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Abstract— We present a novel approach for unsupervised dis-
covery of repetitive objects from 3D point clouds. Our method
assumes that objects are non-deformable and uses multiple
occurrences of an object as the evidence for its existence.
We segment input range data by superpixel segmentation and
extract features for each segment. We search for a group of
segments where each segment matches a segment in another
group using a joint compatibility test. The discovered objects
are then verified by the Iterative Closest Point algorithm to
remove false matches. The presented method was tested on
real data of complex objects. The experiments demonstrate that
the proposed approach is capable of finding objects that occur
multiple times in a scene and distinguish apart those objects of
different types.

I. I

For a robot that interacts with people, it is essential to
semantically analyze its surroundings. In particular, home
environments usually contain various objects, which often
define the particular location at which they are encountered
(e.g. furniture). The ability to detect and distinguish objects
autonomously is thus a key for a robots’ independence when
working in a home environment. For instance, if a robot
can determine that a dining room contains a set of chairs,
which are multiple occurrences of the same object, and a
table, which is different from chairs, then it can use such
information to classify a dining room as a place with two
types of objects - many chairs and one table. Then, when it
encounters an unfamiliar room, it can simply search for the
characteristics of the room - many instances of one object
type and one instance of a different object type - and the
fingerprints of the objects found in the room. When both are
verified, the robot can label the room as a dining room. Such
an automatic process eliminates the necessity of training a
robot with every object it is likely to find in the environment.
Instead, we can simply label each type of object a robot
finds in the appropriate language of the household, e.g.chair
or Sessel. In this work, we investigate the possibility of
unsupervised discovery of objects that occur multiple times,
such as chairs in a dining room, from data taken with a 3D
laser scanner.

Unsupervised discovery of repetitive objects in a given
scene is a challenging task because we do not know a priori
the definition of an object, the number of occurrences of a
certain object type, nor the number of different object types
present in the scene. In addition, the method must be able to
distinguish real objects - chairs and couches - from walls,
ground, and ceiling as we do not pre-segment them out.

Fig. 1. An example of a scene observed with a nodding SICK laserscanner.
Objects that are discovered through the algorithm are colored, where all
points which belong to the same object are assigned to one color. Arrows
are drawn between two segments that match.

The method thus should be able to hypothesize on objects
while handling lots of clutter in the scene. As an indoor
robot can easily collect more evidence to support or refute a
hypothesis without any harm, it is better for a robot to claim
no knowledge than have a false belief when the uncertainty
is high. To minimize false discovery, we take a conservative
approach and only accept the output when the uncertainty is
low.

Figure 1 depicts a typical scene of interest in this paper,
which is captured using a nodding SICK laser scanner. The
scene contains two working chairs and two arm chairs along
with some ceiling light fixures and a plant. Of these, we are
interested in discovering the two types of repeating objects
- the working chairs and the arm chairs. If the process is
successful, each instance of the object gets its own color,
and arrows are drawn between all segments that match.

We propose an approach to discover, without supervision,
objects that occur multiple times in a scene. Using 3D point
clouds from a laser scanner as input, we first segment the
points according to their surface property using superpixel
segmentation and extract features for each segment. We use
an extended joint compatibility test to discover object models
and their matching objects, and verify these objects by the
Iterative Closest Point algorithm to remove false matches.
Through this work, we demonstrate that repetition can aid
the discovery of objects and define object models.

The organization of the paper is as follows. We discuss
related work in Section II. Section III explains how the input
scene is segmented and how features are extracted from each
segment. In Section IV, we discuss the object discovery
method and the verification step. Section V presents the



experimental results. The paper concludes with Section VI.

II. RW

Repetition detection has been well-explored in the field of
image analysis. In particular, many authors have investigated
methods for detecting regularly repeating patterns [1], [2].
More recently, Loy and Eklundh [3] focused on grouping of
features based on symmetry, and Wenzelet al. [4] proposed
an algorithm that uses symmetry to detect repetitive struc-
tures in facade images. They argued that symmetry is a strong
clue to group features together. Likewise, we group together
segments upon a discovery of a matching set, but we do not
explicitly search for the symmetric plane between the two
objects. In this way, our approach is similar to Zeng and van
Gool [5], where the authors employ point-wise repetition to
improve segmentation results. They use mutual information
to determine if two segments of an intially oversegmented
image are of the same group. We instead extract features for
every segment and compare these features to measure the
similarity between two segments.

