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Abstract We present a method for mobile robots to learn the conceptjetts and
categorize them without supervision using 3D point cloudefa laser scanner as
input. In particular, we address the challenges of categngyiobjects discovered in
different scans without knowing the number of categories. Thieilying object
discovery algorithm finds objects per scan and gives theailieconsistent labels.
To associate these object labels across all scans, we tueathss graph which
encodes the relationship among local object class labels.a@orithm finds the
mapping from local class labels to global category labelgsrring on this graph
and uses this mapping to assign the final category label wishevered objects. We
demonstrate on real data our alogrithm’s ability to disc@rel categorize objects
without supervision.

1 Introduction

A mobile robot that is capable of discovering and categogzbjects without hu-

man supervision has two major benefits. First, it can opevikt®ut a hand-labeled
training data set, eliminating the laborious labeling psx Second, if a human-
understandable labeling of objects is necessary, autordattovery and catego-
rization leaves the user with the far less tedious task afliag categories rather
than raw data points. Unsupervised discovery and categjaiy, however, require
the robot to understand what an object constitutes. In tbi&kwve address the chal-
lenges of unsupervised object discovery and categorizating 3D scans from a
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laser as input. Unlike other object discovery algorithms, @pproach does not as-
sume presegmentation of background, one-to-one mapptagbr input scan and
label, nor a particular object symmetry. Instead, we singsigume that an entity is
an object if it is composed of two or more parts and occurs rtia@ae once.

We propose a method for robots to discover and categorizetshyvithout su-
pervision. This work especially focuses on categorizaditthe discovered objects.
The proposed algorithm is composed of three steps: deteofipotential object
parts, object discovery, and object categorization. A$iegmenting the input 3D
point cloud, we extract salient segments to detect regidnshare likely to belong
to objects. After detecting these potential object pares,cluster them in feature
and geometric space to acquire parts labels and objecslddehsoning on the rela-
tionship between object parts and object labels providesalll/-consistent object
class label for each discovered object. Processing a s&rssans results in a set
of discovered objects, all labeled according to their latass labels. To associate
these local class labels, we buildlass graph. Class graph encodes the dependency
among local class labels of similar appearance, and smmapthe graph results in
a distribution of the global category labels for each lodass label. Marginalizing
out the local class labels gives the most likely final catgdaloel for each discov-
ered object. We demonstrate on real data the feasibilitynetipervised discovery
and categorization of objects.

Contributions of this work are two-folds. First, we imprabe object discovery
process by extracting potential foreground objects usatigrscy. Instead of relying
entirely on perfect foreground extraction, our algoritrakes the foreground seg-
ments only as potential object parts and performs furthecgssing on them before
accepting them as object parts. It can thus handle impddesground extraction by
removing those potential object parts deemed less fit to tumbabject parts. Sec-
ond, we propose a novel categorization method to assotiatitally-consistent
object class labels to the global category labels withootkng the number of cat-
egories. Our algorithm improves the results of categddpadver pure clustering
and provides a basis for on-line learning. To our knowledgeother work has ad-
dressed the problem of unsupervised object categorizatbandiscovered objects.

The organization of the paper is as follows. After discuggielated work in
Sec. 2, we introduce a saliency-based foreground extraatgorithm and explain
the single-scan object discovery algorithm in Sec. 3. In 8gwe propose a method
for associating the discovered objects for object cateagtian. After the experimen-
tal results in Sec. 5, the paper concludes with Sec. 6.

2 Related Work

Most previous work on unsupervised object discovery asseither a presegmen-
tation of the objects, one object class per image, or a knawnher of objects
and their classes [5, 14, 2]. In contrast, [17] proposed asupervised discovery
algorithm that does not require such assumptions but idstgbzes regularity of
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patterns in which the objects appear. This is very usefuhfan-made structures
such as facades of buildings. [3] developed a method to datelcsegment similar
objects from a single image by growing and merging featurthees.

