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Abstract This paper presents a novel approach to detect and tracktpads and

cars based on the combined information retrieved from a caaned a laser range
scanner. Laser data points are classified using boostedt@matl Random Fields

(CRF), while the image based detector uses an extensioneofimplicit Shape

Model (ISM), which learns a codebook of local descripto@ira set of hand-
labeled images and uses them to vote for centers of detelsfect® Our extensions
to ISM include the learning of object sub-parts and temptadsks to obtain more
distinctive votes for the particular object classes. Theecti®ons from both sen-
sors are then fused and the objects are tracked using andextd¢alman Filter

with multiple motion models. Experiments conducted in+@atld urban scenarios
demonstrate the usefulness of our approach.

1 Introduction

One research area that has turned more and more into thedbmtsrest during
the last years is the development of driver assistant syséeth (semi-)autonomous
cars. In particular, such systems are designed for oparatibighly unstructured
and dynamic environments. Especially in city centers, whmeany different kinds
of transportation systems are encountered (walking, rgchiriving, etc.), the re-
quirements for an autonomous system are very high. One leggquisite for such
systems is a reliable detection and distinction of dynarbjeas, as well as an ac-
curate estimation of their motion direction and speed. isplaper, we address this
problem focusing on the detection and tracking of pedesréand cars. Our system
is a robotic car equipped with cameras and a 2D laser rangmecads we will
show, the use of different sensor modalities helps to impthe detection results.
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The system we present here employs a variety of differertioakstfrom machine
learning and computer vision, which have been shown to geogiood detection
rates. We extend these methods obtaining substantial irprents and combine
them into a complete system of detection, sensor fusion bjgttiracking. We use
supervised-learning techniques for both kinds of sensatatities, which extract
relevant information from large hand-labeled trainingadséts. In particular, the
major contributions of this work are:

e Several extensions to the vision based object detector ipeletal.[13] using a
feature based voting scheme denoted as Implicit Shape BIA&\). Our major
improvements to ISM are the subdivision of objects into pakts to obtain a
more differentiated voting, the use @mplate maski discard unlikely votes,
and the definition obuperfeatureshat exhibit a higher evidence of an object’s
occurrence and are more likely to be found.

e The application and combination of boosted Conditionald®am Fields (CRF)
for classifying laser scans with the ISM based detectorgugision. We use an
Extended Kalman Filter (EKF) with multiple motion modelsftse the sensor
information and to track the objects in the scene.

This paper is organized as follows. The next section dessnitork that is related
to ours. Sec. 3 gives a brief overview of our overall objededi&on and tracking
system. In Sec. 4, we introduce the implicit shape model {8kt present our
extensions. Sec. 5 describes our classification method tds¥ range scans based
on boosted Conditional Random Fields. Then, in Sec. 6 weagxpur EKF-based
object tracker. Finally, we present experiments in Sec.d’camclude the paper.

2 Related Work

Several approaches can be found in the literature to igesperson in 2D laser data
including analysis of local minima [19, 23], geometric m[@4], using maximum-
likelihood estimation to detect dynamic objects [10], gsitdaBoost on a set
of geometrical features extracted from segments [1], anff@elaunay neighbor-
hoods [20]. Most similar to our work is that of Douillaed al. [5] who use Condi-
tional Random Fields to classify objects from a collectibtaser scans. In the area
of vision-based people detection, there mainly exist twal&iof approaches (see
[9] for a survey). One uses the analysis aetection windovor templateg8, 4],
the other performs parts-basedletection [6, 11]. Leibet al.[13] present a peo-
ple detector usingmplicit Shape Model¢$ISM) with excellent detection results in
crowded scenes. In earlier works, we showed already extessif this method with
a better feature selection and an improved nearest neigielaoch [21, 22].

