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Abstract

So far global optimization techniques have been devel-
oped independently for the tasks of shape matching and im-
age segmentation. In this paper we show that both tasks
can in fact be solved simultaneously using global optimiza-
tion. By computing cycles of minimal ratio in a large graph
spanned by the product of the input image and a shape tem-
plate, we are able to compute globally optimal segmenta-
tions of the image which are similar to a familiar shape
and located in places of strong gradient. The presented
approach is translation-invariant and robust to local and
global scaling and rotation of the given shape. We show
how it can be extended to incorporate invariance to simi-
larity transformations.

The particular structure of the graph allows for run-time
and memory efficient implementations. Highly parallel im-
plementations on graphics cards allow to produce globally
optimal solutions in a few seconds only.

1. Introduction

Most state-of-the-art approaches to image segmentation
are based on low-level cues such as edges [11] or region
statistics [15]. Only in very few cases can the correspond-
ing optimization problem be solved globally optimal. Most
notably this is true for the approach of Jermyn and Ishikawa
[10] to edge-based segmentation and the region-based ap-
proach of Greig et al. [7] for binary images. The latter can
be extended to a two-phase piecewise constant Mumford-
Shah functional [15, 2] with known mean intensities.

In recent years researchers have suggested to enhance
purely low-level segmentation schemes by imposing prior
knowledge, favoring segmentations that are in some sense
similar to a given shape. Representative works are the pi-
oneering contribution of Grenander et al. [8], the varia-
tional formulation of Cremers et al. [5] as well as level
set formulations by Leventon et al. [13] for edge-based
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models and Tsai et al, Rousson and Paragios and Cre-
mers et al. [17, 16, 4] for region-based approaches. These
works demonstrate that shape priors allow to drastically im-
prove the segmentation of familiar objects in the presence of
prominent noise, partial occlusions and background clutter.

All these approaches use local optimization where usu-
ally each set of parameters is solved for alternatingly. The
often huge number of parameters (accounting for mean in-
tensities, rotation, translation, scale and deformation)to es-
timate suggests that the approaches are likely to get stuck in
local optima. Moreover, stable gradient descent requires a
delicate tuning of the respective time step sizes.

We emphasize two works not depending on initializa-
tion: the first is the work of Coughlan et al. [3] to find
open contours in images. It makes intensive use of a train-
ing phase. The second is the approach of Felzenszwalb [6].
While this approach is able to find optimal closed contours
in polynomial time, due to the cubic run-time in practice it
has to rely on heuristics.

Sophisticated shape priors and shape similarity measures
typically involve the computational challenge of determin-
ing appropriate matches between the points of the segment-
ing contour and points on a shape template. Such shape
alignments are usually computed via dynamic time warping
[14, 1]. Yet, to efficiently determine a segmentation which
globallyoptimizes both the low-level edge consistency and
the similarity to one or more shape templates has so far re-
mained an open challenge.

In this paper we show that indeed segmentations and
shape alignments can be determined simultaneously, re-
sulting (with the exception of a few degenerate cases) in
a globally optimal image segmentation with a translation-
invariant elastic shape prior. To this end, we propose to
compute cycles of minimal ratio in a large graph represent-
ing the product space spanned by the input image and all
points of the shape template. The presented approach is ro-
bust against local and global scaling and rotation. We show
extensions to incorporate rotational invariance.

The structure of the graph allows for a both memory and
run-time efficient implementation of the globally optimal
graph-theoretic algorithm. GPU-implementations allow to
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find globally optimal shape-consistent segmentations in a
matter of seconds.

2. Global Optimization in Computer Vision

Our approach combines two fields where global opti-
mization techniques have been thoroughly researched: the
fields of image segmentation and shape matching. We begin
with a short review of the techniques relevant for our work.

2.1. Elastic Shape Matching

In elastic shape matching one is looking for the optimal
way to deform a given shapeC : [0, l(C)] → IR2 into a
shapeS : [0, l(S)] → IR2, where both shapes are parame-
terized by arc length andl(·) denotes the length of a curve.

