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Abstract— We present a novel approach for unsupervised dis-
covery of repetitive objects from 3D point clouds. Our method
assumes that objects are non-deformable and uses multiple
occurrences of an object as the evidence for its existence.
We segment input range data by superpixel segmentation and
extract features for each segment. We search for a group of
segments where each segment matches a segment in another
group using a joint compatibility test. The discovered objects =
are then verified by the lterative Closest Point algorithm to %
remove false matches. The presented method was tested on
real data of complex objects. The experiments demonstrate tha
the proposed approach is capable of finding objects that occur

multiple times in a scene and distinguish apart those objects of Fig. 1. An example of a scene observed with a nodding SICK kssmner.
different types. Objects that are discovered through the algorithm are edlowhere all

points which belong to the same object are assigned to one éolows
are drawn between two segments that match.

|. INTRODUCTION

For a robot that interacts with people, it is essential to
semantically analyze its surroundings. In particular, BomThe method thus should be able to hypothesize on objects
environments usually contain various objects, which oftewhile handling lots of clutter in the scene. As an indoor
define the particular location at which they are encounteredbot can easily collect more evidence to support or refute a
(e.g. furniture). The ability to detect and distinguishesttg  hypothesis without any harm, it is better for a robot to claim
autonomously is thus a key for a robots’ independence whem knowledge than have a false belief when the uncertainty
working in a home environment. For instance, if a robots high. To minimize false discovery, we take a conservative
can determine that a dining room contains a set of chairapproach and only accept the output when the uncertainty is
which are multiple occurrences of the same object, and law.
table, which is dterent from chairs, then it can use such Figure 1 depicts a typical scene of interest in this paper,
information to classify a dining room as a place with twowhich is captured using a nodding SICK laser scanner. The
types of objects - many chairs and one table. Then, whendtene contains two working chairs and two arm chairs along
encounters an unfamiliar room, it can simply search for theith some ceiling light fixures and a plant. Of these, we are
characteristics of the room - many instances of one objettterested in discovering the two types of repeating object
type and one instance of affiirent object type - and the - the working chairs and the arm chairs. If the process is
fingerprints of the objects found in the room. When both arsuccessful, each instance of the object gets its own color,
verified, the robot can label the room as a dining room. Sudmnd arrows are drawn between all segments that match.
an automatic process eliminates the necessity of training aWe propose an approach to discover, without supervision,
robot with every object it is likely to find in the environment objects that occur multiple times in a scene. Using 3D point
Instead, we can simply label each type of object a robalouds from a laser scanner as input, we first segment the
finds in the appropriate language of the household,chair  points according to their surface property using supetpixe
or Sessel In this work, we investigate the possibility of segmentation and extract features for each segment. We use
unsupervised discovery of objects that occur multiple §me an extended joint compatibility test to discover object eisd
such as chairs in a dining room, from data taken with a 3@and their matching objects, and verify these objects by the
laser scanner. Iterative Closest Point algorithm to remove false matches.

Unsupervised discovery of repetitive objects in a giveiThrough this work, we demonstrate that repetition can aid
scene is a challenging task because we do not know a prithie discovery of objects and define object models.
the definition of an object, the number of occurrences of a The organization of the paper is as follows. We discuss
certain object type, nor the number oftdrent object types related work in Section Il. Section Il explains how the impu
present in the scene. In addition, the method must be ablegoene is segmented and how features are extracted from each
distinguish real objects - chairs and couches - from wallsegment. In Section IV, we discuss the object discovery
ground, and ceiling as we do not pre-segment them ounethod and the verification step. Section V presents the



experimental results. The paper concludes with Section VI. [ll. SEGMENTATION AND FEATURE EXTRACTION

The proposed algorithm is a three-step process. First, we
extract segments from the input point cloud and extract
Repetition detection has been well-explored in the field deatures for every segment. We apply a joint compatibility
image analysis. In particular, many authors have invetgtiha test on these segments to detect objects and then verify them
methods for detecting regularly repeating patterns [1], [2using the lterative Closest Point algorithm. In this segtio
More recently, Loy and Eklundh [3] focused on grouping ofve describe the segmentation method and shape descriptors.
features based on symmetry, and Weretedl. [4] proposed
an algorithm that uses symmetry to detect repetitive strugs, Range Data Segmentation
tures in facade images. They argued that symmetry is a strong_l_ . )
clue to group features together. Likewise, we group togethe | "¢ 90al of segmentation is to find label¢x) for all
segments upon a discovery of a matching set, but we do ndita pointsx, where points that are close to each other and

explicitly search for the symmetric plane between the tW(§imilar in some predefined way, should have the same label.