Our work builds on our previous work [18], which gives nicaults for single
scenes but does not address the data association probless aierent scenes.
Thus, the above algorithm cannot identify instances of #maesobject class that
appear in dierent scenes. In contrast, this approach solves the dataiatisn
problem and introduces a reasoning on the object levekdsbf only assigning
class labels to object parts.

An important step in our algorithm is the clustering of featuectors extracted
from image segments. Manyftirent kinds of clustering algorithms have been pro-
posed and their use strongly depends on the applicatione $tassic methods such
as the Expectation-Maximization (EM) algorithm akdineans clustering assume
that data can be modeled by a simple distribution, while ratiethods such as ag-
glomerative clustering are sensitive to noise and outliBmsovercome these prob-
lems, alternative approaches have been proposed. [1Zmsskaspectral clus-
tering algorithm, which uses the eigenvectors of the data matrigrtap points
together, with impressive results even for challenging.danother recent cluster-
ing approach is namedgfinity propagation, proposed by [6]. It clusters data by
finding a set of exemplar points, which serve as cluster ceated explain the data
points assigned to it. This method avoids the pitfalls of dib#ialization and does
not require the number of clusters to be prespecified. Inviik, we use finity
propagation to cluster image segments in feature space.

Our object categorization method is inspired by Itlag of words approach [4].
Outside of document analysis, the bag of words method has dygaied in com-
puter vision, e.g., for texture analysis or object categadion [11, 16]. Our work
uses it to bridge the gap between reasoning on object pattsigact instances.

3 Object Discovery

This section describes the algorithm for discovering disjdéiom a single scan.
Fig. 1 depicts the overall process of the object discovery. §ihgle-scan object
discovery algorithm is based on our previous work [18], Wahieats every seg-
ment as a potential object part and accepts them as objeafieifinference any
nearby segment has the same class label as itself. Thisthlgphowever, has sev-
eral disadvantages. First, because the original algorithnsiders all segments as
potential object parts, it makes many false neighborhoodections between fore-
ground and background segments. This results in objectidated composed of
real object parts and background parts. Second, it hasvedahigh false-positive
rate because it cannotftérentiate clutter objects from real objects. Third, it veast
computation by extracting feature descriptors on backgi@egments. In this pa-
per, we introduce saliency-based foreground extractigordhm to overcome these
problems.
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Fig. 1: Overview of the discovery process (best seen in fokdter performing
segmentation on input data and extracting salient segmibet@lgorithm clusters
the salient segments in feature and geometric space. Theerduare then used to
create scene graph and parts graph, which encode the nslifiobetween object
parts and objects. Running inference on the graphs restheinliscovery of four
objects as shown on the right.

3.1 Extraction of Potential Object Parts

A simple way to seperate foreground from background is todimgs into the data
and remove all points that correspond to the planes. Thisvemall wall, ceiling,
and floor parts as in, e.g., [5], but can cause at least twdgmb First, it may also
remove planar segments close to a wall or floor that are dgtahject parts and
thus should not be removed. Second, it is oftenfificient to define background as
planar because background may be truly curved or non-pthreato sensor noise.
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Fig. 2: An example image after saliency computation. Cal@egments are consid-
ered salient and thus treated as potential object partsbtsindicate segment ID.

Inspired by computer vision [8], we suggest &elient approach for foreground
extraction usingsaliency. The idea is to classify certain parts of an image as visu-
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ally more interesting or salient than others. This classifies determines saliency
based on dference in entropy of a region to its nearby regions. Most wark
saliency has been on 3D images, but [7] uses saliency focblgeognition in
3D range scans. Their technique, however, remaps depthedledtance images
as greyscale images and applies 2D saliency techniquesitedlient points. This
work detects salient segments in true 3D by processing degpties of range data
directly.