Formally one is looking for amatchingor alignment
of the shapes, a strictly increasing diffeomorphismm :
[0, l(C)] → [0, l(S)] expressing that the pointsC(s) and
S(m(s)) correspond to each other. The optimal matching
is determined by minimizing an appropriate measure of the
total deformation.

Often one wants to excludeglobal deformations from
this measure, i.e. a shift of the center of mass, a rotation
of the complete shape and a scaling of it should not be pe-
nalized. What remains arelocal deformations such as the
motion of the thumb of a hand.

Basri et al. [1] proposed a deformation measure based
on two aspects: (1) points of similar curvature should be
matched. If curvature is identical for all pairs of correspond-
ing points the shapes are identical up to global rotation and
translation. (2) a curve piece ofC should be matched to a
piece ofS of equal length. This implies an ideal derivative1

of m′(s) = 1. Deviations from both ideals are penalized,
leading to the total deformation costs:

l(C)
∫

0

|κC(s) − m′(s)κS(s)| ds + λ

l(C)
∫

0

Ψ(m′(s)) ds (1)

HereκC(s) denotes the curvature ofC atC(s) and likewise
for κS(s). As penalty functionΨ(·) in this work we choose

Ψ(m′) =

{

m′ − 1 if m′ ≥ 1
1

m′
− 1 otherwise

(2)

This function offers the advantage of symmetry, i.e. com-
paringC to S yields the same costs as the comparison of
S to C. The optimal alignment can be found via dynamic
time warping, see [14, 1].

2.2. Minimum Ratio Cycles

For the problem of image segmentation, Jermyn and
Ishikawa [10] proposed to consider the ratio of two line in-

1If scale invariance is desired the ideal value isl(S)/l(C).

tegrals. Such problems are discretized and reduced to the
problem of finding a cycleC in a graph whereC minimizes

min
C

∑

e∈C n(e)
∑

e∈C d(e)
(3)

Here each edge is assigned a numerator weightn(e) and a
denominator weightd(e) representing a small piece of the
respective integral. Under fairly mild requirements ond(e)
(see [12]) this can be solved globally optimal using the Min-
imum Ratio Cycle algorithm. The key observation [12] is
that for a ratioτ >τopt, with τopt the optimal ratio, a graph
with same topology and edge weightsw(e) = n(e)− τd(e)
must possess a negative cycle.

Negative cycles can be found via the Moore-Bellman-
Ford algorithm for distance calculations. For graphs with-
out negative cycles the algorithm computes the distance
from a given root noder to all other nodes in the graph.
It relies on a distance labeld(v) and a parent entryp(v)
for each nodev in the graph. Initiallyd(r) is set to0 and
d(v) = ∞ for all other nodesv. The root node is added
to a queue. Then, as long as there are nodes in the queue,
the front one is removed and expanded. Expanding a node
v means to check for all outgoing edgese=(v, v′) whether
d(v) + w(e) is lower thand(v′). If so, a shorter path tov′

was found,d(v′) is set to the new distance andp(v′) is set
to v. If v′ is not already in the queue it is added at the end.

If the graph has negative cycles, the algorithm will not
terminate and from some point on the parent graph will
permanently contain cycles. Regularly checking the parent
graph for cycles allows to detect and extract negative cycles.

To determine the optimal ratio one starts with an upper
boundτ on the optimal ratio and adjusts it until all negative
cycles vanish. Every time a cycle is found the ratioτ is set
to its ratio. The last extracted cycle is of optimal ratio.

For integral numerator and denominator weights in the
worst case the run-time is proportional to the number of
nodes times the number of edges and a factor given by the
margin spanned by the edge weights (see [10]). In practice
we observe a run-time linear in the number of nodes.

