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Abstract We present a method for mobile robots to learn the concept of objects and
categorize them without supervision using 3D point clouds from a laser scanner as
input. In particular, we address the challenges of categorizing objects discovered in
different scans without knowing the number of categories. The underlying object
discovery algorithm finds objects per scan and gives them locally-consistent labels.
To associate these object labels across all scans, we introduceclass graph which
encodes the relationship among local object class labels. Our algorithm finds the
mapping from local class labels to global category labels byinferring on this graph
and uses this mapping to assign the final category label to thediscovered objects. We
demonstrate on real data our alogrithm’s ability to discover and categorize objects
without supervision.

1 Introduction

A mobile robot that is capable of discovering and categorizing objects without hu-
man supervision has two major benefits. First, it can operatewithout a hand-labeled
training data set, eliminating the laborious labeling process. Second, if a human-
understandable labeling of objects is necessary, automatic discovery and catego-
rization leaves the user with the far less tedious task of labeling categories rather
than raw data points. Unsupervised discovery and categorization, however, require
the robot to understand what an object constitutes. In this work, we address the chal-
lenges of unsupervised object discovery and categorization using 3D scans from a
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laser as input. Unlike other object discovery algorithms, our approach does not as-
sume presegmentation of background, one-to-one mapping between input scan and
label, nor a particular object symmetry. Instead, we simplyassume that an entity is
an object if it is composed of two or more parts and occurs morethan once.

We propose a method for robots to discover and categorize objects without su-
pervision. This work especially focuses on categorizationof the discovered objects.
The proposed algorithm is composed of three steps: detection of potential object
parts, object discovery, and object categorization. Aftersegmenting the input 3D
point cloud, we extract salient segments to detect regions which are likely to belong
to objects. After detecting these potential object parts, we cluster them in feature
and geometric space to acquire parts labels and object labels. Reasoning on the rela-
tionship between object parts and object labels provides a locally-consistent object
class label for each discovered object. Processing a seriesof scans results in a set
of discovered objects, all labeled according to their localclass labels. To associate
these local class labels, we build aclass graph. Class graph encodes the dependency
among local class labels of similar appearance, and smoothing the graph results in
a distribution of the global category labels for each local class label. Marginalizing
out the local class labels gives the most likely final category label for each discov-
ered object. We demonstrate on real data the feasibility of unsupervised discovery
and categorization of objects.

Contributions of this work are two-folds. First, we improvethe object discovery
process by extracting potential foreground objects using saliency. Instead of relying
entirely on perfect foreground extraction, our algorithm takes the foreground seg-
ments only as potential object parts and performs further processing on them before
accepting them as object parts. It can thus handle imperfectforeground extraction by
removing those potential object parts deemed less fit to be actual object parts. Sec-
ond, we propose a novel categorization method to associate the locally-consistent
object class labels to the global category labels without knowing the number of cat-
egories. Our algorithm improves the results of categorization over pure clustering
and provides a basis for on-line learning. To our knowledge,no other work has ad-
dressed the problem of unsupervised object categorizationfrom discovered objects.

The organization of the paper is as follows. After discussing related work in
Sec. 2, we introduce a saliency-based foreground extraction algorithm and explain
the single-scan object discovery algorithm in Sec. 3. In Sec. 4, we propose a method
for associating the discovered objects for object categorization. After the experimen-
tal results in Sec. 5, the paper concludes with Sec. 6.

2 Related Work

Most previous work on unsupervised object discovery assumeeither a presegmen-
tation of the objects, one object class per image, or a known number of objects
and their classes [5, 14, 2]. In contrast, [17] proposed an unsupervised discovery
algorithm that does not require such assumptions but instead utilizes regularity of
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patterns in which the objects appear. This is very useful forman-made structures
such as facades of buildings. [3] developed a method to detect and segment similar
objects from a single image by growing and merging feature matches.

