analyze
the repetition pattern of each object category we build apteta graph that connects
all the nodes. Our aim is to select in this graph edges that haepeated length and
orientation. Moreover, we require our arc selection toudel all the nodes. Our pro-
posed solution is based on the use of a Minimum Spanning ™M&T). From the
complete graph we build a frequency map (see scheme Fig. Bignd), in which we
store the distancéslx|,|dy| in pixels between nodes of the graph. The map represents
the complete distance distribution between the nodes. @efibre have to select from
this map the most representative modes. In order to estilmede density maxima in
the frequency map we employ a two dimensional mean shiftrighgo, with a simple
circular kernel. Each convergence mode is expressed bynaipadhe mapdx, dy and
its score repetitiveness that is given by the number of paiontributing to the basin
of attraction. All the graph edges that contribute to eachienconvergency are then
labeled with their associated distance. At the end of thiz@ss we have obtained a
graph in which the distances between the nodes have beepddig averaging similar
consistent distances/orientations. Each edge is taggbdtairepetitiveness score.
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Fig. 4. Repetitive distances in x and y are clustered via mean-shift, the arenagighed by their
mode convergency score. The solid and dotted lines in the latticelet figpiresent the possible
directions espressed by the seledged and|dy|.

As last step of this processing we employ Kruskal’s algonifi 7] to find the min-
imum spanning tree by using the nodes, their edge conntycéind the weight of the
arcs. The resulting tree represents the most repetitiesarificient to connect all the
nodes. In order to compact the information we select eadhddimrc just once. We call
it latticelet, the minimal set of repetitive arcs that areded to represent the original
lattice. Each object category is associated to a latticdht generalize its repetition
pattern. Our method is able to cope with small perspectistodions thanks to the re-
laxation step. For larger deviations from a fronto-patatieage view, the problem of
perspective estimation can be naturally decoupled fronoitteeof analyzing repetitive
patterns. The problem of image rectification could be addmavith many existing
methods (e.g. [18]) that are far beyond the scope of thisrpape

5.2 Cycles and chains

Latticelets contain very local information, they expldie tdirection of a possible pre-
dicted element from a given position. In order to incorpetagher level knowledge of
the repetitive pattern of the neighborhood, we use cyclegposed of latticelets arcs.
Our aim is to find minimal size repetitive polygons. They pdavthe effective object
repetition that is used in later stages to obtain predictiod simplification. For each
category we sort the the weight of its latticelet arcs and &ecs the one with highest
weight. We compose a new graph by using the selected arcltbdmrinection between
nodes and compute the smallest available cycle by compitsirggyth (i.e. length)y.

A cycle " is computed by using an approach based on a Breadth-firatiSalgo-
rithm. Starting from a node of choice in the graph, arcs allei@d once, and nodes
are marked with their number of visits. A cycle is found asrsas the number of visits
for a node reaches two. This is done for all the nodes presetiei object category
detection set. We then collect all the cycles, and we sefecbhe with the smallest
number of nodes. We create a graph by using the connectiffégyed by~ and mark
as removed the nodes that are connected by it. Thus, we atltkatetticelet arc until
all the nodes are connected or all the latticelet arcs ard. We obtained a polygon
set composed of frequent displacements suitable to desttrébobject distribution in
the image (see scheme Fig. 5) and to generalize higher orglgesitions. An object
category is therefore associatecktemall cycles¥ = {Iq,..., [}
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Fig. 5. From the graph created by an incremental set of latticelet’s arcs, spalitive cycles”

are selected by using a Breadth-first Search algorithm. Chains atedien the remaining nodes
that have not been satisfied by any polygonal cy@es

In addition to what has been explained above, the algoritiea to represent with
chains the nodes that cannot be described with polygonkdsyEhe procedure is anal-
ogous to the former one: chain arcs are selected by usingtheddatticelet set. The
procedure is run for each object category.