3. Elastic Shape Priors in Ratio Functionals

In this paper we simultaneously solve the problems of
image segmentation and shape matching: given an image
I : Ω → IR in the image planeΩ, we find the optimal re-
gion boundaryC (parameterized by arc length) that both
accumulates strong gradients along the curve and is simi-
lar to a given shapeS. We use an edge indicator function
g :Ω → IR which can be arbitrary. In practice we choose

g(x) =
1

1 + |∇I(x)|



This function is averaged along the curveC:

∫ l(C)

0
g(C(s)) ds

l(C)
(4)

Without the denominator long curves would be extremely
disfavored. Thanks to the ratio the length of a curve does
not enter as a bias. By itself minimizing (4) is not a sensible
problem: a global minimum is given by an infinitesimally
short curve located whereg(·) is lowest. This is not a prob-
lem for our approach as we also impose similarity ofC to
the shape templateS.

To measure this similarity the optimal alignment ofC

to S must be determined. This is done simultaneously
with the determination ofC. As similarity measure one
might be tempted to use functional (1). However, the com-
parison of curvature is difficult to integrate whenC it-
self is unknown. We therefore defer invariance to simi-
larity transformations to section5. For translation invari-
ance we compare the tangent anglesαC(s) andαS(m(s))
of the curves. To ease notation in the following we sim-
ply write |αC(s) − αS(m(s))|2. In fact, to accurately cap-
ture the cyclic nature of angles the minimum of this and
(2π − |αC(s) − αS(m(s))|)2 is taken.

Our cost function consists of the average edge indicator
value alongC plus the deformation and scaling costs for the
optimal alignment, normalized by the length ofC:

min
C,m

∫ l(C)

0
g(C(s)) ds

l(C)
+ λ

∫ l(C)

0
Ψ(m′(s)) ds

l(C)

+ ν

∫ l(C)

0 |αC(s) − αS(m(s))|2 ds

l(C)
(5)

This is minimized simultaneously over the region boundary
C and the alignmentm. While this is surely not the only
conceivable cost function it offers the immense advantage
that it can be optimized globally via the Minimum Ratio
Cycle algorithm. This algorithm is very efficient as it does
not perform an explicit search over all possible start points.
Moreover, as demonstrated in section6 this functional leads
to very accurate results.

Our algorithm does not exclude self-intersecting curves.
However, while for image segmentation these are usually
unwanted, this is different for the task oflocating de-
formable objects in an image. This is demonstrated in Fig-
ure 1: in the prior shape (the black hand) all fingers are
spread apart. To locate them in the image some line seg-
ments must occur repeatedly, which was accurately deter-
mined by the approach. Comparing to the outer hull of the
hand – as done for example in Level Sets methods – would
produce a weaker similarity.

prior shape location of deformed version

Figure 1. For the task of locating deformable objects self-
intersections and repeated line segments should not be excluded.
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Figure 2. A shape is represented as a sequence of pixels on a
discrete grid.

4. Product Graphs for Combined Matching
and Segmentation

We solve problem (5) in discretized form. The shapeS
is given as a list of|S|+1 pixels where the first equals the
last and each pixel is contained in an eight-neighborhood
of its predecessor. This is illustrated in Figure2. The re-
gion boundaryC to be optimized is represented in the same
way. The tangent angle for the shape pixel with numbers is
denoted asαS(s).

In the discrete setting the matchingm(·) aligns image
pixels to shape pixels. A shape pixel may be aligned to
several image pixels (implyingm′<1) or remain unaligned
(m′ > 1). We limit the maximal and minimal derivative of
the matchingm according to

1

K
≤ m′ ≤ K (6)

whereK is some pre-defined integral constant. This implies
that at mostK image pixels are aligned to the same shape
pixel and at mostK−1 subsequent shape pixels are skipped.
Both run-time and memory depend linearly onK and are
therefore polynomial even forK = |S|, which would allow
to reduce the entire shape to a single pixel.

The problem can now be expressed as the search for a
cycle in a graph that minimizes a ratio of form (3).

4.1. Graph Structure

For the simultaneous search of region boundary and
alignment we use the Minimum Ratio Cycle (MRC) algo-
rithm on a product graph. Product graphs in combination
with Minimum Ratio Cycles first appeared in [9] where the
product of the pixel sets of several images was taken.
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Figure 3. The topology of our graph: the graph is based on an
acyclic structure (top). For each of the first|S| shape nodes a
group ofK frames is created. These frames represent the image
with one node for each pixel. As the frame|S| ·K is identical to
the frame0 the graph actually has the cyclic structure shown in the
bottom. For the construction of edges see text.