In terms of 3D, discovery and utilization of repetition
has been adressed in computer aided design and other
synthetic models [6], [7], [8]. They focused on detection
of symmetry or regular patterns in 3D with applications in
graphics and image compression. Work of Bokelohet al. [9]
is more closely related to this work. The authors proposed an
algorithm for detecting structural redundancy by matching
symmetric constellations of feature lines. We also search
for a collection of elements that repeat as a group, but we
do not assume symmetry as the repetition pattern. To our
knowledge, no work has dealt with discovery of objects by
repetition in laser data.

In unsupervised object detection, several have proposed
adaptation of text analysis methods in image analysis. For
example, Liu and Chen [10] has proposed a modified proba-
blilistic latent semantic analysis method to detect foreground
objects from images. In [11], Endreset al. use Latent
Dirichlet Allocation to detect object classes from range data
without supervision. While this approach can classify objects
of multiple classes, they assume that a ground plane and
walls are extracted a priori and the objects are spatially dis-
connected. In our work, we do not make such assumptions.
We consider every segment as a potential object part and test
them to determine if they belong to an object.

The way we define an object is parts-based. We search
for objects using the joint compatibility branch-and-bound
algorithm [12]. Shinet al. [13] has shown that objects defined
by parts can be represented by a grammar and recognized
using a joint compatibility test. In our work, we do not
perform a separate parts detection, nor require object parts
to have physical meanings.

We employ feature-based approaches to recognize objects.
Among various feature descriptors for 3D data, spin images
have been shown to be successful and popular [14], [15].
Other features of interest for this work are shape distribu-
tion [16] and shape factors [17].

III. S  F E

The proposed algorithm is a three-step process. First, we
extract segments from the input point cloud and extract
features for every segment. We apply a joint compatibility
test on these segments to detect objects and then verify them
using the Iterative Closest Point algorithm. In this section,
we describe the segmentation method and shape descriptors.

A. Range Data Segmentation

The goal of segmentation is to find labelsL(x) for all
data pointsx, where points that are close to each other and
similar in some predefined way, should have the same label.
We use the superpixel segmentation method by Felzenszwalb
and Huttenlocher [18], originally proposed for 2D images,
to group together similar points. This algorithm creates a
graphG = {V,E} of verticesV and edgesE, where each
pixel in a given image corresponds to a vertex and the edges
connect adjacent image pixels. Each edgee= (vi , v j) has an
associated weightw(e) representing the dissimilarity of the
connected verticesvi andv j . In the case of an image, this can
be, for example, the difference of the pixel intensities. The
algorithm starts with a segmentation where each vertex is its
own segment. Then, the edges are processed by increasing
weights and the two segmentsCi and C j connected by a
given edgee are merged whenever

w(e) ≤ min

(

d(Ci) +
k
|Ci |
,d(C j) +

k
|C j |

)

,

whered(C) is the internal differencefunction defined by the
maximal edge weight of all edges in the minimum spanning
tree of the segmentC ⊆ V, andk is a consistency parameter
that influences the granularity of the segmentation: a low
value ofk requires segments to be more consistent and thus
produces more but smaller segments. The interal difference
function ensures that two segments are merged only when
the difference between the two is smaller than the difference
within each segment with some tolerance.

In this work, we define each pointx of a 3D point cloud
X as a vertex and form an edge between two neighboring
vertices, where neighbors are determined by a triangular
mesh built on the data. We use the dot productni · n j as
edge weight whereni is the surface normal vector computed
at pointxi . Thus, regions with a smooth surface, e.g. a plane
or a sphere, are segmented as one region while surfaces
with sharp edges, e.g. between two sides of a box, are
segmented into two regions. As a modification of the original
algorithm, we do not force every point to be in a segment.
This is because we cannot calculate the normal for the
points with an insufficient number of neighboring points. For
these isolated points, no vertices are generated in the graph,
and thus no label is assigned. In addition, after termination
we remove segments that contain less points than a given
minimal valuemsize. Such small segments are often caused by
sensor imperfections or occlusions and do not reveal enough
information for the later matching process.



B. Shape Descriptors

As shape descriptors, we use spin images [14], shape
distributions [16], and shape factors [17], and weigh them
accordingly. For a given pointx with normal vectorn, a
spin imageis defined as a 2D histogramHs oriented along
the line l throughx with directionn. Each bin ofHs counts
the points with a certain distance tol and the plane through
x with normal vectorn. For the spin image descriptor of
a segmentC, we form vectorshs

i of stacked lines of the
histogramsHs

i for all pointsxi ∈ C and compute the average
h̄s over all hs

i .
A shape distributionis defined as a histogram of values

of a predefined functionf : Cr → �, where r is the
arity of f and is usually a value between 1 and 4. In our
implementation, we use two binary functionsfd(xi , x j) and
fa(xi , x j), namely the Euclidean distance of the pointsxi and
x j and the scalar product of their normal vectorsni andn j .
The resulting histogram vectorshd andha are computed by
evaluatingfd and fa on all pairs of points in a segmentC. To
make the feature vectors invariant with respect to the sample
density, we normalize the histogramshd andha by the total
number of bin entries. A normalization with respect to the
maximum distance encountered in a segment is not done, as
this would result in scale-invariant features, and we consider
scale as a feature to be distinguished between objects.