Our saliency algorithm computes saliency at point level segiment level. Point
saliency provides saliency of a point while segment sajieapresents saliency of a
segment. Apoint saliency sp is composed of bocal saliencys and aglobal saliency
- Local saliencys is defined as

1
s(P) = F=x n-(p-p’). 1)
i p’ g;(p)
wheren is the normal vector at a poipt andN(p) defines the set of all points
in the neighborhood gb. To obtain a value between 0 and 1, the local saliency is
normalized by the maximum local saliency valg€”. Intuitively, local saliency
measures how much the poiptsticks out of a plane that best fits into the local
surroundingV(p). This resembles the plane extraction techniquementieadir.
Points that are closer to the sensor are more likely to belorigreground and
thus globally more salient than points that are far away ftloensensor. We capture
this property in global saliency. Global saliengyis defined as
() = gar "™ . @

wherep™* denotes the point that is farthest away from the sensorroris in
local saliency, global saliency is normalized to range leetwO and 1.

We define segment saliensyfor a segmens as a weighted average of the local
and global saliency for all points which belong to the segnagia multiply it by a
size penaltyr, i.e.,

(9 =0| 5 Y wa(p) + (L-w(p) | @)

pes

wherea = exp(=(|sl — |smeanl)?) penalizes segments that are too big or too small
as they are likely to originate from a wall or sensor nojgejenotes the size (num-
ber of points) of the segmest andw weighs between local and global saliency.
The weightw depends on the amount of information contained in local doblag
saliency, measured by entropy of the corresponding digtabs. Interpretings
andsy as probability distributions, we can determine entrbjpgndhg for local and
global saliency by
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N

hi = - s(pi)logs (pi) @)
i=1
N

hg == sy(pi)logsy(pi), (5)
i=1

whereN = 20 in this work. As a saliency distribution with lower entgog more
informative, we set the weight asw = % which is high when local saliency
has low entropy and low when it has high entropy. The weigluess that more
informative entropy distribution contributes more to threafisaliency.

Segment saliencygs(s) ranges between 0 and 1. We consider a segment salient
if its saliency is higher than 0.5 and accept it as a potenb@ct part. Only these
potential object part$ are further processed for object discovery. Fig. 2 shows a
scene after salient segments are extracted.

3.2 Object Discovery for a Single Scan

AD

FO

Fig. 3: Result of object discovery of the scene shown in FigDi&covered objects
are colored according to their class labels. Letters indittee parts types and num-
bers indicate object classes. Notice that not all poteabdct parts are accepted as
object parts.

Once we extract potential object pafls next step is to reason on them to dis-
cover objects. The object discovery step on single scandedan our previous
work [18]. The underlying idea behind our object discovelgoathm is that ob-
ject parts which belong to the same object are frequentlgmes together, and
hence by observing which parts occur together frequenttycan deduce object
class label for these parts. Using this idea, a brief sumrohtiye algorithm is as
follows. Given the potential object parfs we extract a feature vectdyrfor each
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potential object part. The feature vectdi is composed of spin images [9], shape
distributions [13], and shape factors [19]. To determinécWiset of potential object
parts originate from the sanparts type #i, we cluster these parts in feature space
using dfinity propagation [6]. Afinity propagation implicitly estimates the number
of clustersC, resulting in cluster$,...,¥c. These clusters define the discovered
object parts types.

Clustering in feature space provides parts types, but it dm¢ define which
parts belong to the same objéettance. To obtain the object instances, we perform
another clustering on the potential object patbut this time in geometric space.
As object parts for the same object instance are physichllec clustering in ge-
ometric space enables us to group together potential opggts which belong to
the same object instance. The geometric clustering algoritonnects every pair
of potential objects whose centers are closer than a thickshp and this results
in a collection of connected components. The number of cotedecomponentk
define the maximum number of object classes present in tiee saad each cluster
Gi of the resulting clustergs,...,Gk correspond to an object instance.