In our case the node set is the product of the pixel set
P of the imageI and the set of numbers between0 and
K ·|S|, representingK instances of each point of the shape
template:

V = P ×
{

0, . . . , K ·|S|
}

(7)

The node(~p, s ·K + l) with l < K expresses that the im-
age pixel~p is aligned to the shape pixel with numbers and
that previously alreadyl image pixels were aligned to the
same shape pixel. From a sequence of such nodes one can
therefore reconstruct both the alignmentm and the region
boundaryC.

As the last shape pixel equals the first one the nodes
(~p, 0) and(~p, K · |S|) represent the same thing. They can
therefore be thought of as identical or as linked by edges
with weight 0. This introduces cycles into the otherwise
acyclic directed graph we will now describe. The general
topology is illustrated in Figure3.

There are two kinds of edges in the graph. In both cases
the contourC is developed by traversing from an image
pixel ~p to a pixel ~q ∈ N (~p) whereN (~p) denotes the8-
neighborhood of~p. In both groups the denominator weight
d(e) = |~q − ~p| of an edgee represents the piece of the de-
nominator integral alongC between~p and~q.

In the first group the shape pixel stays constant and an-
other image pixel is aligned:

(~p, s·K+l) → (~q, s·K+l+1)

for l < K − 1 and~q ∈ N (~p)

The numerator weight for such an edgee covers the integral
from ~p to ~q for the data and deformation term. It also covers
the scaling costs ofλ caused by the alignment of another
image pixel to the same shape pixel. This corresponds to
the non-linear part ofΨ in (2). With ϕ(·) denoting the angle
of a vector, the costs are

n(e) = 1
2 |~q − ~p|

(

g(~p) + g(~q)
)

+ν |~q − ~p| |αS(s) − ϕ(~q − ~p)|2

+λ

In the second group of edges one traverses to a new shape
pixel, possibly skipping some shape pixels in the process.
As so far no image pixels were aligned to the new shape
pixel, the second component of the target node is a multiple
of K:

(~p, s·K + l) → (~q, (s + i)·K)

for l < K, 1 ≤ i ≤ K and~q ∈ N (~p)

The data term for the edge is as in the first case. For the de-
formation costs we consider the best shape direction in the
skipped interval. Scaling costs (corresponding to the linear
part ofΨ) are only added if shape pixels were skipped:

n(e) = 1
2 |~q − ~p|

(

g(~p) + g(~q)
)

+ν |~q − ~p| min
s≤ s′<s+i

|αS(s′) − ϕ(~q − ~p)|2

+(i − 1)λ

4.2. Efficient Optimization

To find the optimal cycle in the graph we use the Min-
imum Ratio Cycle algorithm2 (see section2.2). As shape
templates are often of length500 or more implementa-
tions with common graph classes are not feasible: already
for very small images an immense amount of memory is
needed. Fortunately the specific structure of the graph al-
lows to implement the MRC algorithm without actually
building a graph. One simply calculates a distance tensor
and a tensor of parent pointers corresponding to the nodes.
Edges are computed on the fly.

For the parent pointers it suffices to store the incoming
direction and the change in the second component. We use
two bytes per node, forK≤5 one byte suffices.

Distance calculations are performed by proceeding along
t, wheret denotes the second component of the nodes. No-
tice that except fort = 0 the distance matrix fort can be
discarded as soon ast+K2+1 is reached. The distance ma-
trix for t can be computed in parallel as only distances for
t′ < t are relevant. In a GPU implementation we observed
speed-ups of a factor250 and more.

2For the root node an extra node is added and connected to all nodes
with second component0. All edge weights are set to0.
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Figure 4. The proposed method determines accurate segmentations in the presence of high background clutter and 3D-rigid body motion.