Our work builds on our previous work [18], which gives nice results for single
scenes but does not address the data association problem across different scenes.
Thus, the above algorithm cannot identify instances of the same object class that
appear in different scenes. In contrast, this approach solves the data association
problem and introduces a reasoning on the object level, instead of only assigning
class labels to object parts.

An important step in our algorithm is the clustering of feature vectors extracted
from image segments. Many different kinds of clustering algorithms have been pro-
posed and their use strongly depends on the application. Some classic methods such
as the Expectation-Maximization (EM) algorithm andk-means clustering assume
that data can be modeled by a simple distribution, while other methods such as ag-
glomerative clustering are sensitive to noise and outliers. To overcome these prob-
lems, alternative approaches have been proposed. [12] presented aspectral clus-
tering algorithm, which uses the eigenvectors of the data matrix togroup points
together, with impressive results even for challenging data. Another recent cluster-
ing approach is namedaffinity propagation, proposed by [6]. It clusters data by
finding a set of exemplar points, which serve as cluster centers and explain the data
points assigned to it. This method avoids the pitfalls of a bad initialization and does
not require the number of clusters to be prespecified. In thiswork, we use affinity
propagation to cluster image segments in feature space.

Our object categorization method is inspired by thebag of words approach [4].
Outside of document analysis, the bag of words method has been applied in com-
puter vision, e.g., for texture analysis or object categorization [11, 16]. Our work
uses it to bridge the gap between reasoning on object parts and object instances.

3 Object Discovery

This section describes the algorithm for discovering objects from a single scan.
Fig. 1 depicts the overall process of the object discovery. Our single-scan object
discovery algorithm is based on our previous work [18], which treats every seg-
ment as a potential object part and accepts them as objects ifafter inference any
nearby segment has the same class label as itself. This algorithm, however, has sev-
eral disadvantages. First, because the original algorithmconsiders all segments as
potential object parts, it makes many false neighborhood connections between fore-
ground and background segments. This results in object candidates composed of
real object parts and background parts. Second, it has relatively high false-positive
rate because it cannot differentiate clutter objects from real objects. Third, it wastes
computation by extracting feature descriptors on background segments. In this pa-
per, we introduce saliency-based foreground extraction algorithm to overcome these
problems.
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Fig. 1: Overview of the discovery process (best seen in color). After performing
segmentation on input data and extracting salient segments, the algorithm clusters
the salient segments in feature and geometric space. The clusters are then used to
create scene graph and parts graph, which encode the relationship between object
parts and objects. Running inference on the graphs result inthe discovery of four
objects as shown on the right.

3.1 Extraction of Potential Object Parts

A simple way to seperate foreground from background is to fit planes into the data
and remove all points that correspond to the planes. This removes all wall, ceiling,
and floor parts as in, e.g., [5], but can cause at least two problems. First, it may also
remove planar segments close to a wall or floor that are actually object parts and
thus should not be removed. Second, it is often insufficient to define background as
planar because background may be truly curved or non-planardue to sensor noise.

Fig. 2: An example image after saliency computation. Colored segments are consid-
ered salient and thus treated as potential object parts. Numbers indicate segment ID.

Inspired by computer vision [8], we suggest a different approach for foreground
extraction usingsaliency. The idea is to classify certain parts of an image as visu-
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ally more interesting or salient than others. This classifications determines saliency
based on difference in entropy of a region to its nearby regions. Most workon
saliency has been on 3D images, but [7] uses saliency for object recognition in
3D range scans. Their technique, however, remaps depth and reflectance images
as greyscale images and applies 2D saliency techniques to find salient points. This
work detects salient segments in true 3D by processing depthvalues of range data
directly.

Our saliency algorithm computes saliency at point level andsegment level. Point
saliency provides saliency of a point while segment saliency represents saliency of a
segment. Apoint saliency sp is composed of alocal saliencysl and aglobal saliency
sg. Local saliencysl is defined as

sl(p) =
1

smax
l

∑

p′ ∈N(p)

n · (p−p′), (1)

wheren is the normal vector at a pointp, andN(p) defines the set of all points
in the neighborhood ofp. To obtain a value between 0 and 1, the local saliency is
normalized by the maximum local saliency valuesmax

l . Intuitively, local saliency
measures how much the pointp sticks out of a plane that best fits into the local
surroundingN(p). This resembles the plane extraction techniquementionedearlier.