Existing people detection methods based on camedéaser data either use hard
constrained approaches or hand tuned thresholding. Zivlkamd Kidse [25] use a
learned leg detector and boosted Haar features from theraamages and employ
a parts-based method. However, both their approach toecltrst laser data using
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Canny edge detection and the use of Haar features to detdgtdaots is hardly
suited for outdoor scenarios due to the highly cluttered dat the larger variation

of illumination. Schulz [18] uses probabilistic exemplaodels learned from train-
ing data of both sensors and applies a Rao-Blackwellizeticffilter (RBPF) to
track a person’s appearance in the data. However, in ousteorarios illumination
changes often and occlusions are very likely, which is whyt@or matching is not
appropriate. Also, the RBPF is computationally demandéasgecially in crowded
environments. Douillar@t al.[5] also use image features to enhance the object de-
tection but they do not consider occlusions and multiplegendetection hypotheses.

3 Overview of Our Method

Our system consists of three main components: an appedaseed detector that
uses the information from camera images, a 2D-laser bastdttde providing
structural information, and a tracking module that usesctirabined information
from both sensor modalities and provides an estimate of titeomvector for each
tracked object. The laser based detection applies a ConditRandom Field (CRF)
on a boosted set of geometrical and statistical featuresDo&n points. The
image based detector extends the multiclass version ofntipéicit Shape Model
(ISM)[13]. It only operates on a region of interest obtairfeam projecting the
laser detection into the image to constrain the position soade of the detected
objects. Then, the tracking module applies an Extended &alRilter (EKF) with
two different motion models, fusing the information frommoara and laser. In the
following, we describe the particular components in detail

4 Appearance Based Detection

Our vision-based people detector is mostly inspired by thekwf Leibeet al. [13]
on scale-invariant Implicit Shape Models (ISM). In summay ISM consists in
a set of local region descriptors, called ttedebookand a set of displacements
and scale factors, usually namedtes for each descriptor. The idea is that each
descriptor can be found at different positions inside aect®nd at different scales.
Thus, a vote points from the position of the descriptor todéeter of the object
as it was found in the training data. To obtain an ISM from labdraining data,
all descriptors are clustered, usually using agglomezatiustering, and the votes
are computed by adding the scale and the displacement objbets center to the
descriptors in the codebook. For the detection, new ddscsigre computed on a
test image and matched against the descriptors in the cokebbe votes that are
cast by each matched descriptor are collected in &a@Ihg spacgand a maximum
density estimator is used to find the most likely position acale of an object.
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In the past, we presented already several improvemente atémdard ISM ap-
proach (see [21, 22]). Here, we show some more extensiord\dftd further im-
prove the classification results. These extensions corm#mthe learning and the
detection phase and are described in the following.

4.1 | SM Extensionsin the Learning Phase

Sub-Parts: The aim of this procedure is to enrich the information frora toters
by distinguishing between different object subparts frolmaol the vote was cast.
We achieve this by learning a circular histogram of intepesits from the training
data set for each object class. The number of bins of thisdriaim is determined
automatically by usindg-means clustering. The final number of clusters, here de-
noted agy, is obtained using the Bayesian Information Criterion (BIRote that
this subpart extraction does not guarantee a semanticdivisibn of the object
(i.e.: legs, arms, etc. for pedestrians) but it is intengstd see that it nevertheless
resembles this automatically without manual interactipthe user (see Fig. 1, left
and center).

Template Masks: In the training data, labeled objects are represented adiitary
image namedegmentation masK his mask has the size of the object’s bounding
box and is 1 inside the shape of the object and 0 elsewherev@aging all these
masks for a given object class so that their centers coiraidehen averaging over
them, we obtain aemplate maskf each object class (see Fig. 1, left and center).
This method is more robust against noise than, e.g., Chandtrhing [3], and does
not depend on an accurate detection of the object contoursus®' the template
mask later to discard outlier votes cast from unlikely areas