objects. In this way, our approach is similar to Zeng and valVe use the superpixel segmentation method by Felzenszwalb

Gool [5], where the authors employ point-wise repetition tGnd Huttenlocher [18], originally proposed for 2D images,
improve segmentation results. They use mutual informatiof 9ouP together similar points. This algorithm creates a
to determine if two segments of an intially oversegmenteg,raph,g = _{(V’S,} of verticesy and edgesS, where each
image are of the same group. We instead extract features fy¥€! in @ given image corresponds to a vertex and the edges

every segment and compare these features to measure ¢Ranect adlace_”t image pixels. _Each eége(_vi,_v,-)_has an
similarity between two segments. associated weight(e) representing the dissimilarity of the

In terms of 3D, discovery and utilization of repetition connected verticeg andv;. In the case of an image, this can

has been adressed in computer aided design and ot r,for example, the ffierence of the pixel intensities. The

synthetic models [6], [7], [8]. They focused on detectiorf gorithm starts with a segmentation where each vertesis it

of symmetry or regular patterns in 3D with applications i V" segment. Then, the edges are processed by increasing
graphics and image compression. Work of Bokedofal. [9] w_e|ghts and the two segments and C; connected by a
is more closely related to this work. The authors proposed &ven edgee are merged whenever
algorithm for detecting structural redundancy by matching
symmetric constellations of feature lines. We also search w(e) < min{d(Ci) + ﬁ,d(cj) + ﬁ)
for a collection of elements that repeat as a group, but we ' !
do not assume symmetry as the repetition pattern. To ownhered(C) is theinternal diferencefunction defined by the
knowledge, no work has dealt with discovery of objects bynaximal edge weight of all edges in the minimum spanning
repetition in laser data. tree of the segmen@ ¢ V, andk is a consistency parameter
In unsupervised object detection, several have proposésht influences the granularity of the segmentation: a low
adaptation of text analysis methods in image analysis. Fealue ofk requires segments to be more consistent and thus
example, Liu and Chen [10] has proposed a modified prob@roduces more but smaller segments. The interf@¢ince
blilistic latent semantic analysis method to detect fopegd  function ensures that two segments are merged only when
objects from images. In [11], Endrest al. use Latent the diference between the two is smaller than thedénce
Dirichlet Allocation to detect object classes from rangéada within each segment with some tolerance.
without supervision. While this approach can classify olsiec  |n this work, we define each pointof a 3D point cloud
of multiple classes, they assume that a ground plane apdas a vertex and form an edge between two neighboring
walls are extracted a priori and the objects are spatially divertices, where neighbors are determined by a triangular
connected. In our work, we do not make such assumptiongiesh built on the data. We use the dot produoict nj as
We consider every segment as a potential object part and tesfge weight where; is the surface normal vector computed
them to determine if they belong to an object. at pointx;. Thus, regions with a smooth surface, e.g. a plane
The way we define an object is parts-based. We searoh a sphere, are segmented as one region while surfaces
for objects using the joint compatibility branch-and-bdun with sharp edges, e.g. between two sides of a box, are
algorithm [12]. Shiret al.[13] has shown that objects definedsegmented into two regions. As a modification of the original
by parts can be represented by a grammar and recognizalgorithm, we do not force every point to be in a segment.
using a joint compatibility test. In our work, we do notThis is because we cannot calculate the normal for the
perform a separate parts detection, nor require objecs pafioints with an insflicient number of neighboring points. For
to have physical meanings. these isolated points, no vertices are generated in théngrap
We employ feature-based approaches to recognize objeasd thus no label is assigned. In addition, after terminatio
Among various feature descriptors for 3D data, spin imagese remove segments that contain less points than a given
have been shown to be successful and popular [14], [15hinimal valuemsi,e Such small segments are often caused by
Other features of interest for this work are shape distribuisensor imperfections or occlusions and do not reveal enough
tion [16] and shape factors [17]. information for the later matching process.

Il. ReLATED WORK



B. Shape Descriptors

As shape descriptors, we use spin images [14], shap
distributions [16], and shape factors [17], and weigh them

Algorithm 1: SJCBB Symmetric joint compatibility
branch-and-bound test for discovering a pair of repetitive
8bjects.

accordingly. For a given point with normal vectorn, a
spin imageis defined as a 2D histograi® oriented along
the linel throughx with directionn. Each bin ofH® counts
the points with a certain distance t@and the plane through
X with normal vectorn. For the spin image descriptor of
a segmentC, we form vectorsh® of stacked lines of the
histogramsH?® for all pointsx; € C and compute the average
h® over all h?.

