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Abstract—Traditional optical flow algorithms rely on

consecutive short-exposed images. In this work, we make

use of an additional long-exposed image for motion field

estimation. Long-exposed images integrate motion infor-

mation directly in form of motion-blur. With this addi-

tional information more robust and accurate motion fields

can be estimated. In addition the moment of occlusion

can be determined. Considering the basic signal-theoretical

problem in motion field estimation, we exploit the fact

that long-exposed images integrate motion information

to prevent temporal aliasing. A suitable image formation

model relates the long-exposed image to preceding and

succeeding short-exposed images in terms of dense 2D

motion and per-pixel occlusion/disocclusion timings. Based

on our image formation model, we describe a practical

variational algorithm to estimate the motion field not

only for visible image regions but also for regions getting

occluded. Results for synthetic as well as real-world scenes

demonstrate the validity of the approach.

Index Terms—Motion field estimation, motion blur,

optical flow, occlusion, computational video.

I. INTRODUCTION

Estimating the dense motion field between two con-

secutive images has been a heavily investigated field

of research for decades. Based on the classical optical

flow equation most approaches require the numerical

evaluation of the local time derivative. Hence, most

optical flow algorithms work best with pinpoint-sharp

images as input which depict a dynamic scene at two

discrete points in time. If regarded individually, however,

short-exposed images capture no motion information at

all.

From sampling theory it is known that this approach

leads to temporal aliasing if the maximum 2D displace-

ment in the image plane exceeds one pixel [1]. To pre-

vent aliasing, multiscale optical flow methods pre-filter

the images globally in the spatial domain because the

motion is a priori unknown [2]. This however is not the

correct temporal filter: high spatial frequencies should be

suppressed only in those Fourier-domain regions where

aliasing actually occurs, i.e., only in the direction of local

motion.

There exists a simple way to achieve correct temporal

pre-filtering: exposing an image sensor for an extended

period of time. For moving objects, high frequency

components in motion direction are suppressed in long-

exposed images. Apart from circumventing the problem

of temporal aliasing, long-exposed images bear the ad-

vantage that occlusion enters into the image formation

process. A scene point and its motion contribute to a

motion-blurred image exactly for as long as the point is

not occluded. Only recently have optical flow algorithms

begun to address occlusion [3], [4], assigning occlusion

labels per pixel. The moment of occlusion, however,

cannot be easily determined from short-exposed images.

Inspired by these observations, we present an exten-

sion to traditional optical flow estimation. We obtain

dense, robust 2D motion fields by using images with

different exposure times of the same scene. As input,

our method requires images taken such that an inter-

mediate, long-exposed image IB is enclosed by two

short-exposed images I1, I2, Fig. 1. In contrast to the

severly underdetermined methods for motion estimation

and image deblurring our approach, though still underde-

termined, has more information available: The motion-

blurred image provides anti-aliased motion information,

while the short-exposed images provide complete high

spatial frequencies.

Preliminary work on motion field estimation from

alternate exposure images has appeared in [5], [6]. This

journal version extends on earlier work to comprehen-

sively present the complete method with in depth dis-

cussion of the signal-theoretical background in Sect. III

and new supporting results on synthetic and real scenes.

II. RELATED WORK

The number of articles on optical flow computation

is tremendous which indicates the significance of the

problem as well as its severity [7]–[9]. Related to our

work, scale-space approaches obtain reliable optical flow

results in the presence of disparities larger than a few

pixels [2], [10]. Alternatively, Lim et al. circumvent



I1

I2

IB

t0 1

(a) (b) (c) (d)

Fig. 1. Alternate exposure images: (a) exposure timing diagram of (b) a short-exposed image I1 followed by (c) a long-exposed image IB

and (d) another short-exposed image I2.

the problem by employing high-speed camera record-

ings [11]. None of these approaches, however, consider

occlusion. In contrast, Alvarez et al. determine occlusion

masks by calculating forward and backward optical flow

and checking for consistency [3]. Areas with large for-

ward/backward optical flow discrepancies are considered

occluded and are excluded from further computations.