Given parts type§,...,¥c and object classegs,... Gk, next step is to assign
a class labeg; to each potential object pagt We determine the assignments by
reasoning on the labels at two levels. First, on a more afideeel, the statistical
dependency of class labeds,...,Gk across dierent parts type®s,...,¥c is en-
coded in a Conditional Random Field (CRF) [10] nanpadis graph. Parts graph
exploits the fact that object parts that co-occur frequentthe same object instance
are more likely to belong to the same object class. For exanplck rest and seat,
both of which belong to a chair, are frequently found togethigile seat and shelf,
which belong to dierent objects, are not. The second level of reasoning pedesg
parts types to object class relationship onto a finer levalddmbining the class la-
bels obtained from the parts graph with the local contexafarimation from actual
scenes. This is encoded using another CRF caliede graph. Performing infer-
ence on the parts graph provides the most likely object tdsd G; per parts type
i while inference on the scene graph leads to the object dhsdd; per object
parts. Once for all object instances, all their parts are labeléd the most likely
object class label, we accept those object instances whitfains at least two parts
with the same class label as discovered objégts..,On. Fig. 3 shows an example
of the outcome of the discovery algorithm.

4 Object Categorization

Object discovery algorithm of the previous section is ablértd object classes for
which at least two instances occur in a given scene. It ugesagipnce and geom-
etry, i.e., similarity of features and structures, to findesal instances of objects
that are most likely to define a class in one given scene. lghper, we go one
step further and try to find objecategories, i.e., object classes that are consistent
across a sequence of input scenes. This, however, is nigtrgfosward. As the ob-
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Fig. 4: Objects found in two dlierent scenes. Segments of the same local object
label have the same color locally.

ject discovery process is entirely unsupervised, the tiegulocal class labels are
not unique over a given number of input scans. This meansthabject class might
be associated with a class lalggl when one scene is observed, but the same object
class might have a fierent class label, if observed in a dierent scene. An ex-
ample of this is shown in Fig. 4. To identify object instanoéthe same class from
different scenes, we need to solve dlaga association problem. Unfortunately, this
problem is intractable in general as it involves a corresjgoice check between ev-
ery pair of object classes which are found iffelient scenes. One simple way to
address this correspondence problem is to join all scetesire big scene and run
the discovery algorithm on the big scene. This approachghew has two major
drawbacks: first, the number of connected componknits this big scene would
be very large. This heavily increases the computation tifieepalgorithm and de-
creases its detection performance because it failsffici®ntly restrict the number
of potential object classes. And second, it limits the dubi of running the ob-
ject discovery in an online framework, which is one majorlgufahis work. The
reason here is that the parts graph would need to be re-beilf éme a new scene
is observed, which decreases tffigogency of the algorithm.

This work addresses the data association problem by intiodwa third level
of reasoning namedass graph. The key idea behind the class graph is to find a
mapping from local class labels to global category labeldikg the parts graph
and the scene graph, the class graph models the statistipahdencies between
labels of object class instances rather than object paetsild of the class graph is
explained in Sec. 4.2. Next section describes object featertor for representation
of object instances, which are the building blocks of clasph.

4.1 Object Representation

Object feature vector enables a compact representatiotjettoinstances. This
work employs object feature vectorwhich captures object instance’s appearance
and shape. The object feature veaids composed of a histogramof visual word
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occurrences and a shape veatofhe histograni captures object appearance while
the shape vector captures object volume. To compute the histograms, we teke t
bag of words approach and represent an object as a collection of visualsv8ag

of words requires visual vocabulary to be defined, and werahéte the visual vo-
cabulary by clustering the object parts feature ve€tof all discovered objects.
Each clusterr;" is a word in the visual vocabularg;,..., ., and the total num-
ber of words in the vocabulai@* is equal to the number of cluste@s. With the
visual vocabulary, representing an object as a histogramplgies to counting the
number of occurrences of each visual word in the objectdditional bag of words
approaches, every feature makes a contribution to the bhesmonding to the vi-
sual word that best represents the feature. Such approduiwesver, do not take
into account the uncertainty inherent in the assignmertge® Hence, in our work,
each object part feature vectbrcontributes to all bins of the corresponding his-
togramh, where the contribution to a bin is determined by the pralitgbp(w;|f)

of the feature vectdrbelonging to the visual word;. We compute this probability
by nearest-neighbor.