Superfeatures: The original ISM maintains all features from the trainingadia the
codebook as potential voters and does not distinguish leetsonger and weaker
votes. This has the disadvantage that often too many votesaat, even if an oc-
curance of the object is not likely given the training datad éeads to many false
positive detections. To overcome this, we propose to exsuguerfeaturefrom the
training data, i.e. descriptor vectors that cast a strougter than standard features.
We keep these superfeatures in a separate codebook to auted io the implemen-
tation. A superfeature is defined by a local density maximardescriptor space,
where only feature vectors are considered that correspoimderest points from a
dense area in the image spaceXjry, and scale). This definition ensures that for
superfeatures a high evidence of the occurrence of the tolsjeombined with a
high probability to encounter an interest point. We computperfeatures by first
employing mean shift estimation on all interest points fbimthe training data set
for each class, and then clustering the feature vectorsdaori¢or space that cor-
respond to the interest points from the found areas of higisitie This clustering

is done agglomeratively. In the end, we select the 50% of lirster centers that
correspond to the biggest clusters. The right part of Fidghdiss an example. Note
that the superfeatures inherently reflect the skeletoneobtject.
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Fig. 1 Left and Center: Sub-parts, depicted in colored slices, and template masks, ie.\thiey

are computed from the training set. Note that even though thgestgare computed unsupervised,
they exhibit some semantic interpretati®ight: Superfeatures are stable features in image and
descriptor space. This figure shows Shape Context descriptétssatan interest points (in red)
for the class 'pedestrian’. The position of the superfeatureslepicted in green.

4.2 |SM Extensionsin the | nference Phase

Sub-Partsand Template M asks: After collecting all the votes for a given set of ex-
tracted input features from a test image, we first discardties that are implausible
by placing the template mask at the potential object ceatedsemoving the votes
that are cast from outside the mask. For the remaining ondsd¢he maximum
density pointm using mean shift and insert all votes farinto a circular histogram
with g bins: one per sub-part of the object. We denote each suocbghésh as a
hypothesis = (hy,...,hq) of an object’s position. Thetrengtho of a hypothesis
is defined as the sum of all bins, i.e. the number of all votergte object center.
To find the best hypothesis we define a partial orddrased on a functioAy,:

q o
hi <hj < Ap(hi,hj) <0 where An(h;,hj):= z sign(h, —h)). (1)
K=1

Using this, we select the hypothesis with the highest orttecgse of ambiguity
we use the one with the highest strength) for each class., Weriind the best
hypothesiscrossall classes as described below, remove all its voters ammtmeate
the ordering. This is done until a minimum hypothesis sttergyin is reached.
Thus, the parametery, influences the number of false positive detections.
Superfeatures: Superfeatures and standard features vote for object seinté¢ne
same voting space, but the votes from superfeatures arénisdidpigher (in our
case by a factor of 2). Thus, the score of a hypothesis is hiflee fraction of
superfeatures voting for it is higher. In some cases wheobpgatt's shape visibility
is low only superfeatures might be used to obtain a very fetsadion.

Best Inter-Class Hypothesis: As mentioned above, we need to rate the best object
hypotheses from all classes. To be independent on an ovander-representation
of a class in the codebooks, we do this by comparing the velatieas covered
by the voters from all class hypotheses. More precisely, @find a square arga
around each voter that depends on the relative scale of swipior, i.e. the ratio
of the test descriptor’s scale and that of the found deswriptthe codebook. The
fraction of the area covered by all voters of a hypothesistaedotal area of the
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object (computed from the template mask) is then used totifydine hypothesis.
Care has to be taken in the case of overlapping class hymsthidsre, we compute
the set intersection of the interest points in the overlagrea and assign their
corresponding values alternately to one and the other hypothesis.

5 Structure Based Detection

For the detection of objects in 2D laser range scans, seappabaches have been
presented in the past (see for example [1, 16]). Most of thawve the disadvantage
that they disregard the conditional dependence betwearpdiits in a close neigh-
borhood. In particular, they can not model the fact that #eell; of a given scan
pointz is more likely to bd; if we know thatlj is the label ofz; andz; andz; are
neighbors. One way to model this conditional independesdse use Conditional
Random Fields (CRFs) [12], as shown by Douillatdal. [5]. CRFs represent the
conditional probabilityp(y | z) using an undirected cyclic graph, in which each node
is associated with a hidden random varidblnd an observation. In our case, the
li is a discrete label that ranges over 3 different classes§tedn, car and back-
ground) and the observationsare 2D points in the laser scan. At this point we omit
the mathematical details about CRFs and refer to the litezde.g. [5, 17]). We only
note that for training the CRF we use the L-BFGS gradient@l®snethod [14] and
for the inference we use max-product loopy belief propagati