Points that are closer to the sensor are more likely to belongto foreground and
thus globally more salient than points that are far away fromthe sensor. We capture
this property in global saliency. Global saliencysg is defined as

sg(p) =
1

smax
g
‖pmax−p‖, (2)

wherepmax denotes the point that is farthest away from the sensor origin. As in
local saliency, global saliency is normalized to range between 0 and 1.

We define segment saliencyss for a segmentsas a weighted average of the local
and global saliency for all points which belong to the segment and multiply it by a
size penaltyα, i.e.,

ss(s) = α
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, (3)

whereα = exp(−(|s| − |smean|)2) penalizes segments that are too big or too small
as they are likely to originate from a wall or sensor noise;|s| denotes the size (num-
ber of points) of the segments; andw weighs between local and global saliency.
The weightw depends on the amount of information contained in local and global
saliency, measured by entropy of the corresponding distributions. Interpretingsl

andsg as probability distributions, we can determine entropyhl andhg for local and
global saliency by
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hl = −

N
∑

i=1

sl(pi) logsl(pi) (4)

hg = −

N
∑

i=1

sg(pi) logsg(pi), (5)

whereN = 20 in this work. As a saliency distribution with lower entropy is more

informative, we set the weightw asw =
hg

hg+hl
, which is high when local saliency

has low entropy and low when it has high entropy. The weight ensures that more
informative entropy distribution contributes more to the final saliency.

Segment saliencyss(s) ranges between 0 and 1. We consider a segment salient
if its saliency is higher than 0.5 and accept it as a potentialobject part. Only these
potential object partsS are further processed for object discovery. Fig. 2 shows a
scene after salient segments are extracted.

3.2 Object Discovery for a Single Scan

Fig. 3: Result of object discovery of the scene shown in Fig. 2. Discovered objects
are colored according to their class labels. Letters indicate the parts types and num-
bers indicate object classes. Notice that not all potentialobject parts are accepted as
object parts.

Once we extract potential object partsS , next step is to reason on them to dis-
cover objects. The object discovery step on single scan is based on our previous
work [18]. The underlying idea behind our object discovery algorithm is that ob-
ject parts which belong to the same object are frequently observed together, and
hence by observing which parts occur together frequently, we can deduce object
class label for these parts. Using this idea, a brief summaryof the algorithm is as
follows. Given the potential object partsS, we extract a feature vectorfi for each
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potential object partsi. The feature vectorfi is composed of spin images [9], shape
distributions [13], and shape factors [19]. To determine which set of potential object
parts originate from the sameparts type Fi, we cluster these parts in feature space
using affinity propagation [6]. Affinity propagation implicitly estimates the number
of clustersC, resulting in clustersF1, . . . ,FC . These clusters define the discovered
object parts types.

Clustering in feature space provides parts types, but it does not define which
parts belong to the same objectinstance. To obtain the object instances, we perform
another clustering on the potential object partsS but this time in geometric space.
As object parts for the same object instance are physically close, clustering in ge-
ometric space enables us to group together potential objectparts which belong to
the same object instance. The geometric clustering algorithm connects every pair
of potential objects whose centers are closer than a threshold ϑg, and this results
in a collection of connected components. The number of connected componentsK
define the maximum number of object classes present in the scene, and each cluster
Gi of the resulting clustersG1, . . . ,GK correspond to an object instance.