A shape distributionis defined as a histogram of values
of a predefined functionf : C" — R, wherer is the
arity of f and is usually a value between 1 and 4. In our
implementation, we use two binary functiofig(xi, x;) and
fa(xi, Xj), namely the Euclidean distance of the poixtand
Xj and the scalar product of their normal vectarsandn;.

Data: Segmentst of the scene

Input: CurrentmodelhypothesisHy c € and its
matchingtesthypothesisHr c €

Output: A pair of hypothese®8y c € and Bt c € that
yield the highest matching score.

Procedure:

if |Hwl = 18ml and do(Hwu, Ht) > do(Bwm, Br) then
Bm — Hwm
Br — Hr

end

| «|C

fori=1tol do
C), « randomselect from(€)

The resulting histogram vectoh$' andh? are computed by

evaluatingfy and f, on all pairs of points in a segme6t To if individualLmatcHC! ,ciT) and

make the feature vectors invariant with respect to the sampl relation.match{#y U Ci,, Hr U CiT) then

density, we normalize the histograrh$ andh? by the total | SICBB (Hw UC},, Hr UCL, €\ (C},.CL})

number of bin entries. A normalization with respect to the end

maximum distance encountered in a segment is not done, asnd

this would result in scale-invariant features, and we abgrsi

scale as a feature to be distinguished between objects.
Finally, we computeshape factorsper segment, i.e. the

normalized eigenvalues of the covariance matixof all

points in segment;, collected in a vectoh®. All individ-

ual descriptors are used to define a distance melfyion

segments as

C; « randomselectfrom(€ \ {C},})

A. Repetitive Object Discovery

To find repeating objects, we use a joint compatibility
test with branch-and-bound [12], a popular solution for
data association problems. Data association is a well-know
problem in robotics. The joint compatibility test addresse
the data association problem by finding test points that not
only correspond to the model points individually but also
match well as a set. The branch-and-bound aspect enables
the algorithm to searchfiéciently by growing a hypothesis
when necessary and terminating one when no appropriate
part is found.

In an ordinary data association problem, the model set

The challenge of unsupervised discovery of repetitivés predetermined, and the goal is to find the best mapping
objects is that we have neither an a-priori definition of aifirom the test set to the model set. In our framework, however,
object, nor the number of occurrences per object type. Withwe do not have a model. Our goal is to discover a model
out such information, we cannot determine for each segmetfirough the detection of matching pairs of segments. We
if the segment is an instance of an object. To overcome thibus propose a modification to the algorithm cabgchmetric
problem, we search for only those objects that occur meltipjjoint compatibility branch and boundwhich discovers an
times in the scene. The multiplicity allows us to reason opbject model and its matching test object from the input
the object by comparing it against another instance of thgegments.
same object. In addition, we only focus on complex objects The overall algorithm is shown in Algorithm 1. Given
and define an object as a collection of segments. Discoverisggments as input to the algorithm, we search for a set of
objects composed of only one segment requires us to redggments that occur multiple times in the scene. We perform
entirely on the shape descriptors for matching. The minimunie search in two steps. In the first step, we discover an
segment constraint allows us to use physical constraints akject model, i.e. a collection of segments, and its matghin
an additional evidence for an object. Therefore, we comsidebject. Since the only evidence we have for an object is the
an object hypothesis valid only when it is composed of gbresence of a matching object, the process will alwaysmetur
least two segments. To reduce false matches, we verify th@o hypotheses. In the second step, the algorithm searches
hypotheses for objects by finding correspondences betwefem the remaining occurrences of the object using as a model,
the point clouds of discovered objects. the objects found in the first step.

de(Ci, Cj) = 11Ah® + A,AR + A3AR? + 244N,

where thel; are weight factors andh is the Euclidean
distance between two feature vectt(®;) andh(C;).