6 Structure Inference using Conditional Random Fields

So far, we showed our method to detect objects representeldses] contours and to
find repetitive patterns in the occurrence of such objectsvéver, in many cases, ob-
jects can not be detected due to occlusions or low contratsteiimage. In general,
the problem of these false negative detections can not bedas there is not enough
evidence of the occurrence of an object. In our case, we cathesadditional knowl-
edge that similar objects have been detected in the same aoeinthat all objects of
the same kind are grouped according to a repetitive pattésimg these two sources
of information, we can infer the existence of an object, eVéts detection quality is
very low. We achieve this by using a probabilistic model:repossible location of an
object of a given category is represented as a binary random varidb{&) which is
true if an object of category occurs at positiorx and false otherwise. In general, the
state of these random variables can not be observed, iyatbdidden, but we can
observe a set of featuregx) at the given positiorx. The featurez here correspond
to the detection quality defined in Eqn. (1). The idea now ifirtd states of all binary
variabled; = {I;(x) | x € 2"} so that the likelihood(l; | z) is maximized. In our for-
mulation we will not only reflect the dependence between #i@bled andz, but also
the conditional dependence between variablek (x1) andl;(x2) givenz(xs) andz(xz),
wherex; andx; are positions that are very close to each other. The intulii&hind this
is that the occurrence probability of an object at positigiis higher if the same object
already occurred at positiop. We model this conditional dependence by expressing
the overall likelihoodp(l; | z) as a CRF.

6.1 Conditional Random Fields

A CRF is an undirected graphical model that represents thegonditional probability
of a set of hidden variables (in our cas¢ given a set of observatiors A node in
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the graph represents a hidden variable, and an edge betweenotles reflects the
conditional dependence of the two adjacent variables. Toptep(l; | z), we define
node potentials ¢ andedge potentials  as

¢(z,1gi) = @l and  @(z,zj,yi,y;) = eVele@zitiln), (2

wheref, andfe are feature functions for the nodes and the edges in the dsmgh
below), andw, andw, are the feature weights that are determined in a traininggha
from hand-labeled training data. Using this, the over&#lihood is computed as

1 N
I1]2) === Zi, l4i zi,Zj, 4, i), 3
p( r| ) Z(Z) |I:|¢( i TI)(LIJ')_ng( iy &), TJ) ( )
whereZ is thepartition function, N the number of nodes, an€ithe set of edges in the
graph. The computation of the partition functidris intractable due to the exponential
number of possible statds. Instead, we compute tHeg-pseudo-likelihood, which
approximates log(l; | z)

In the training phase, we compute the weighitsandw, that minimize the negative
log pseudo-likelihood together with a Gaussian shrinkag®.gn our implementation,
we use the Fletcher-Reeves method [19]. Once the weightshéaned, they are used
in the detection phase to find the that maximizes Eq. (3). Here, we do not need
to compute the partition functios, as it is not dependent dp. We use max-product
loopy belief propagation [20] to find the distributions otb#;. The final classification
is then obtained as the one that is maximal at each node.

6.2 Node and Edge Features

As mentioned above, the features in our case are directjetto the detection qual-
ity obtained from Eqgn. (1). In particular, we define the nodattires a$y(q,l+,) =
1—-I¢i+ (2 —1)g;, i.e. if the labell;; is 1 for a detected object, we use its de-
tection qualityq;, otherwise we use % g;. The edge feature functioia computes a
two-dimensional vector as follows:

g fo)ifli=ly o fer = maxfa(q,ln),fn(qi,lei)
s | ) — y el €2 u T el n(Gi;l7i);Th q]7 Tj
fe(cti,j; lri lej) { 0 0 else with feo = mavses, (Fa(11(G), 1)),

where; is the set of (maximal two) minimum cyclésthat contain the edge between
nodes and j, andn(I) is a function that counts the number of detected objectgalon
the cyclel, i.e. for which the detection quality is abodg.

6.3 Network Structure

The standard way to apply CRFs to our problem would consisbllecting a large
training data set where all objects are labeled by hand anebich object categorya
pair of node and edge features is learned so pliat| z) is maximized. However, this
approach has two major drawbacks:
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— For a given object categony, there are different kinds of lattice structures in which
the objects may appear in the training data. This meanshbatdnnectivity of a
given object inside its network varies over the trainingregées. Thus, the impor-
tance of the edges over the nodes can not be estimated in angiehmway.

— In such a supervised learning approach, only objects ofjoatss that are present
in the training data can be detected. l.e., if the CRF is édiionly on, say, some
different kinds of windows, it will be impossible to dete¢her kinds of objects that
might occur in repetitive patterns in a scene. Our goal hewes to be independent
of the object category itself and to infer only the struciofrthe network. In fact, the
object category is already determined by the similaritgdibn described above.