Given parts typesF1, . . . ,FC and object classesG1, . . .GK , next step is to assign
a class labelGi to each potential object partsi. We determine the assignments by
reasoning on the labels at two levels. First, on a more abstract level, the statistical
dependency of class labelsG1, . . . ,GK across different parts typesF1, . . . ,FC is en-
coded in a Conditional Random Field (CRF) [10] namedparts graph. Parts graph
exploits the fact that object parts that co-occur frequently in the same object instance
are more likely to belong to the same object class. For example, back rest and seat,
both of which belong to a chair, are frequently found together while seat and shelf,
which belong to different objects, are not. The second level of reasoning propagates
parts types to object class relationship onto a finer level bycombining the class la-
bels obtained from the parts graph with the local contexual information from actual
scenes. This is encoded using another CRF calledscene graph. Performing infer-
ence on the parts graph provides the most likely object classlabelGi per parts type
Fi while inference on the scene graph leads to the object class labelGi per object
partsi. Once for all object instances, all their parts are labeled with the most likely
object class label, we accept those object instances which contains at least two parts
with the same class label as discovered objectsO1, . . . ,ON . Fig. 3 shows an example
of the outcome of the discovery algorithm.

4 Object Categorization

Object discovery algorithm of the previous section is able to find object classes for
which at least two instances occur in a given scene. It uses appearance and geom-
etry, i.e., similarity of features and structures, to find several instances of objects
that are most likely to define a class in one given scene. In this paper, we go one
step further and try to find objectcategories, i.e., object classes that are consistent
across a sequence of input scenes. This, however, is not straightforward. As the ob-
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Fig. 4: Objects found in two different scenes. Segments of the same local object
label have the same color locally.

ject discovery process is entirely unsupervised, the resulting local class labels are
not unique over a given number of input scans. This means thatan object class might
be associated with a class labelG1 when one scene is observed, but the same object
class might have a different class labelG2 if observed in a different scene. An ex-
ample of this is shown in Fig. 4. To identify object instancesof the same class from
different scenes, we need to solve thedata association problem. Unfortunately, this
problem is intractable in general as it involves a correspondence check between ev-
ery pair of object classes which are found in different scenes. One simple way to
address this correspondence problem is to join all scenes into one big scene and run
the discovery algorithm on the big scene. This approach, however, has two major
drawbacks: first, the number of connected componentsK in this big scene would
be very large. This heavily increases the computation time of the algorithm and de-
creases its detection performance because it fails to sufficiently restrict the number
of potential object classes. And second, it limits the possibility of running the ob-
ject discovery in an online framework, which is one major goal of this work. The
reason here is that the parts graph would need to be re-built every time a new scene
is observed, which decreases the efficiency of the algorithm.

This work addresses the data association problem by introducing a third level
of reasoning namedclass graph. The key idea behind the class graph is to find a
mapping from local class labels to global category labels. Unlike the parts graph
and the scene graph, the class graph models the statistical dependencies between
labels of object class instances rather than object parts. Details of the class graph is
explained in Sec. 4.2. Next section describes object feature vector for representation
of object instances, which are the building blocks of class graph.

4.1 Object Representation

Object feature vector enables a compact representation of object instances. This
work employs object feature vectoro which captures object instance’s appearance
and shape. The object feature vectoro is composed of a histogramh of visual word
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occurrences and a shape vectorv. The histogramh captures object appearance while
the shape vectorv captures object volume. To compute the histograms, we take the
bag of words approach and represent an object as a collection of visual words. Bag
of words requires visual vocabulary to be defined, and we determine the visual vo-
cabulary by clustering the object parts feature vectorf of all discovered objects.
Each clusterF ∗i is a word in the visual vocabularyF ∗1 , . . . ,F

∗
C∗ , and the total num-

ber of words in the vocabularyC∗ is equal to the number of clustersC∗. With the
visual vocabulary, representing an object as a histogram simplifies to counting the
number of occurrences of each visual word in the object. In traditional bag of words
approaches, every feature makes a contribution to the bin corresponding to the vi-
sual word that best represents the feature. Such approaches, however, do not take
into account the uncertainty inherent in the assignment process. Hence, in our work,
each object part feature vectorf contributes to all bins of the corresponding his-
togramh, where the contribution to a bin is determined by the probability p(wi|f )
of the feature vectorf belonging to the visual wordwi. We compute this probability
by nearest-neighbor.