Xiao et al. propose interpolating motion into occluded

areas from nearby regions by bilateral filtering [4]. This

approach is refined by Sand and Teller [10] in the context

of particle video. While explicit occlusion handling is

incorporated, the moment of occlusion cannot be deter-

mined. The advantages of occlusion handling and occlu-

sion timings for image interpolation are demonstrated by

Mahajan et al. [12]. Similar to our approach they use a

path-based image formation model. However, paths are

calculated between two short-exposed images based on a

discrete optimization framework yielding only full pixel

accuracy.

There has been some previous work on calculating

global motion from a single, motion-blurred image based

on Fourier analysis [13] or auto-correlation [14] assum-

ing spatially invariant motion. A recent approach [15] is

able to calculate parametric and non-parametric motion

fields by formulating a constraint on the alpha channel

of the blurred image, shifting the problem to alpha-matte

estimation. Motion estimation from a single motion-

blurred image is part of blind image deblurring ap-

proaches. Because deconvolution is, in general, ill-posed,

these approaches are restricted to spatially invariant point

spread functions (PSF) [16]–[18] or a locally invariant

PSF [19]. To simplify the problem of blind image

deblurring, many approaches use additional images to

estimate motion and to reconstruct the image: Yuan et

al. [20] use pairs of blurred and noisy images not only

to estimate a spatially invariant blur kernel but also

to reduce ringing artifacts during deconvolution. The

hybrid camera of Ben-Esra and Nayar [21] takes a long-

exposed image of the scene, while a detector with lower

spatial and higher temporal resolution takes a sequence

of short-exposed images to detect camera motion. From

the camera motion, a global PSF is reconstructed which

is used to deblur the image. A recent extension of

the hybrid camera [22] permits the kernel to be a

local mixture of predefined basis kernels, which can be

handled by modern deblurring methods. The motion-

from-smear approach [23] focuses on motion detection

from two motion-blurred images, using deconvolution

techniques and thus relying on locally constant motion.

In an extension [24], a short-exposed and a long-exposed

image are used to calculate the parameters of an affine

motion model. The approach of Bar et al. [25] considers

two motion-blurred images to segment an image into

static background and a foreground that moves with

constant velocity. Likewise, Agrawal et al. [26] deter-

mine a deblurred image from several blurred images with

different exposure times. In a similar approach [27], at

least two motion-blurred images are used to determine

local motion, the corresponding segmentation and depth

information of the scene, assuming motion to be a

sideways translation parallel to the image plane.

In our approach we estimate dense motion fields

from alternate exposure images directly without previ-

ous deblurring. The use of a motion-blurred image in

combination with two short-exposed images allows us

to calculate dense motion fields that are free to vary

from pixel to pixel, i.e., the motion is not assumed to be

globally constant, purely translational or affine nor does

it assume any part of the scene to be static. In addition,

our image formation model is able to handle occlusions

as well as large displacements.
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Fig. 2. (a) Static 1D or (b) 2D signals have space-time Fourier

transforms with supports on the (τ = 0) hyperplane (black). Moving

the signal uniformly shears the support to lie on the motion-dependent

hyperplane τ+ξu = 0 or τ+ξu+ηv = 0 respectively (gray/ yellow).

III. SIGNAL-THEORETIC MOTIVATION

From sampling theory it is well known that regularly

sampling a signal at a frequency below its Nyquist limit

leads to aliasing artifacts. In the case of 2D motion

aliasing, this effect is also known as the wagon-wheel-

effect.

To evaluate temporal aliasing and its consequences to

motion estimation analytically, we assume the simple

case of a band-limited, continuous image f0(x, y) that

is moving with a uniform velocity ~w =
(u
v

)

, i.e.,

f(x, y, t) = f0(x−ut, y−vt). The 3D Fourier transform

F (ξ, η, τ) of the moving image is related to the 2D

Fourier transform F0(ξ, η) of the static image via

F (ξ, η, τ)=

∫∫∫

f(x, y, t)e−2πi(ξx+ηy+τt) dx dy dt

=

∫∫∫

f0(x̃, ỹ)e−2πi(ξx̃+ηỹ)+2πit(τ+ξu+ηv) dx̃ dỹ dt

= F0(ξ, η) δ(τ + ξu + ηv) (1)

where δ is the Dirac delta. While the support of F0 is in

the (τ = 0)-plane, the support of the space-time Fourier

transform of the uniformly moving image is located on

the hyperplane
( u

v
1

)⊥
, i.e., the support is normal to the

motion direction. Additionally, the support is stretched

according to motion magnitude, Fig. 2.