To address these issues, we propose a different approackid€ang the fact that
from the training phase we only obtain a set of node and edgghtesv,, andwe, which
do not depend on the network geometry but only on its topglagycan artificially
generate training instances by setting up networks witlvengiopology and assigning
combinations of low and high detection qualitgdo the nodes. The advantage of this
is that we can create a higher variability of possible situret than seen in real data and
thus obtain a higher generalization of the algorithm. Thmtogy we use for training
has a girthy of 3 and is shown in Fig. 6 on the left. Other topologies aresjixs for
training, e.g. using squared or hexagonal cycles, but frgme@ments we carried out it
turns out that the use of such topologies does not increasddhsification result. The
graph in Fig. 6 rightillustrates that. It shows the true pflesiand the true negative rates
from an experiment with 100 test data sets, each consisfimgtavorks with a total
of 5000 to 10000 nodes. The training was done once only witieagular topology
(TriTop) and once also including square and hexagonal topes (MixTop), which
represent all possible regular tessellations of the plasghe graph shows, there is no
significant difference in the two classification resultscbmtrast to the topology, the
number of outgoing edges per node, i.e. ¢thenectivity, has a strong influence on the
learned weights. Thus, we use a training instance wher@sdliple connectivities from
2 to 6 are considered, as shown in Fig. 6 left.

In the inference phase, we create a CRF by growing an inigdkork. From the
analysis of repetitive patterns described above, we olit@irset for each category,
the topology and edge lengths of the lattice. By subsequentling cycles fron¥ to
the initial network obtained from the already detected disiewe grow the network
beyond its current borders. After each growing step, we oopy belief propagation to
infer the occurrence of objects with low detection qualitiye growth of the network is
stopped as soon as no new objects are detected in any of thectiahis from the last
inference steps.

7 Model Compression

One aim of our work is to show that the information containeamn image (e.g. a fa-
cade) can be compressed using the proposed repetitiortidetechnique. We reduce
the image to a simple set of detected object categories, fgetition scheme, and a
simplified background extraction. More in detail: each objeategory is stored as a
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Fig. 6. Left: Triangular lattice topology used for training the CRF. The numbers insidedties
show the connectivity of the nodeRight: Comparison of CRF performances using TriTop and
MixTop datasets for training. True positive and the true negative ratesvaluated. The result
from the TriTop data are shown in box-and-whiskers mode, the Mix&eplt as dots. We can see
that using different topologies for learning gives no significant ckanghe classification result.

set of codebook descriptors and vote vectors, a rectangalarscale bitmap result-

ing from averaging the image areas inside the detected alsrbeunding boxes. To

visually simplify the image background, we assume that ffecs between detected
elements in a category is covered by textures of the same Wedsort object cate-

gories by their cardinality. Then, as a texture simplificatiwe compute the median
color between the elements by sampling squared image gafthis color is assigned
to a rectangle patch that extends from top to the bottom df eategory. We iterate this
procedure until all the image is covered. Missing empty epaxce filled with the color

of the most populous group. Some examples are shown in thepagt of Fig. 9.

An image compressed with our method can be used in a numbempdtations
such as visual based localization, in which informationxsacted only from the re-
peated pattern, or low-bitrate storage for embedded sygsterg. UAV) that have to
store/transmit large urban environments. In a more gefeshion we consider that our
approach should be useful in all those cases where the malrisgm identify places
where repetitive patterns are present, although it is naedissuited to provide detailed
reconstructions of the represented objects.

8 Experiments

The goal of our experimental evaluation is to investigate/thich extent the proposed
algorithm is capable to detect different categories of cisjeto detect repetition rules
and to run inference based on that information.

In order to obtain rich statistics on a wide range of objet¢garies we prepared an
image evaluation set composed of high contrast polygonffeteht sizes. 150 pictures
of 450x 150 pixels size have been computer generated, each onénitogta to 8
different object categories. An object category is defing@ lype of a polygon. It is
important to stress that such set evaluates not the deterjmabilities but the capacity
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Fig. 7. Samples from the evaluation data set

of grouping similar elements, detecting latticelets arfériing high level cycles and
chains for model compression and completion. Polygons eseribed by few pixels
to introduce ambiguity in the description of repetitive relnts. Fig. 7 shows some
samples from the evaluation dataset.