We use a set of statistical and geometrical feattiydsr the nodes of the CRF,
e.g. height, width, circularity, standard deviation, ksis, etc. (for a full list see
[20]). We compute these features in a local neighborhoodrat@ach point, which
we determine by jump distance clustering. However, we dasét this features di-
rectly in the CRF, because, as stated in [17] and also fromoaur observation,
the CRF is not able to handle non-linear relations betweembiservations and the
labels. Instead, we apply AdaBoost [7] to the node featundsuse the outcome as
features for the CRF. For our particular classification pgobwith multiple classes,
we train one binary AdaBoost classifier for each class ag#iesothers. As a re-
sult, we obtain for each clagsa set ofMl weak classifiersi; (decision stumps) and
corresponding weight coefficients so that the sum

M

k(z) = Zai ui(f(2)) (2)

is positive for observations assigned with the class l&tsid negative otherwise.
We apply the inverse logit functicaix) = (1+e ) ! to gy to obtain a classification
likelihood. Thus, the node features for a scan pairnd a label; are computed as
fn(z,li) = a(g;;(z)). For the edge featurds we compute two values, namely the
Euclidean distance between the pointg andz; and a valug;j defined as

9ij (2, 2j) = sign(gi(zi)9;(zj)) (19 (zi)| +19j(zj)])- (3)
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This feature has a high value if both and z; are equally classified (its sign is
positive) and low otherwise. Its absolute value is the sundisfances from the
decision boundary of AdaBoost whegez) = 0. Thus, we define the edge features as

oL [ (@d@,z) azz)) =1
fe(z"zj’l"lj)_{( (0J J0)T ) otherw]ise ()

The intuition behind Eq. (4) is that edges that connect goiith equal labels have
a non-zero feature value and thus yield a higher potential.

6 Object Tracking and Sensor Fusion

To fuse the information from camera and laser and for objacking we use an Ex-
tended Kalman Filter (EKF) as presented in [21]. In our impdatation, we use two
different motion models — Brownian motion and linear velpet in order to cope
with pedestrian and car movements. The data associati@nfmed in the camera
frame: we project the detected objects from the laser sdartlie camera image.
Assuming a fixed minimal object height, we obtain a rectaagséarch region, in
which we consider all hypotheses from the vision based tatéar the particular
object class. Using a previously calibrated distancef an object at scale.Q (us-
ing the normalized training height), we can estimate th&adiser.s; of a detected
object in the camera image by multiplyingwith the scale of the object. Theng;
is compared to the measured distangessfrom the laser and both detections are
assigned to each other|ffneas— resi is smaller than a thresholg (in our case &).
We track cluster centers of gravity in the 2D laser frame@gisivo system states:

Xm1 = ((X*°9,¥°%9), (K9, 59), (c1,. .., €n)) andxme = ((X°°9,y°9), (c1, - .-, Cn)),

one for each motion model. Hergi*%,\§) is the velocity of the cluster centroid
(39, y;og) andcy, ..., cp are the probabilities of alh classes. We use a static state

model where the observation vecteiconsists of the position of the cluster and the
class probabilities for each sensor modality:

w = (%99, 9°%9 (cy1,....cn)t,. . (co, ... 0n)S). (5)

Here,(X°°9,§°°9) is a new observation of a cluster center adeénotes the number of
sensors. The matrid models the mapping from states to the predicted observation
and is defined asl = (PTS]...SI)T, whereP maps to pose observations and the
S map to class probabilities per sensor. For example, for aser| one camera and
constant velocity we have

P=(516060 S=%=1(866609- (6)
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Fig. 2 Left: For car classification, we use codebooks from 7 different viewstr&ining, mirrored
images are included for each view to obtain a wider cover@gater: For pedestrians we use 2
codebooks of side views with mirroring. Lateral views have sigfit information to generalize
frontal/back viewsRight: Setup used for the city data set. Only a small overlap of the cameras’
field of view is used to cover a larger part of the laser scans. Neatasion is used in this work.