Point-wise sampling leads to shifted replica of the

original transform in the frequency domain at a distance

inverse to the sampling distance. If the signal is moving,

sampling in time can lead to aliasing even for spatially

band-limited signals: Motion that is larger than the

inverse of twice the spatial band-limit per frame shears

the support of the 3D Fourier transform up to the point

where the projections of the supports of the replica to

the (ξ = 0, η = 0)-plane overlap, Fig. 3.

For a fixed point (x0, y0) the temporal intensity func-
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Fig. 3. Regular temporal sampling of a moving 1D signal with

sampling frequency τs leads to replica in the space-time Fourier

domain. (a) If motion is smaller than one pixel per frame, the

projections of the replica to the τ axis don’t overlap. (b) For larger

motion the projections of the replica on the τ axis overlap (boxes) and

therefore cause aliasing artifacts if used without adequate filtering.

tion φ(t) = f(x0, y0, t) has the Fourier transform

Φ(τ) =

∫

φ(t)e−2πiτt dt

= −

∫∫

e2π(ηy0+ξx0)F (ξ, η, τ) dξ dη (2)

which is derived in the Appendix. Eq. (2) shows that

Φ(τ) is a weighted projection of F (ξ, η, τ) to the

(ξ = 0, η = 0)-plane so that overlap of the replica

due to fast motion introduces aliasing. As temporal

derivatives transform to multiplication with 2πiτ in the

frequency domain, the overlap causes aliasing also when

the temporal derivative for a fixed point is considered.

Yet, temporal derivatives are used in all optical flow

algorithms based on the color constancy assumption. The

straight-forward approach to separate the replica is to

increase the sampling rate. High-speed cameras provide

high temporal sampling rates, and the optical flow can

be determined between consecutive images [11]. We

compare the results of this approach to motion fields

calculated on alternate exposure images in Sect. VI.

If no high-speed video equipment is available, other

methods have to be applied to avoid aliasing at high spa-

tial frequencies. In multiscale optical flow approaches,

the entire image is low-pass filtered isotropically in

both spatial directions, Fig. 4(a), to indiscriminately

remove high spatial frequencies. While this approach

does remove the frequencies that cause aliasing, it also

destroys high frequency information that is not affected

by aliasing at all and can be used to limit the solution

space of the motion estimation problem.

A pre-filtering restricted to the direction in which

aliasing actually occurs can be obtained by using longer

exposure times. Approximating the shutter function with



the boxcar-function

h(x, y, t) =

{

1 if |t| ≤ T
2

0 else
(3)

where T is the total duration of the exposure, a long

exposed image g(x, y, t) = (f ∗ h)(x, y, t) has the 3D

Fourier transform

G(ξ, η, τ)

=

∫∫∫

T

2
∫

−T

2

f(x, y, t + s) ds e−2πi(ξx+ηy+τt)dx dy dt

= F0(ξ, η) Tsinc(πT (ξu + ηv)) δ(τ + ξu + ηv) .(4)

In consequence, the high frequencies of the original

image are correctly low-pass filtered dependent on the

motion, Fig. 4(b).

Though suited for considering temporal derivatives,

the use of motion blurred images for other purposes,

e.g. frame interpolation, is limited as high frequencies

in motion direction are lost during recording and their

reconstruction is an ill posed problem. In our approach

we employ alternating short- and long-exposure images

to record the high frequencies. We also derive an image

formation model that relates short-exposure images via a

long-exposure image and the desired motion and thus ob-

tain motion information without temporal derivates, i.e.,

a scale-space approach is no longer necessary to avoid

aliasing but is only an option to speed up convergence.