In addition to a histogramh, object feature vectoro contains a shape vectorv,
which represents object’s physical properties. The shape vectorv is composed of
three elements – size in horizontal direction, size in vertical direction, and object’s
location in vertical direction. The horizontal and vertical spans provide the bounding
volume in which the object resides. The vertical location gives an estimate on where
the object is likely to be found.

4.2 Class Graph

Fig. 5: Categorization by class graph. Local class labels, represented as mean his-
tograms, are the nodes of the graph, and the links between twosimilar nodes form
the edges. Clustering the local class labels provides the initial mapping from local
class labels to global category labels. Running inference on the class graph provides
a distribution of category labels for each local label. These distributions are then
used to determine the category label for each discovered object.
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Once the object feature vectorso1, . . . ,oN∗ are computed for all discovered ob-
jectsO1, . . . ,ON∗ , we determine the mapping from local class labelsG1, . . . ,GM to
global category labelsG∗1, . . . ,G

∗
K∗ usingclass graph C. Class graphC consists of

the node setV ō= {ō1, . . . , ōM} and the edge setE ō= {(ōi, ōj) | D(ōi, ōj) < ϑ ō}. The
nodes are the local class labelsG1, . . . ,GM represented as mean object feature vec-
torsō1, . . . , ōM, and the edges connect similar local class labels, where thesimilarity
between two local labels is the distance between their mean object feature vectors.
The threshold for object similarityϑ ō is set to 0.5.

To assign global category labelsG∗1, . . . ,G
∗
K∗ to local class labelsG1, . . . ,GM, we

need to find the number of global categoriesK∗. As mentioned earlier, Affinity Prop-
agation (AP) implicitly determines the number of clusters,and therefore, we cluster
the mean object feature vectorsō1, . . . , ōM by AP clustering. The number of clusters
K∗ resulting from AP clustering is the maximum number of globalcategories, and
the clustersG∗1, . . . ,G

∗
K∗ are the initial global category labels for the local class labels

G1, . . . ,GM . Smoothing this initial mapping determines the final mapping from local
class labels to global category labels. Fig. 5 shows the overall steps of categorization
by class graph.

4.3 Smoothing

Class graphC captures the dependency among the local class labelsG1, . . . ,GM,
but it does not assign a category labelG∗i to each local labelGi. To determine the
category labels, we apply probabilistic reasoning. We treat the nodes of the graph as
random variables and the edges between adjacent nodes as conditionally dependent.
That is, the global category labelG∗i of a local class labelGi depends not only on
the local evidencēoi but also on the class labelsG∗j of all neighboring labelsG j. For
example, if the local class labelGi is strongly of categoryG∗i ,, based on its evidence
ōi, then it can propagate its category labelG∗i to its neighborsG j. On the other hand,
if its category label is weak, then its category labelG∗i can be flipped to the category
labelG∗j of its neighbors. This process penalizes sudden changes of category labels,
producing a smoothed graph. We perform the smoothing again using a Conditional
Random Field (CRF).

Our CRF models the conditional distribution

p(g | ō) =
1

Z(ō)

∏

i∈Vō

ϕ(ōi,gi)
∏

(i, j)∈Eō

ψ(ōi, ōj,gi,g j), (6)

whereZ(ō) =
∑

g′
∏

i∈Vō ϕ(ōi,g′i)
∏

(i, j)∈Eō ψ(ōi, ōj,g′i ,g
′
j) is thepartition function;

Vō are the local classes; andEō are the edges between the local classes. Our for-
mulation of the CRF is slightly different from the conventional approaches in that
our feature similarity functionfn of the node potential logϕ(ōi,gi) = wn · fn(ōi,gi) is
the conditional probabilityp(gi | ōi). Likewise, the feature similarity functionfe of
the edge potential logψ(ōi,gi) = we · fe(ōi, ōj,gi,g j) is also defined as a conditional
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probability p(gi,g j | ōi, ōj). The feature functionsfn and fe hence range between 0
and 1, simplifying the weighting between node and edge potentials to scalars. In su-
pervised learning with CRFs, node weightwn and edge weightwe are learned from
training data. In this unsupervised work, however, we cannot learn these values as
there is no training data available. We therefore determinenode weightwn and edge
weight we manually using an appropriate evaluation measure on a validation set.
Fig. 8 in Sec. 5 shows the effect of setting different combinations of node weightwn

and edge weightwe.
As mentioned in Sec. 4.2, the object feature vector clustering provides the total

number of global object categoriesC∗ and the initial mapping from local class labels
G1, . . . ,GM to global category labelsG∗1, . . . ,G