Finally, we computeshape factorsper segment, i.e. the
normalized eigenvalues of the covariance matrixCi of all
points in segmentCi , collected in a vectorh f . All individ-
ual descriptors are used to define a distance metricdc on
segments as

dc(Ci ,C j) = λ1∆h̄s
+ λ2∆hd

+ λ3∆ha
+ λ4∆hf

,

where theλi are weight factors and∆h is the Euclidean
distance between two feature vectorsh(Ci) andh(C j).

IV. O D

The challenge of unsupervised discovery of repetitive
objects is that we have neither an a-priori definition of an
object, nor the number of occurrences per object type. With-
out such information, we cannot determine for each segment
if the segment is an instance of an object. To overcome this
problem, we search for only those objects that occur multiple
times in the scene. The multiplicity allows us to reason on
the object by comparing it against another instance of the
same object. In addition, we only focus on complex objects
and define an object as a collection of segments. Discovering
objects composed of only one segment requires us to rely
entirely on the shape descriptors for matching. The minimum
segment constraint allows us to use physical constraints as
an additional evidence for an object. Therefore, we consider
an object hypothesis valid only when it is composed of at
least two segments. To reduce false matches, we verify the
hypotheses for objects by finding correspondences between
the point clouds of discovered objects.

Algorithm 1 : SJCBB Symmetric joint compatibility
branch-and-bound test for discovering a pair of repetitive
objects.

Data: SegmentsC of the scene

Input: CurrentmodelhypothesisHM ⊂ C and its
matchingtest hypothesisHT ⊂ C

Output: A pair of hypothesesBM ⊂ C andBT ⊂ C that
yield the highest matching score.

Procedure:
if |HM | ≥ |BM | and dc(HM ,HT) > dc(BM ,BT) then
BM ← HM

BT ← HT
end

I ← |C|
for i = 1 to I do
Ci

M ← randomselect f rom(C)
Ci

T ← randomselect f rom(C \ {Ci
M})

if individual match(Ci
M ,C

i
T) and

relation match(HM ∪Ci
M ,HT ∪ C

i
T) then

SJCBB (HM ∪ C
i
M ,HT ∪ C

i
T ,C \ {C

i
M ,C

i
T})

end
end

A. Repetitive Object Discovery

To find repeating objects, we use a joint compatibility
test with branch-and-bound [12], a popular solution for
data association problems. Data association is a well-known
problem in robotics. The joint compatibility test addresses
the data association problem by finding test points that not
only correspond to the model points individually but also
match well as a set. The branch-and-bound aspect enables
the algorithm to search efficiently by growing a hypothesis
when necessary and terminating one when no appropriate
part is found.

In an ordinary data association problem, the model set
is predetermined, and the goal is to find the best mapping
from the test set to the model set. In our framework, however,
we do not have a model. Our goal is to discover a model
through the detection of matching pairs of segments. We
thus propose a modification to the algorithm calledsymmetric
joint compatibility branch and bound, which discovers an
object model and its matching test object from the input
segments.

The overall algorithm is shown in Algorithm 1. Given
segments as input to the algorithm, we search for a set of
segments that occur multiple times in the scene. We perform
the search in two steps. In the first step, we discover an
object model, i.e. a collection of segments, and its matching
object. Since the only evidence we have for an object is the
presence of a matching object, the process will always return
two hypotheses. In the second step, the algorithm searches
for the remaining occurrences of the object using as a model,
the objects found in the first step.



The first step is as follows: We begin with a randomly
selected segmentC0

M and look for a segmentC0
T in the scene

that match well with it. If we findC0
T , then we begin two

hypotheses,HM andHT , one for themodelset and the other
for the testset. The distinction ofmodelandtesthypotheses
is arbitrary as one hypothesis is only valid with the existence
of a matching hypothesis. Therefore, there is no definitive
model hypothesis to which a test hypothesis must match.
Rather, a pair of segments must be similar enough to support
each other’s validity.