In addition to a histograrh, object feature vecton contains a shape vectar
which represents object’s physical properties. The shagtow is composed of
three elements — size in horizontal direction, size in eattiirection, and object’s
location in vertical direction. The horizontal and vertispans provide the bounding
volume in which the object resides. The vertical locatioregian estimate on where
the object is likely to be found.

4.2 Class Graph

Class Graph Clustering Inference

A g
. TR
o = AN - B /./ '.\7\\\
?' ‘*\.. . b o

S () e

Fig. 5: Categorization by class graph. Local class labefsasented as mean his-
tograms, are the nodes of the graph, and the links betweenitaitar nodes form
the edges. Clustering the local class labels provides itialimapping from local
class labels to global category labels. Running inferemaée class graph provides
a distribution of category labels for each local label. Ehdsstributions are then
used to determine the category label for each discoverestbbj
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Once the object feature vectars,...,on+ are computed for all discovered ob-
jects0s,...,0On+, We determine the mapping from local class laligls...,Gm to
global category labelg;.,...,Gx. usingclass graph €. Class graplt consists of
the node setV5= {01,...,0m} and the edge s&s= {(0,0j) | D(0i,0j) < ¥a. The
nodes are the local class labgls, ...,Gm represented as mean object feature vec-
torsog,...,0m, and the edges connect similar local class labels, wheigrthikrity
between two local labels is the distance between their mbgatiofeature vectors.
The threshold for object similarit§sis set to 0.5.

To assign global category labeds, ..., G. to local class label§g,...,Gu, we
need to find the number of global categot&s As mentioned earlier, #inity Prop-
agation (AP) implicitly determines the number of clustensd therefore, we cluster
the mean object feature vectars...,om by AP clustering. The number of clusters
K* resulting from AP clustering is the maximum number of glotetegories, and
the clustergs],....Gi. are the initial global category labels for the local claela
G1,...,Gm. Smoothing this initial mapping determines the final maggiom local
class labels to global category labels. Fig. 5 shows theathateps of categorization
by class graph.

4.3 Smoothing

Class grapht captures the dependency among the local class lgpegls.,Gwm,
but it does not assign a category lalgglto each local labeg;. To determine the
category labels, we apply probabilistic reasoning. Wet tieanodes of the graph as
random variables and the edges between adjacent nodestisaraily dependent.
That is, the global category labgl of a local class labed; depends not only on
the local evidence; but also on the class Iab@ of all neighboring labelg;;. For
example, if the local class labé} is strongly of categorg;’,, based on its evidence
0, then it can propagate its category lagglto its neighborg;. On the other hand,
if its category label is weak, then its category laggican be flipped to the category
Iabelg’]f of its neighbors. This process penalizes sudden changesagfary labels,
producing a smoothed graph. We perform the smoothing agaig @ Conditional
Random Field (CRF).

Our CRF models the conditional distribution

p(9|6)=%_]_[ ¢©.9) [ ] v(@.0;.9.9). (6)

i€eVs (.)€

whereZ(0) = Yg [Ticvs #(0i.9)) n(i’j)egalﬁ(a,(j,gi’,g}) is thepartition function;
Vg are the local classes; adg are the edges between the local classes. Our for-
mulation of the CRF is slightly dierent from the conventional approaches in that
our feature similarity functiorf, of the node potential log(o;, gi) = Wy - fa(0i, g;) is
the conditional probability(g; | 6;). Likewise, the feature similarity functiofy of
the edge potential lag(0;, gi) = We- fe(0i,0j,0i,9;) is also defined as a conditional
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probability p(gi,9j | 6i,0j). The feature function$, and fe hence range between 0
and 1, simplifying the weighting between node and edge piaierto scalars. In su-
pervised learning with CRFs, node weighf and edge weightve are learned from
training data. In this unsupervised work, however, we catesrn these values as
there is no training data available. We therefore determat weightv, and edge
weightwe manually using an appropriate evaluation measure on aatalid set.
Fig. 8 in Sec. 5 shows thdfect of setting dierent combinations of node weight
and edge weighte.