IV. IMAGE FORMATION MODEL

In order to exploit the information provided by the

additional long-time exposed image, we need an image

formation model that relates the acquired images via a

dense 2D motion field. As input, we assume two short

exposure images I1, I2 : Ω → R which are taken before

and after the exposure time of a third, long-exposed input

(a) (b)

Fig. 4. (a) The isotropic spatial filter used in multiscale optical

flow algorithms attenuates all high frequencies indiscriminately.

(b) Long-exposure imaging corresponds to filtering the image with

an anisotropic filter that attenuates high frequencies only in the di-

rection where temporal aliasing occurs due to the underlying motion.

Frequencies perpendicular to this direction are left unchanged.
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Fig. 5. Without occlusion, a contiguous path of moving scene surface

points between y1 and y2 contributes to pixel x in the long-exposure

image. (a) The projection of the path onto the image plane forms a

planar curve p
1
in the preceding short-exposed image I1 and (b) a

planar curve p
2
in the succeeding short-exposed image I2.

image B : Ω → R. We look for a description of B in

terms of I1, I2 and the motion field.

Some additional assumptions are made. We assume

that the short-exposed images are free of motion-blur

and that short-exposed and long-exposed images are

brightness-adjusted such that in case of no motion, all

images are identical. In practice, we adjust the gain

factor of the camera according to the exposure duration.

Finally, we assume that scene surface appearance does

not change considerably between the exposure time of

all three images.

A. Without Occlusion

Our goal is to derive a suitable model for the formation

of the motion-blurred image B, which is both compu-

tationally manageable as well as sufficiently accurate

to describe real-world data. For the simplest case, let

us consider a moving scene without any occluded or

disoccluded scene points, which implies that all scene

points contributing to the motion-blurred image B are

visible in I1 as well as I2. Parametrizing by time

t ∈ [0, 1] we obtain

B(x) =

1
∫

0

I1(p1(x, t)) dt =

1
∫

0

I2(p2(x, t)) dt. (5)

where p1(x, ⋄) : [0, 1] → Ω and p2(x, ⋄) : [0, 1] → Ω
are spatially varying, planar curves on the image plane

with p1(x, 0) = x and p2(x, 0) = x, Fig. 5. For each

input image, the curves describe the points on the image

plane which pass through x during the exposure duration.

While p1 orders the points forward in time, p2 orders

them backward in time. In the case without occlusion,

the entire curves are visible in both images, so that the

values of both integrals are equal.



B. With Occlusion

The long-exposed image enables incorporating occlu-

sion effects into the image formation model. We assume

that a point changes its visibility at most once during the

exposure. If a scene surface becomes occluded, some

parts of the motion paths are visible in only one of

the two short-exposure images, Fig. 6. We partition the

integral so that part of the intensity B(x) observed in x

is due to intensities along curve p1, while the remaining

part is due to intensities along p2,

B(x) =

s(x)
∫

0

I1(p1(x, t)) dt +

1−s(x)
∫

0

I2(p2(x, t)) dt. (6)

Here, s(x) ∈ [0, 1] denotes the moment during exposure

where an object previously visible at position x in I1

becomes occluded by an object visible at x in I2, or

vice versa.

Note that in the case of no occlusion, any choice of

s yields the same intensity B(x). The occlusion timings

are only well defined in areas where occlusion actually

takes place. At all other points any value s ∈ [0, 1] is
equally valid. If we consider a fixed, non-occluded x

and differentiate (6) with respect to s, we obtain the

brightness constancy assumption of traditional optical

flow computation by the fundamental theorem of calcu-

lus. Thus our approach is a generalized image formation

model that incorporates the additional information pro-

vided by the motion-blurred image, and explicitly takes

occlusion into account.

The image formation model can be easily extended to

allow for more than one visibility change, given that all

passing pixels are visible either in I1 or I2. However,

for the sake of stability of the algorithm, Sect. V, and
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Fig. 6. With occlusion, the path of scene surface points contributing

to pixel x in the long-exposure image is split into two parts. The first

part is on the occluded, the second part is on the occluding surface.