One of our goals is to assess the quality of object categstindtion and grouping,
that is fundamental for the creation of the graph, as weltsaanalysis. It is important
to note that the angle difference between an hexagon andtagmenis just 12 and
in small scales, due to pixel aliasing, this difference may lve easy to distinguish.
Fig. 8 left shows the average difference between the nunflaktected categories and
annotated categories. The graph is plotted with respelsetminimum detection quality
6, needed for each node. We can notice that the algorithm tendsder-explain the
data trying to not overfit single detections. This is the ltestithe soft detection and
grouping strategy we use that favors the merging of simééegories to the creation of
anew one.

Moreover, we evaluate the contribution of the CRF to thed&ie rate of repetitive
elements present in the image. We plot, in Fig. 8 right, theasure with respect ),
and we overlay the results using CRF. The left side of thelgshyows the CRF contri-
bution (4%) when many annotated objects have been alredegtdd by the discovery
process, the right one shows the performance when just fewegits are detected. In
the latter case, a sound 20% detection rate improvemenhis\esd: it suffices that a
small group of elements is detected for generating a s&t v$ed for inferring many
missing aligned low-detection nodes. Important to menisathe average of false pos-
itives per image: @. CRF therefore increases the true positive rate and ibgtees a
very low false positive rate.

We also performed a quantitative analysis of compressita far the images in
the evaluation set and the real-world images displayed gn $iright. The resulting
compressed image is very compact and it stores just one fpitonaeach object cate-
gory and a list of 2D coordinates of elements locations. lfewgloy the ratio in bytes
between the compressed image and the raw input image foedking set images we
obtain 14% ratio, for the pictures displayed in Fig. 9 (top to bottordey), we ob-
tain: 2% 1.2%, 2.3%, 0.8%, 2.8%, 8%. Even though this method aggressively reduces
the amount of image details, the salient repetitive paitepneserved.
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Fig. 8. Left: Average difference between the number of detected categorienanthted cate-
gories. The algorithm tends to under-explain the data trying to not oviediedetectionsRight:
Discovery only detection and discovery + CRF detection. The contribufi@Ré- for detecting
missing elements is particularly evident when a low detection rate is obtainaph&are plotted
with respect to the minimum detection qual@ly needed for each node.

A set of images of facades and other repetitive elements bega downloaded
from internet and treated as input for our algorithm, Figd@.each of the examples the
difference from discovery and CRF-completed image is shévisinteresting to notice
that the algorithm works also for not rectified facades averse kind of architectural
or repetitive elements. In the scope of this work it is evidbat training on a simulated
data, sufficiently rich in variability, satisfies also reand examples.

9 Conclusions

In this paper we presented a probabilistic technique tagetand reason about repeti-
tive patterns of objects in a single image. We introduceatmeepts of latticelets, gen-
eralized building blocks of repetitive patterns. For highel inference on the patterns,
CRFs are used to soundly couple low-level detections wigh-hével model informa-
tion.

The method has been tested on simulated and real data shihweimdfectiveness
of the approach. From a set of synthetic images, it was verifiat the method is able
to correctly learn different object categories in an unsuged fashion regardless the
detection thresholds. For the task of object detection bgtehprediction and comple-
tion, the experiments showed that the method is able tofgignily improve detection
rate by reinforcing weak detection hypotheses with the 4égkl model information
from the repetitive pattern. This is especially true fogkathresholds for which detec-
tion only, without our method, tends to break down. For tls& taf model compression,
i.e. retaining and efficiently representing the discovemmktitive patterns, a very high
compression ratio of up to 98% with respect to the raw imagedean achieved.

Beyond the tasks of model completion and compression, waggiations of this
method in image inpainting, environment modeling of urbeengs and robot naviga-
tion in man-made buildings.
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Fig. 9. Left Column: Extracted self-similar objects (red boxes). Note that often only a few-nu
ber of instances are foun@enter Column: Final CRF lattice (dots and lines) and inferred posi-
tion of objects (boxesRight Column: Reconstruction of images based on our model compres-
sion.