7 Experimental Results

To acquire the data, we used a car equipped with two CCD cana@icha 2D laser
range finder mounted in front (see Fig. 2, right). The 3D tiams between the laser
and the camera coordinate frame was calibrated beforeNdm@cquired training
data sets for both sensor modalities. For the camera, wectedl images of pedes-
trians and cars that we labeled by hand. The pedestrian datossists of 400
images of persons with a height of 200 pixels in differentgzoand with different
clothing and accessories such as backpacks and hand badgpita urban en-
vironment. The class 'car’ was learned from 7 different \peimts as in [13] (see
also Fig. 2, left). Each car data set consists of 100 pictinoes urban scenes with
occlusions. Car codebooks are learned using Shape CoBi&xidescriptors [2] at
Hessian-Laplace interest points [15]. The pedestrian lmoole uses lateral views
and SC descriptors at Hessian-Laplace and Harris-Lapfegest points for more
robustness. Experience shows [13] that lateral views oégtgidns also generalize
well to front/back views. Our laser training data consist8@0 annotated scans
with pedestrians, cars and background. There is no digimaf car views in the
laser data as the variation in shape is low. The range datstsin 4 layers where
each has an angular resolution 2% and a maximum range of b

To quantify the performance of our detector we acquired tataskts containing
cars and pedestrians. The results of our detection algordte shown in Fig. 3.
Our vision based detecion named ISMe2.0 is compared to &melatd ISM, our
previous extension ISMe1.0, and for the pedestrian claigis AdaBoost trained on
Haar features (ABH). For the class 'car’, we averaged theltesver all different
views. We can see that our method yields the best resultsanitiqual Error Rate
(EER) of 723% for pedestrians and 74% for cars. The improvements arelynai
due to a decreased rate of false positive detections. Thwtged our laser based
detection are shown in the middle column of Fig. 3. We can satedur approach
using boosted CRFs performs better than standard AdaBBlostright column of
Fig. 3 depicts the results for the combined detection usisgr and vision. These
graphs clearly show that using both sensors the numbers# fadsitive detections
decreases and the hit rate increases. Some qualitativisrasel shown in Fig. 4
where a passing car and a crossing pedestrian are corretdlgteld and tracked.
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Fig. 3 Quantitative evaluatiorJpper row: pedestrian detectioh,ower row: car detection. From
left to right we show the results only using camera, only using Jaset both. As we can see, our
approach outperforms the other methods for both sensor modaliiiee image based detection
is compared with standard ISM, our first extension of ISM (ISMg&aiid AdaBoost with Haar
features. Our CRF-based laser detector is compared with AdaBlestan also see that the com-
bination of both sensors improves the detection result of botilessensors.

In addition, we evaluated our algorithm on a third, more lgmaging dataset ac-
quired in the city of Zurich. It consists of 4000 images argklascans. The equal
error rates of this experiment resulted in.B% (laser-only), 64.% (vision-only)
and 68% (combined) for pedestrians, andT2.2%, 73.5%,75.7%) for cars. As
a comparison, we evaluated the state-of-the-art pededgtector based on His-
togram of Oriented Gradients [4] and ABH obtained an EER of 2éd 89.

Fig. 4 Cars and pedestrian detected and tracked under occlusitter lnd partial views. In the
camera images, upper row, blue boxes indicate car detecti@mgy®boxes pedestrian detections.
The colored circle on the upper left corner of each box is thektidentifier. Tracks are shown in
color in the second row and plotted with respect to the robetregice frame.
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8 Conclusions

We presented a method to reliably detect and track multipjiecd classes in outdoor
scenarios using vision and 2D laser range data. We showeththaverall perfor-
mance of the system is improved using a multiple-sensoesystVe presented sev-
eral extensions to the ISM based image detection to copemuittiple classes. We
showed that laser detection based on CRFs performs beiteatsimpler AdaBoost
classifier and presented tracking results on combined Batally, we showed the
usefulness of our approach through experimental resultsalrworld data.
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