(a) The path has a non-contiguous projection to the image plane of

the preceding image I1 and (b) is only partly visible in the succeeding

image I2.
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Fig. 7. We include a temporal offset to account for gaps that occur

due to hardware constraints. For normalized exposure time of B the

gap between I1 and B has duration σ1 and the gap between I2 and

B has duration σ2

since multiple occlusions arise only rarely in practical

situations with reasonable frame rates, we do not further

investigate this extension here.

C. With Temporal Offset

We want to allow for exposure gaps between the im-

ages I1 and B as well as between B and I2, Fig.7. Gaps

between exposures occur, e.g., due to camera hardware

constraints. Scene motion, of course, continues during

such exposure gaps. To account for gaps, we include a

temporal offset in (6) by changing the integration limits

corresponding to the relative lengths of the gaps:

B(x) =

σ1+s(x)
∫

σ1

I1(p1(x, t)) dt +

σ2+1−s(x)
∫

σ2

I2(p2(x, t)) dt .

(7)

σ1 is the quotient of the length of the exposure gap

between I1 and B and the exposure duration of B.

Correspondingly, σ2 is the quotient of the length of

the exposure gap between B and I2 and the exposure

duration of B and as before s(x) ∈ [0, 1] is the moment

of occlusion.

Note that the motion curves p1 and p2 describe

the motion in the coordinate frame of the motion-

blurred image. Since for many applications a forward

or backward motion field is needed, we morph the

motion curves according to the estimated motion and

occlusion parameters to obtain a motion field for I1 and

I2, respectively.

The image formation model described above gives

rise to a minimization problem of an energy functional,

which is derived in the next section. In the image for-

mation model described so far, we used general motion

curves. To simplify computations, we adopt here a linear

motion model so that

p1(x, t) = x − t w1(x) and p2(x, t) = x + t w2(x),
(8)



where wj : Ω → R
2, wj(x) =

( wj,1(x)
wj,2(x)

)

for j ∈ {1, 2}.
This turns out to be a suitable approximation also for

more general types of motion, Sect. VI. If desired,

however, it is straight-forward to extend the algorithm

to more complex motion models.

D. Frame Interpolation

The image formation model can also be interpreted as

a model for image interpolation for frames at intermedi-

ate time instants t ∈ [0, 1]

It(x) =

{

I1(x − (t + σ1)w1) if t ≤ s(x)

I2(x + (t + σ2)w2) if t > s(x).
(9)

This model handles occlusion in an implicit way and

does not necessitate any thresholding or special treatment

of the occluded and disoccluded regions.

V. ENERGY FORMULATION

The image formation model for a motion-blurred im-

age B considered in the previous section yields a point-

wise error measure for estimates of the linear motion

paths w1, w2 and the occlusion time s as follows. Given

two short-exposed images I1, I2 and a long-exposed

image IB , i.e., the actual measurement, we can compare

the blurred image IB to the result B predicted by the

model (7). We found the L1 norm to be more robust than

the L2 norm [5] so we consider the differences between

measurement and prediction in L1:

ρ1(x, s(x), w1(x), w2(x)) = |IB(x) − B(x)| . (10)

For the sake of increased subpixel accuracy we also

include the differentiated version, i.e., the brightness

constancy assumption

ρ2(x, s(x), w1(x), w2(x)) = (11)

|I1(x − sw1) − I2(x + (1 − s)w2)|.

Integrating the weighted sum of the pointwise errors over

the image domain, we obtain the data term

Edata(s,w1, w2) =

∫

Ω

ρ1 + γρ2 dx, (12)

with γ ≥ 0, cf. Sect. VI-C.
Instead of minimzing the pointwise error, we can

increase stability and performance in textureless regions

by considering global relationships of scene movement:

Neighboring points belonging to the same object typi-

cally exhibit similar motion. This observation suggests

including a regularization term in the energy functional.