∗
K∗ . Using the clusters, we can model

the feature similarity functionfn = p(gi | ōi) of node potentialϕ(ōi,gi) as

p(gi | ōi) =
p(ōi | gi)p(gi)
∑

g′ p(ōi | g′)p(g′)
(7)

wherep(ōi | gi) = p(h̄i | gh̄
i )p(v̄i | g v̄

i ) = exp(− ‖ h̄i − h̄gi ‖)exp(− ‖ v̄i − v̄gi ‖) and
p(gi) = 1− 1

|gi |+1. p(ōi | gi) measures how well̄oi fits to the cluster centergi, and
the global category priorp(gi) reflects how likely the category exists. A cluster with
more members are more likely to be a true object category thana cluster with fewer
members, and hencep(gi) is proportional to the size| gi | of the category.

We define the edge feature as

p(gi,g j | ōi, ōj) = p(gi | ōi, ōj)p(g j | ōi, ōj), (8)

wherep(gi | ōi, ōj) = p(gi | ōi j) andp(g j | ōi, ōj) = p(g j | ōi j) are estimated by a mean
object feauter vector̄oi j. The probabilitiesp(gi | ōi j) andp(g j | ōi j) are computed by
the nearest-neighbor.

To infer the most likely labels for the nodes of the class graph C, we use max-
product loopy belief propagation. This approximate alogrithm returns the labelsG∗i
which maximizes the conditional probability of Eq. 6. For the message passing, we
take the generalized Potts model approach as commonly done and incorporate the
edges in the inference only whengi andg j are equal. This results in the propagation
of the belief only between equally-labeled nodes. The inference step continues until
convergence and provides the distribution of global category labelsG∗1, . . . ,G

∗
K∗ for

every local class labelGi.
To find the category labelG∗ for each discovered objectO, we compute the cat-

egory which maximizes the assignment probability

p(g | o) =
∑

ō′
p(g | ō′)p(ō′ | o). (9)

The probability of the category for a given local labelp(g | ō′) can be read directly
from the class graphC, and the probability of the local object class given an object
p(ō′ | o) = exp(− ‖ ō−o ‖) is computed as the object’s similarity to the class mean.
Discovered objects are accepted as objects when the probability of its most likely



12 Jiwon Shin Rudolph Triebel Roland Siegwart

Fig. 6: Objects found in two different scenes. Segments of the same object label
have the same color.

category label is greater than 0.5. Fig. 6 shows the results of categorization of the
two scenes shown in Fig. 4.

5 Results

In this section, we present the results of running the algorithm on scans from real
world scenes. The data set was collected using a nodding SICKlaser with a width
of 100 degrees and a height of 60 degrees. Each set was captured at the horizontal
resolution of 0.25 degrees and the vertical resolution of 15degrees a second. All
scenes were static. The test set was a set of 60 scans from fouroffices. In total, these
data sets contained 208 objects, including chairs, couches, poster boards, trash bins,
and room dividers.

Fig. 7: The results of object discovery with (left) and without (right) saliency com-
putation. All connected segments are considered objects for categorization. Objects
are colored by their local class label.

We first tested the effect of including saliency in the discovery step. Fig. 7 quali-
tatively shows the difference in object discovery with and without saliency compu-
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tation. Including saliency improves the precision1 of discovery from 44% to 84%
while decreasing recall from 83% to 74%. That is, while including the saliency step
does eliminate some true objects, it is much more effective at eliminating none ob-
jects than the same algorithm without the saliency step.
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ϑō

The effect ofϑō on V-Measure

Fig. 8: Evaluation of our categorization step using V-measure. Left graph shows the
effect of node and edge weights on v-measure. Right graph shows the effect of the
object distance threshold on v-measure.