The hypothesesHM andHT grow as we select a new
segmentC1

M and search forC1
T which is individually com-

patible toC1
M, andHT∪C

1
T is jointly compatible toHM∪C

1
M.

The growth ofHM andHT continues until then-th model
segmentCn

M no longer finds a compatible test segmentCn
T .

The algorithm then starts a new pair of hypotheses with a
different seed segment pairs, in search of the best pair of
hypothesesBM andBT . The best pair of hypotheses contains
the most number of segments with the smallest distance
between the hypotheses. At the end of the process, we label
BM andBT as objectsO1 andO2 of typeO.

Upon the discovery of an object typeO, we begin the
second step. To find the remaining instances ofO in the
scene, we apply the algorithm again, but this time, using
O1 andO2 as the model. Now the goal is to find a set of
segments that matches the model best. Each time we find
such a hypothesisHk, we label it as an objectOk of the type
O. The search for an object of typeO ends when we no
longer find a hypothesis that matches eitherO1 or O2. We
repeat this two-step process of finding a pair of hypotheses
and detecting other instances of the object until we no longer
find a valid hypothesis.

In the presented algorithm, the invidiual and the joint
match score play a crucial role in deciding on a match. We
use the shape descriptors as described in Section III-B to
evaluate a match. For an individual match, we consider a
pair of segmentsCM andCT compatible if

dc(CM ,CT) < Ti ,

whereTi is a thresholding value for individual compatibil-
ity. For the joint compatibility, in addition to calculating
dc(HM∪CM ,HT∪CT), we compute the Mahalanobis distance
dm(VC,HM ,V

C,H
T) between the new segement pairs to the

segments in their corresponding hypotheses, whereVC,HM

indicates a vector from the center of the input segmentCM

to a segment in the hypothesisHM. We require that for all
segments inHM andHT ,

dm(VC,HM ,V
C,H

M) < T j .

The physical constraints enable us to reject segments that are
similar in features but are inconsistent with the hypotheses
in their arrangement.

B. Match Verification

The goal of the verification step is to minimize falsely dis-
covered objects by confirming that the discovered objects are
consistent among themselves. We achieve this by mapping all

(a) Without initialization (b) With initialization

Fig. 2. Correspondences between two point clouds without the spin image
initalization 2(a) and with the initialization 2(b). Without the initialization,
ICP performs poorly when the two point clouds have a high rotational
transformation as shown in 2(a). 2(b) shows that the same two sets match
well with the initialization.

points of an objectOi to the points that belong to its matching
pair O j by the Iterative Closest Point (ICP) algorithm [19].
ICP, often used in localization, finds the transformation from
one point cloud to the other by minimizing the difference
between the two sets. Since ICP finds a local minimum, it
works well only when the initial correspondence between
two point clouds is close to the global minimum. As the
objects Oi and O j can be in any orientation, the initial
estimation cannot rely purely on the nearest neighbors in
the Euclidean space. We instead estimate the initial transfor-
mation by computing features at various randomly selected
points inOi and finding their corresponding points fromO j

in the feature space. We use spin images as the features,
as presented in [14]. Figure 2 shows the effect of the
initialization by the feature-space correspondence. As the
figure indicates, without the initialization, the verification
step performs poorly when the objects are mirrored.

The initialization is as follows: Given two objectsOi and
O j , we first center them with their respective mean valuesŌi

and Ō j in x- and y-direction, and randomly select a subset
of points (x1, ..., xn) in Oi . We assume that objects are in
their natural vertical position and do not center the pointsin
z-direction. This helps us eliminate wall-ceiling, wall-floor,
and ceiling-floor matches. For each pointxk, we calculate
its spin image and search for all points (yk

1, ..., y
k
m) in O j ,

whose spin image is similar toxi . These points are then
used as the initial correspondence points for ICP. Once the
transformation between the two point clouds is found, we
count all the points inOi that have a corresponding point
in O j and vice versa. We consider the two objectsOi and
O j matched if the total number of matched points is greater
than 70 percent of the sum of points inOi andO j .

V. R

In this section, we test the algorithm on scans from real
world scenes. We took data using a nodding SICK laser with
a width of 100 degrees and a height of 90 degrees. Each set
was captured at the horizontal resolution of 0.25 degrees
and the vertical resolution of 15 degrees a second. The test
set was composed of 55 data sets from four different rooms.
Overall, the scenes had four types of working chairs and one
type of arm chairs along with trash cans, a flip chart, and a



Fig. 4. A test scene with no repeating object. The algorithm discovers no
object.