As mentioned in Sec. 4.2, the object feature vector clugggprovides the total
number of global object categori€s and the initial mapping from local class labels
G1.....Gwm to global category labelg;, ..., Gx.. Using the clusters, we can model
the feature similarity functiorfi, = p(g; | 0;) of node potentiap(0;, gi) as

p(oi | gi)p(gi)
Yo P 1 9)p(@) 7)

wherep(d; | g) = p(hi | g")p(Vi | g) = exp(- || hi —h [)exp(- || Vi -~ V¥ ) and
p(g) =1- mﬁ. p(oi | g)) measures how weld; fits to the cluster centag;, and
the global category prign(g;) reflects how likely the category exists. A cluster with
more members are more likely to be a true object categorydtwdunster with fewer
members, and heng¥g;) is proportional to the sizgg; | of the category.

We define the edge feature as

p(gi | Gi) =

P(gi,9; 1 01,0;) = p(gi 1 6i,0§) p(g; | Gi, 0)), (8)
wherep(gi | i, 0j) = p(gi | 0ij) andp(g; | 0i,0j) = p(g; | 0ij) are estimated by a mean
object feauter vectan;;. The probabilitieg(gi | 0ij) andp(gj | 0ij) are computed by
the nearest-neighbor.

To infer the most likely labels for the nodes of the class grépwe use max-
product loopy belief propagation. This approximate althgni returns the labelg;
which maximizes the conditional probability of Eq. 6. Foe thhessage passing, we
take the generalized Potts model approach as commonly dwhmeorporate the
edges in the inference only whegnandgj are equal. This results in the propagation
of the belief only between equally-labeled nodes. The arfee step continues until
convergence and provides the distribution of global cate@gbelsg; ., . .., Gy. for
every local class labe;.

To find the category labg}* for each discovered obje&, we compute the cat-
egory which maximizes the assignment probability

p(gl0)= > p(gld)p(@ |o). 9)

d

The probability of the category for a given local lalpédj | 0’) can be read directly
from the class grapti, and the probability of the local object class given an dbjec
p(0’ | 0) = exp( || 0—0||) is computed as the object’s similarity to the class mean.
Discovered objects are accepted as objects when the plibpabits most likely
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Fig. 6: Objects found in two dfierent scenes. Segments of the same object label

have the same color.

category label is greater than 0.5. Fig. 6 shows the restittategorization of the

two scenes shown in Fig. 4.

5 Results

In this section, we present the results of running the allgorion scans from real
world scenes. The data set was collected using a nodding 8 with a width
of 100 degrees and a height of 60 degrees. Each set was ahptuhee horizontal
resolution of 0.25 degrees and the vertical resolution oflégrees a second. All
scenes were static. The test set was a set of 60 scans frowfiiges. In total, these
data sets contained 208 objects, including chairs, couplester boards, trash bins,

and room dividers.
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Fig. 7: The results of object discovery with (left) and withright) saliency com-
putation. All connected segments are considered objectafegorization. Objects
are colored by their local class label.

We first tested thefeect of including saliency in the discovery step. Fig. 7 quali
tatively shows the dierence in object discovery with and without saliency compu-
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tation. Including saliency improves the precisibof discovery from 44% to 84%
while decreasing recall from 83% to 74%. That is, while inidhg the saliency step
does eliminate some true objects, it is much mdfeative at eliminating none ob-
jects than the same algorithm without the saliency step.