As demonstrated in previous work [28], using the total

variation as a regularizer for flow fields yields superior

results. Total variation regularization favors piecewise

constant motion fields. Thus it smoothes out undesired

outliers and avoids oversmoothing at motion boundaries

at the same time. We also regularize the occlusion time

as neighboring pixels, if they are occluded at all, are

occluded at related instants in time. The resulting energy

which depends on the unknown motion w1, w2 and

occlusion time s can be written as

E = Edata +

∫

Ω

α

2
∑

i=1

(|∇w1,i| + |∇w2,i|) + β |∇s| dx.

(13)

Here, α, β ≥ 0 are free parameters of the approach that

control the desired smoothness of the flow fields and of

the moment of occlusion, respectively, cf. Sect. VI-C.

A. Minimization Method

Our minimization scheme is based on the primal-

dual algorithm used for TV-L1 optical flow [28], whose

variants currently rank in the top of the Middlebury

benchmark [29]. We briefly review the method here and

show how we adopt the framework to minimize our

more complex energy functional. In turn we replace the

general variable with w1, w2 and s and keep the others

fixed.

For the very general case of minimizing a total vari-

ation energy of the form

E(u) = λ

∫

Ω

|ρ(u)| dx +

∫

Ω

k
∑

i=1

|∇ui| dx (14)

for a k-dimensional function u on Ω with a pointwise

error term ρ, an auxiliary vector field v is introduced

and the approximation

Eθ(u, v) =

∫

Ω

λ |ρ(v)| +
1

2θ
‖u − v‖2 +

k
∑

i=1

|∇ui| dx

(15)

is considered instead. If θ is small, v will be close to

u near the minimum, and thus E will be close to Eθ.

The key result of Ref. [28] is that (15) can be minimized

very efficiently using an alternating scheme that iterates

between solving a TV image denoising problem for each

ui, keeping v fixed

argmin
ui

∫

Ω

1

2θ
(ui − vi)

2 + |∇ui| dx, (16)

and a minimization problem for v with fixed u

argmin
v

λ |ρ(v)| +
1

2θ
‖u − v‖2, (17)



For each level of the image pyramid

For a predefined number of warps

Compute error from current estimates

For each unknown w1, w2, s

Solve pointwise problem Eq.(17)

Solve denoising problem Eq.(16)

by dual approach

For a number of iterations

Fig. 8. Workflow of our algorithm.

which can be solved pointwise with a thresholding

scheme. Details and proof of convergence can be found

in Refs. [28], [30].

B. Application of the Minimization Method

In our case, we employ some small modifications

adapted to our problem of minimizing the energy in

terms of w1, w2 and s. First, we employ the above

scheme, i.e., iterating between (16) and (17), by consid-

ering u = w1, u = w2 or u = s, respectively, to solve

for each of the unknowns given a fixed approximation

of the others. As the thresholding scheme of Ref. [28] is

not directly applicable to our non-linear data term we

apply a descent scheme for (17), substituting the L1

norm with its regularized variant |ρi|ǫ =
√

|ρi|
2 + ǫ. We

set ǫ = 0.001 througout all experiments.

C. Implementation

The numerical techniques for the actual minimization

are well known [28].

In order to speed up convergence, we implemented the

algorithm on a scale pyramid of factor 0.5 initializing

with s = 0.5 for the occlusion timing, and w1, w2 = 0
on the coarsest level. On each level of the pyramid

we perform several warping iterations where in each

iteration we solve for s, w1 and w2. For each variable

an instance of (16) and (17) has to be solved, Fig. 8.

For (16), we employ the dual formulation detailed in

Ref. [28], Proposition 1, using 5 iterations and a time

step of 0.1225.

For all experimental results we use a 5-level image

pyramid, 10 warping iterations and 10 iterations to

solve (16) and (17). Suitable values for the parameter α,

β, γ and θ were found experimentally. For normalized

intensity values we found θ ∈ (0, 1], α, β ∈ (0, 0.1] and
γ ∈ [0, 0.5] to be suitable value ranges. A discussion

of the sensitivity on the parameter choice is given in

Sect. VI.

Fig. 9. The color map used to display motion fields in Fig. 11, 14,

15 and 16.