When reachingt = K · |S| the cycle detection step is
performed. By the way the graph is constructed a cycle
must contain a node with second componentt=K ·|S|3. It
is possible that it contains several such nodes, implying that
the shape was aligned multiple times. While in intermediate
solutions this occurs frequently, we only observed it once in
the final solution. These are the degenerate cases where no
global optimum is determined4. They can be interpreted as
the scene not containing a similar enough shape.

If no cycle is found one has to check if the distance of
any node witht = K · |S| is lower than the distance of the
respective node fort = 0. If so the distance calculation is
continued, otherwise the optimal ratio was found. In prac-
tice we observed at most3 distance calculation rounds for
the same ratio.

5. Comparison to Multiple Templates

Often it is desirable to have rotationally invariant shape
priors. The described approach is only invariant to trans-
lation. To incorporate invariance against global rotations
the rotation angle is sampled in regular intervals and a new
shape created for each angle.

In a more general setting one is given several shape tem-
plates (e.g. different silhouettes of a 3D-object) and wants
to determine the optimal one. This is achieved by sequen-
tially comparing to each shape, resulting in a run-time linear
in the number of shapes. The good news is that the subse-
quent comparisons are generally much faster than the first
one: one can initialize with the ratio determined for the first
template.

6. Experiments

In several experiments we demonstrate that our approach
is able to produce accurate segmentations in the presence
of high background clutter and low contrast. Moreover
the segmentations are superior to the ones generated by the
Mumford-Shah functional.

3This implies that the shape pixel0 cannot be skipped. It is straightfor-
ward to remove this

4In such a case the global minimum can still be found in polynomial
time by reverting to an explicit search over all start points.

In all caseselastic deformations are needed to get the
desired contours. We fixK = 3 andλ = ν = 0.25. For all
images (resolutions around384×288 pixels)750 MegaBytes
suffice to produce globally optimal segmentations.

In Figure4 we segment a pot in front of cluttered back-
ground. The prior template was obtained from a frame early
in the sequence. Segmentations after 3D-rotation on the ta-
ble, occlusion and lifting are shown. The segmentation of
the first image took74.5 minuteson the CPU, on the GPU
only 15 seconds– a speed-up factor of290. The figure also
shows that for large rotations rotationally invariance (see
Sec.5) is needed.

Figure5 shows that to get meaningful segmentations in-
deed both scaling and deformation costs are needed. Again
the prior shape was obtained several frames ago and the ob-
ject rotated afterwards. The Figure also demonstrates that
the Mumford-Shah functional – implemented by iterated
graph min-cuts – is not able to extract the desired object.

So far all segmentations were obtained for a fixed prior
shape. When given a video sequence containing articulated
motion as in Figure6 it is much more sensible to use a track-
ing approach: for each frame the shape determined for the
last frame is sought. This way larger deformations are de-
composed to a sequence of smaller ones.

Conclusion

We presented a graph-theoretic approach allowing for
the first time to compute globally optimal image segmen-
tations which are consistent both with the low-level edge
information and with a higher-level elastic shape prior in-
duced by a single shape template. The key idea is to find
cycles of minimal ratio in a large product graph spanned by
the input image and the shape template. As each node rep-
resents an image pixel as well as a shape pixel any cycle
simultaneously encodes a segmentation as well as an align-
ment (or elastic registration) with the shape template.

The specific structure of the graph allows for run-
time and memory efficient implementations without an ac-
tual graph. Thanks to the high parallelizability GPU-
implementations are able to reduce the computation time
by more than a factor of250. This way, globally optimal
shape-consistent segmentations are obtained in a matter of
seconds.
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Figure 6. Tracking of a deformable shape in the presence of low contrast.

prior shape full prior

no scale costs no deformation costs

piecewise constant piecewise smooth
Mumford-Shah Mumford-Shah

Figure 5. Effectiveness of the shape prior: the full prior is needed
to find the Teabox. Moreover the Mumford-Shah functionals
(shown for two phases with different length weights) are nothelp-
ful for extracting the Teabox.
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