Quantitatively, we computed V-measure [15] of our algorithm. V-Measure is a
conditional entropy-based external cluster evaluation measure which captures the
cluster quality by homogeneity and completeness of clusters. It is defined as

Vβ =
(1+β) ∗h ∗ c

(β ∗h)+ c
, (10)

whereh captures homogeneity,c completeness, andβ the weighting between ho-
mogeneity and completeness. A perfectly homogeneous solution hash = 1, and a
perfectly complete solution hasc = 1. Fig. 8 shows the quality of clustering with
varying node and edge weights and the effect of object distance threshold on the
quality of clustering. Left graph indicates that the results of our algorithm is ro-
bust to the change of node and edge weights, but smoothing improves the overall
results over pure clustering. Right graph shows that the quality of clusters depends
on the object distance thresholdϑ ō, which indicates that the initial clustering result
influences the final categorization quality.

Fig. 9 shows precision and recall2 of the algorithm for varying object distance
thresholdϑ ō. Not suprisingly, precision drops and recall increases as the threshold
increases. This is because higher threshold results in fewer categories, which in turn
means more of the discovered objects are accepted as categorized objects.

1 A discovered object is considered true positive if it originates from a real object and false positive
if it is not a real object. False negative count is when a real object is not discovered.
2 In computing precision and recall, we did not take into consideration the correctness of the
category labels. Any real object that got categorized was considered true regardless of its label.
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Fig. 9: Effect of the object distance threshold on precision and recall.

Fig. 10 shows qualitative results. Left images are the results of performing ob-
ject discovery per each scan, and right images are the corresponding images after
categorization. Discovered objects are colored accordingto their local class label,
i.e., with respect to other objects within a single scan, while categorized objects are
colored according to their global category label, i.e., with respect to all other objects
of the data set. The categorization step is able to assign thesame global category
labels to objects with different local class labels as shown in Fig. 10b while assign-
ing different global category labels to objects with the same local label as shown in
Fig. 10d. In addition, the chairs found in different scene are correctly labeled to be
the same type as shown in Fig. 10a, 10b, 10d.

6 Conclusion and Outlook

We presented a seamless approach to discover and categorizeobjects in 3D envi-
ronment without supervision. The key idea is to categorize the objects discovered
in various scenes without requiring a presegmented image orthe number of classes.
Our approach considers objects to be composed of parts and reasons on each part’s
membership to an object class. After objects are discoveredin each scan, we as-
sociate these local object labels by building a class graph and inferring on it. We
demonstrated our capability of discovering and categorizing objects on real data
and performance improvement class graph smoothing brings over pure clustering.

Our approach has several avenues for future work. First, we can use the results
of categorization for object recognition. Once the robot has discovered enough in-
stances of an object category, it can use the knowledge to detect and recognize ob-
jects, much the same way many supervised algorithms work. Our algorithm simpli-
fies creating training data to converting robotic class representation to human repre-
sentation. Another direction for future work is on-line learning. While the proposed
approach allows the robot to reason on knowledge gained overtime, the knowledge
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(a) Room 1

(b) Room 2

(c) Room 3

(d) Room 4

Fig. 10: Results of category discovery. Left images containobjects discovered
through the object discovery process, and right images are the same objects after
categorization. Objects in the left images are colored according to their local class
labels while objects in the right images are colored by theirglobal category labels.
Notice that the categorization step can correct incorrect classifications of the dis-
covery step.
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is updated in batch. This limits the availability of new information until enough data
is collected for the batch processing. A robot, which can process incoming data and
update its knowledge on-line, can utilize the new information immediately and adapt
to changing environment. Extending our work to handle categorization on-line will
thus make unsupervised discovery and categorization more useful for robotics.
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