IV. Osiect DiscOVERY



The first step is as follows: We begin with a randomly
selected segmet?, and look for a segmer@t? in the scene
that match well with it. If we findC%, then we begin two
hypothesesHy and?r, one for themodelset and the other
for the testset. The distinction omodelandtesthypotheses
is arbitrary as one hypothesis is only valid with the exis&en
of a matching hypothesis. Therefore, there is no definitive
model hypothesis to which a test hypothesis must match.
Rather, a pair of segments must be similar enough to support
each other's validity. Fig. 2. Correspondences between two point clouds withaisgiin image

The hypothesesy and #r grow as we Select & New i iz ation 2(a) and with the initialization 2(b). Withie the initialization,
segmentC}, and search foCt which is individually com- ICP performs poorly when the two point clouds have a high iatat
patible toCt,, andHr UC} is jointly compatible toHy UCH,.  transformation as shown in 2(a). 2(b) shows that the same ttgonsatch
The growth ofHy and Hr continues until then-th model el With the initialization.
segmeniCy, no longer finds a compatible test segmefit

The algorithm then starts a new pair of hypotheses with goints of an objec®d; to the points that belong to its matching
different seed segment pairs, in search of the best pair 94ir 0; by the Iterative Closest Point (ICP) algorithm [19].
hypothese®\ andBr. The best pair of hypotheses contain§cp, often used in localization, finds the transformaticonfr
the most number of segments with the smallest distangge point cloud to the other by minimizing thefférence
between the hypotheses. At the end of the process, we laghyeen the two sets. Since ICP finds a local minimum, it
Bum and By as objects); and O, of type O. works well only when the initial correspondence between

Upon the discovery of an object type, we begin the two point clouds is close to the global minimum. As the
second step. To find the remaining instancestofn the opjects 0; and O; can be in any orientation, the initial
scene, we apply the algorithm again, but this time, usingstimation cannot rely purely on the nearest neighbors in
01 and O, as the model. Now the goal is to find a set ofthe Euclidean space. We instead estimate the initial toansf
segments that matches the model best. Each time we fifightion by computing features at various randomly selected
such a hypothesigiy, we label it as an objea@ of the type  points inO; and finding their corresponding points fraf
O. The search for an object of typeé ends when we no i the feature space. We use spin images as the features,
longer find a hypothesis that matches eitBgror O>. We a5 presented in [14]. Figure 2 shows thfeet of the
repeat this two-step process of finding a pair of hypothes@sitialization by the feature-space correspondence. As th
and detecting other instances of the object until we no Iongggure indicates, without the initialization, the verifiat
find a valid hypothesis. step performs poorly when the objects are mirrored.

In the presented algorithm, the invidiual and the joint The initialization is as follows: Given two object and
match score play a crucial role in deciding on a match. Wg, we first center them with their respective mean valdes
use the shape descriptors as described in Section III-B H‘P]d()_j in x- and y-direction, and randomly select a subset
evaluate a match. For an individual match, we consider g points &1, ..., Xn) in O;. We assume that objects are in
pair of segment&y andCt compatible if their natural vertical position and do not center the points

de(Cm,C1) < T, z-direct.i(.)n. This helps us eliminate Walll-ceiling, walbdi,

and ceiling-floor matches. For each poiy we calculate
whereT; is a thresholding value for individual compatibil- its spin image and search for all pointg(...,y&) in Oj,
ity. For the joint compatibility, in addition to calculain whose spin image is similar t®. These points are then
de(HmUCwMm, HrUCT), we compute the Mahalanobis distanceused as the initial correspondence points for ICP. Once the
Am(VEH w1, VEH1) between the new segement pairs to theransformation between the two point clouds is found, we
segments in their corresponding hypotheses, whéfé’y  count all the points in0; that have a corresponding point
indicates a vector from the center of the input segn@nt in O; and vice versa. We consider the two objeGsand
to a segment in the hypothestgy. We require that for all  O; matched if the total number of matched points is greater
segments inHy and Hr, than 70 percent of the sum of pointsdh andO;.

Am(VEH , VO ) < T;. V. REsuLTS

The physical constraints enable us to reject segmentsriat a N this section, we test the algorithm on scans from real
similar in features but are inconsistent with the hypothesevorld scenes. We took data using a nodding SICK laser with

(a) Without initialization (b) With initialization

in their arrangement. a width of 100 degrees and a height of 90 degrees. Each set
o was captured at the horizontal resolution of 0.25 degrees
B. Match Verification and the vertical resolution of 15 degrees a second. The test

The goal of the verification step is to minimize falsely disset was composed of 55 data sets from fotiiedént rooms.
covered objects by confirming that the discovered obje&s aOverall, the scenes had four types of working chairs and one
consistent among themselves. We achieve this by mapping glpe of arm chairs along with trash cans, a flip chart, and a



Fig. 4. A test scene with no repeating object. The algorithsecalers no
object.