TABLE I

T         

msize 50 75 100 120 150
k = 6 56% 48% 51% 45% 40%
k = 9 59% 48% 59% 45% 40%
k = 12 42% 34% 36% 36% 36%
k = 15 47% 47% 36% 36% 36%

plant as background. Objects were placed up to 90 degrees
of rotation from each other. Most scenes contained two or
three objects of the same type, but some scenes contained
two objects of two kinds. Four scenes contained contained
no repeating objects. In total, there were 138 instances of
objects that the algorithm could discover.

We evalute the algorithm by the rate of discovery and
precision. The discovery rate is the number of objects the
algorithm found over the number of objects we expect
it to discover. We calculate precision as the number of
correctly discovered objects over the number of correctly
and incorrectly discovered objects. The rates for object types
are computed likewise. For example, if a scene contains
three chairs of type A and one of type B, then we define
the ground truth as three chairs and one object type. As
mentioned earlier, the program does not detect objects of
single occurrence.

Figure 3 and Figure 4 contain some of the results of
the presented algorithm. All points that belong to the same
object have the same color, and an arrow connects two
matching segments. The arrow starts from amodelsegment
and points at the correspondingtest segment. The overall
rate of object discovery is 59% and that of object types is
68%. The precision is 98% for objects and 97% for object
types. The precision is high because our method eliminates
every uncertain object. In a home environment, it is better
for a robot to take more data when it is uncertain about
the environment than to make a false assumption about its
surroundings. If we set the minimum segment requirement
to one, i.e. an object is composed of one or more segments,
then the discovery rate goes up to 76% for objects and 84%
for object types, but the precision drops to 51% for objects
and 49% for object types. The drastic decrease of precision
is due to the false matches among segments that belong to
wall, ceiling, and floor.

Fig. 5. No object is discovered due to sufficient number of segments. When
an object is segmented as one segment (top), the program fails to discover
it as an object (bottom).

Fig. 6. No object is discovered because of a failure in the verification step.
Objects that are found in the discovery phase (top) are falsely eliminated
during the verification phase, yielding no detection (bottom).

Our method does not assume a perfect segmentation.
However, the final outcome is affected by the quality of
segmentation. Table I shows the rate of discovery against
the consistency parameterk and the minimum segment size
parametermsize. Our experiment revealed thatk = 9 and
msize = 100 yields the highest discovery rate and precision.
This is partially due to our assumption that an object is com-
posed of at least two segments. The requirement naturally
favors objects that are segmented into multiple segments.
Therefore, for a high discovery rate without suffering the
precision, it is crucial that the segmentation is done in such
a way to allow multiple parts per object while each segment
being large enough to be discriminative. One major source
of no discovery was the lack of sufficient object segments.
When an object is segmented into a single segment, the
program fails to discover the object as it is invalid according
to our definition of object, as shown in Figure 5. Another



Fig. 3. Some test scenes with discovered objects in color. Points that belong to the same object have the same color

source of no detection was the lack of sufficient points on
objects. In addition to occlusion and the natural sparsity of
data, the incident angle limits the number of usable points
in laser data. Without sufficient points, however, we cannot
extract segments and features reliably. This causes a lack
of object discovery. Lastly, while the verification step most
often improved the quality of results, it sometimes eliminated
correct hypotheses due to incorrect initialization of point
clouds, shown in Figure 6.

VI. C  O

We presented an approach for unsupervised discovery of
repeated objects in range data without a prior knowledge on
parts, location, or the number of occurrences. It determines
potential object parts by applying a modified superpixel
segmentation on the point cloud and extracts features on
these segments using spin images, shape distributions, and
shape factors. It then discovers objects by finding a set of
segments that has a matching set using a joint compatibility
test. The objects are verified by the Iterative Closest Point
algorithm to minimize false matches. We tested the algorithm
on real world data sets to demonstrate its ability to detect re-
peated objects. The whole process is performed without any
supervision and without presegmentation of the background.

There are several avenues for improvement. Work pre-
sented in this paper has so far only been tested indoor. While
outdoor also contains repetitive structure, using the current
algorithm for outdoor scenes poses challenges because out-
door objects are often much bigger than indoor objects. A
single scan of an outdoor scene often fails to capture multiple
instances of the same object at the level of detail necessary
for the algorithm. To overcome this problem, it is necessary
to merge several images together to obtain more dense data.
Such utilization of a robot’s mobility would also improve the
indoor results as some objects were undiscovered due to an
insufficient number of points on the object. The ultimate goal
is to enable a robot to learn the characteristics of a place,
which requires to extend the approach as to find matches
among several places of the same type.
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