The dfect ofw, andw, on V-Measure The dfect of¥5 on V-Measure
After smoothing '\We==2.p — W) j j ' j " =00, ewi20 ——

V-measure
V-measure

Fig. 8: Evaluation of our categorization step using V-measkeft graph shows the
effect of node and edge weights on v-measure. Right graph sthenefect of the
object distance threshold on v-measure.

Quantitatively, we computed V-measure [15] of our algarith/-Measure is a
conditional entropy-based external cluster evaluatioasuee which captures the
cluster quality by homogeneity and completeness of clasteis defined as

v (1+p)+hxc
A= Bxhy+c ’

whereh captures homogeneitycompleteness, argithe weighting between ho-
mogeneity and completeness. A perfectly homogeneous@olbash = 1, and a
perfectly complete solution has= 1. Fig. 8 shows the quality of clustering with
varying node and edge weights and tleet of object distance threshold on the
quality of clustering. Left graph indicates that the resulf our algorithm is ro-
bust to the change of node and edge weights, but smoothingueg the overall
results over pure clustering. Right graph shows that théitgud clusters depends
on the object distance threshdld, which indicates that the initial clustering result
influences the final categorization quality.

Fig. 9 shows precision and recatf the algorithm for varying object distance
thresholdgs Not suprisingly, precision drops and recall increasesiaghreshold
increases. This is because higher threshold results i feategories, which in turn
means more of the discovered objects are accepted as daéehobjects.

(10)

1 A discovered object is considered true positive if it orajies from a real object and false positive
if itis not a real object. False negative count is when a re@a is not discovered.

2 In computing precision and recall, we did not take into cdegition the correctness of the
category labels. Any real object that got categorized wasidered true regardless of its label.
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The dfect of¥5 on precision and recall

recision
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Fig. 9: Hfect of the object distance threshold on precision and recall

Fig. 10 shows qualitative results. Left images are the tesiflperforming ob-
ject discovery per each scan, and right images are the pomdsg images after
categorization. Discovered objects are colored accorttirtbeir local class label,
i.e., with respect to other objects within a single scan)evtategorized objects are
colored according to their global category label, i.e.hwéspect to all other objects
of the data set. The categorization step is able to assigaaime global category
labels to objects with dierent local class labels as shown in Fig. 10b while assign-
ing different global category labels to objects with the same latzdllas shown in
Fig. 10d. In addition, the chairs found infiirent scene are correctly labeled to be
the same type as shown in Fig. 10a, 10b, 10d.

6 Conclusion and Outlook

We presented a seamless approach to discover and categbjérts in 3D envi-
ronment without supervision. The key idea is to categotimedbjects discovered
in various scenes without requiring a presegmented imagearumber of classes.
Our approach considers objects to be composed of parts asdngon each part’s
membership to an object class. After objects are discovieredch scan, we as-
sociate these local object labels by building a class graghirferring on it. We
demonstrated our capability of discovering and categuogizibjects on real data
and performance improvement class graph smoothing briveyspure clustering.
Our approach has several avenues for future work. First,ameuse the results
of categorization for object recognition. Once the robat Hescovered enough in-
stances of an object category, it can use the knowledge ¢ati@nd recognize ob-
jects, much the same way many supervised algorithms workalgarithm simpli-
fies creating training data to converting robotic classespntation to human repre-
sentation. Another direction for future work is on-linereiag. While the proposed
approach allows the robot to reason on knowledge gainediovey the knowledge
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Fig. 10: Results of category discovery. Left images contaijects discovered
through the object discovery process, and right imagesheresame objects after
categorization. Objects in the left images are colored m@tiag to their local class
labels while objects in the right images are colored by thkibal category labels.
Notice that the categorization step can correct incorritstfications of the dis-
covery step.
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is updated in batch. This limits the availability of new infeation until enough data
is collected for the batch processing. A robot, which carcess incoming data and
update its knowledge on-line, can utilize the new informatmmediately and adapt
to changing environment. Extending our work to handle aaiegtion on-line will
thus make unsupervised discovery and categorization nsafelfor robotics.
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