TABLE |

THE EFFECT OF SEGMENTATION PARAMETERS ON THE OBJECT DISCOVERY RATE

Msize 50 75 100 120 150
k=6 56% 48% 51% 45% 40%
59% 48% 59% 45% 40%
2 42% 34% 36% 36% 36%
5 47% 47% 36% 36% 36%

Fig. 5. No object is discovered due tofcient number of segments. When
an object is segmented as one segment (top), the programdalisdover
it as an object (bottom).
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plant as background. Objects were placed up to 90 degrees

of rotation from each other. Most scenes contained two or 7]
three objects of the same type, but some scenes contained /
two objects of two kinds. Four scenes contained contained
no repeating objects. In total, there were 138 instances of
objects that the algorithm could discover.

We evalute the algorithm by the rate of discovery and
precision. The discovery rate is the number of objects the
algorithm found over the number of objects we expect
it to discover. We calculate precision as the number of
correctly discovered objects over the number of correctly
and incorrectly discovered objects. The rates for objguesy
are computed likewise. For example, if a scene contains
three chairs of type A and one of type B, then we definﬁgD

. . ig. 6. No object is discovered because of a failure in thdigation step.
the ground truth as three chairs and one object type. Asyjects that are found in the discovery phase (top) arelfatsiminated
mentioned earlier, the program does not detect objects afring the verification phase, yielding no detection (boito
single occurrence.

Figure 3 and Figure 4 contain some of the results of

the presented algorithm. All points that belong to the same Our method does not assume a perfect segmentation.
object have the same color, and an arrow connects twéowever, the final outcome isffacted by the quality of
matching segments. The arrow starts frormedelsegment segmentation. Table | shows the rate of discovery against
and points at the correspondirigst segment. The overall the consistency parametkrand the minimum segment size
rate of object discovery is 59% and that of object types iparametermgi, Our experiment revealed th&t = 9 and
68%. The precision is 98% for objects and 97% for objeatnsi;e = 100 yields the highest discovery rate and precision.
types. The precision is high because our method eliminata@sis is partially due to our assumption that an object is com-
every uncertain object. In a home environment, it is bettggosed of at least two segments. The requirement naturally
for a robot to take more data when it is uncertain aboiufvors objects that are segmented into multiple segments.
the environment than to make a false assumption about itherefore, for a high discovery rate withoutffaring the
surroundings. If we set the minimum segment requirememtrecision, it is crucial that the segmentation is done irhsuc
to one, i.e. an object is composed of one or more segmengsway to allow multiple parts per object while each segment
then the discovery rate goes up to 76% for objects and 84Being large enough to be discriminative. One major source
for object types, but the precision drops to 51% for objectsf no discovery was the lack of ficient object segments.
and 49% for object types. The drastic decrease of precisidihen an object is segmented into a single segment, the
is due to the false matches among segments that belongpimgram fails to discover the object as it is invalid accogdi
wall, ceiling, and floor. to our definition of object, as shown in Figure 5. Another
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Fig. 3. Some test scenes with discovered objects in colont®dhat belong to the same object have the same color

source of no detection was the lack offfizient points on
objects. In addition to occlusion and the natural sparsity 0[]
data, the incident angle limits the number of usable points
in laser data. Without ghicient points, however, we cannot
extract segments and features reliably. This causes a Iaéﬁ]
of object discovery. Lastly, while the verification step mos
often improved the quality of results, it sometimes elinéta

correct hypotheses due to incorrect initialization of poin B3l
clouds, shown in Figure 6. [4]
VI. ConcLusion aNp OUTLOOK [5]

We presented an approach for unsupervised discovery of
repeated objects in range data without a prior knowledge o
parts, location, or the number of occurrences. It detersiine
potential object parts by applying a modified superpixell’]
segmentation on the point cloud and extracts features on
these segments using spin images, shape distributions, and
shape factors. It then discovers objects by finding a set off!
segments that has a matching set using a joint compatibility
test. The objects are verified by the Iterative Closest Poin[o]
algorithm to minimize false matches. We tested the algarith
on real world data sets to demonstrate its ability to detect rp;q;
peated objects. The whole process is performed without any
supervision and without presegmentation of the background

There are several avenues for improvement. Work prery
sented in this paper has so far only been tested indoor. While
outdoor also contains repetitive structure, using theeturr 17]
algorithm for outdoor scenes poses challenges because c}ut-
door objects are often much bigger than indoor objects. A
single scan of an outdoor scene often fails to capture neltip[t3!
instances of the same object at the level of detail necessary
for the algorithm. To overcome this problem, it is necessarj4]
to merge several images together to obtain more dense data.
Such utilization of a robot's mobility would also improveeth |15
indoor results as some objects were undiscovered due to an
insuficient number of points on the object. The ultimate go 6]
is to enable a robot to learn the characteristics of a place,
which requires to extend the approach as to find matches
among several places of the same type. (17]
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