We implemented the algorithm in MATLAB. With

code optimized for readability and not for speed the esti-

mation of a 225×320 pixel motion field on a 3.06 GHz

processor lasts 191s. As the process is highly parallel,

a GPU implementation to speed up the computation is

possible.

VI. EXPERIMENTS AND EVALUATION

To evaluate TV-L1 motion field estimation from alter-

nate exposure images we consider synthetic test data as

well as real-world recordings. For synthetic scenes with

known ground-truth motion fields we calculate motion

fields with our algorithm as well as with related ap-

proaches [5], [10], [11], [28] and compare the mean an-

gular error (MAE) and the mean endpoint error (MEE).

We interpolate intermediate frames using estimated mo-

tion fields and occlusion timings and compare them to

ground-truth images, images interpolated with ground-

truth motion and images interpolated with optical flow.

Note that we cannot evaluate our method on standard

test data because these test sets do not provide any

motion-blurred images IB . We also show results for

real world recordings. The recordings were made with a

PointGrey Flea2 camera that is able to acquire short and

long-exposed images alternately. For visualization of the

motion fields we use the color map in Fig. 9 together

with a sparse overlay of the motion vectors which are

scaled for better visualization.

We use image interpolation with our image formation

model (9) as means to evaluate the calculated occlusion

timings. Occlusion timings can have arbitrary values

s ∈ [0, 1] at non-occluded points and are therefore

hard to evaluate visually. Fig. 10 shows examples of the

estimated occlusions timings color-coded with s = 0 as

black and s = 1 as white. Changes of s as the transition

from black to white at the wings of the windmill,

Fig. 10(a), are hard to spot in the otherwise arbitrary

variation of s. In contrast, erroneous occlusion timings in

regions where occlusion actually occurs are easily visible

in interpolated images, Fig. 14.



(a) (b)

Fig. 10. Occlusion timings s for the scenes windmill, (a), and

corner,(b). For non-occluded points all values for s between s = 0
(black) and s = 1 (white) are equally valid while for occluded or

disoccluded points s designates the instant to switch from integration

in the preceeding short exposure to integration in the suceeding short

exposure. Easier visual evaluation of wrong/ correct occlusion timings

is possible by image interpolation, Fig.14, 12 and 15

A. Motion Fields for Synthetic Test Scenes

We consider synthetic test scenes containing different

kinds of motion. The scene square, Fig. 14 combines 10
pixels per time unit horizontal translational motion of the

square with 15 pixels per time unit vertical motion of

the background on a 225×320 image, i.e. blurred pixels

at the edges of the square combine several background

points as well as several foreground points. The scene

Ben, Fig. 15, first row, contains only translational motion

in front of a static background. The main challenge of

this scene is the large magnitude of the motion, 14
pixels per time unit on a 300 × 380 pixel image, and

background occlusion/disocclusion. The scene windmill,

Fig. 15, second row, contains 7◦ per time unit rotational

motion parallel to the image plane in front of a static

background. In the wheel scene, Fig. 15, third row, the

wheel in the background is rotating 7◦ per time unit

while the foreground remains static. The challenge of

the scene corner, Fig. 15, fourth row, is out-of-plane

rotation of 10◦ around an axis parallel to the vertical

image dimension, while the scene fence, Fig. 15, fifth

row, contains translational motion of the same extent as

the moving object’s width.

To obtain the motion-blurred image IB we render and

average 220−500 images. The first and the last rendered

image represent the short-exposed images I1 and I2.

Ground-truth motion is calculated from the known 3D

scene motion.

To evaluate the advantage of the global optimization

framework, we compare the results of the presented TV-

L1 algorithm to the results of the pointwise algorithm

used in Ref. [5]. We also compare to state-of-the-art

optical flow algorithms, [10], [11], [28]. For fair compar-

Fig. 11. Comparing motion fields for the scenes ben and corner

to the ground-truth motion field (top row): While the approach of

Sand and Teller [10] (second row) is prone to over-smoothing, the

approach of Lim et al. [11] (third row) produces noisy motion fields.

TV-L1 regularization [28] (last row) assigns unpredictable motion to

occluded points. Results of our algorithm, Fig. 15(b), profit from

the TV-L1 regularization for favoring piecewise constant motion

fields and the motion blurred image for motion field assignment to

occluded/disoccluded pixels.

ison, we provide the competing optical flow algorithms

also with the image I1.5, depicting the scene half way

between I1 and I2. We calculate the motion fields

between I1 and I1.5 as well as between I1.5 and I2. The

two results are then concatenated before comparing them

to the ground-truth displacement field. As optical flow

works best for small displacements [11], the error of the

concatenation is considerably smaller than calculating

the motion field between I1 and I2 directly.

We choose the algorithm of Zach et al. [28], because

it relies on the same mathematical framework as our

approach. However, our method uses a long-exposed

image instead of a higher frame rate of short-exposed

images. We also compare to the algorithm of Sand and

Teller [10] on three images, because both our method

and their approach consider occlusion effects while cal-

culating motion fields.

As our algorithm is based on signal-theoretical ideas to

prevent temporal aliasing, we incorporate a comparison



to the algorithm of Lim et al. [11] that requires

high-speed recordings as input. We simulate the high-

speed camera with intermediate images such that motion

between two frames is smaller than 1 pixel. Addition-

ally we compare our earlier alternate exposure flow in

Ref. [5] which is based on the same image formation

model as the approach described here but applies only

pointwise optimization.

As can be seen in Tab. I, our algorithm has the smallest

mean angular error (MAE) for all test scenes. Also, in

all test scenes, except for the rotational motion parallel

to the image plane of the scenes windmill and wheel, our

algorithm has the smallest mean endpoint error (MEE).

The rotation within the image plane directly violates

the assumption of linear motion paths in our image

formation model, so here our algorithm is outperformed

by TV-L1 optical flow which does not model the motion

paths in the intermediate time between the frames. In

the corner scene with out-of-plain rotation and severe

self-occlusion, our algorithm is able to produce the most

accurate motion fields in angular error as well as in

endpoint error. Visual comparison of the motion fields,

Fig. 11 and Fig. 15(b) show, that the decrease of error

is due to several reasons: The algorithm of Sand and

Teller [10] tends to over-smooth motion discontinuities,

Fig. 11 second row, while the algorithm of Lim et al. [11]

returns noisy motion fields, Fig. 11 third row. The TV-

L1 algorithm [28] assigns large outlier motion vectors to

occluded points, Fig. 11 last row.

B. Frame Interpolation for Synthetic Test Scenes

For evaluation of the occlusion time estimation, we

interpolate intermediate images based on (9). We also

interpolate intermediate frames between I1 and I1.5,

i.e. between t = 0 and t = 0.5, using the method

introduced by Baker et al. [29] and blending of forward

and backward warping. None of the latter two methods

considers occlusion. Fig. 12 gives an overview of the

sum of squared differences (SSD). Note that for some

images the interpolation error of our algorithm is even

smaller than the SSD of ground-truth motion. This is

due to the fact that inaccuracies in the motion fields

can be balanced by successful handling of occlusion

boundaries. The positive effect of the occlusion handling

becomes also obvious when the images interpolated at

t = 0.25 using our algorithm, Fig. 14(i) and 15(c),

are compared to the corresponding images interpolated

with the method of Ref. [29] and ground-truth motion,

Fig. 14(g) and 15(d).
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Fig. 12. The sum of squared differences (SSD) between interpolated

images and ground-truth images at different instants in time. Images

interpolated with our algorithm (�) show comparable or even smaller

SSD than images interpolated with forward interpolation [29] either

with motion fields computed with optical flow [28] (solid, o) or even

with ground-truth motion (solid, +). The same is true for forward-

backward interpolation in conjunction with optical flow [28] (dashed,

o) and with ground-truth motion (dashed, +).

C. Contribution of Data and Regularization Terms

In Sect. V we included the two-image color-constancy

assumption (11) as an additional data term weighted by

parameter γ. Setting γ = 0 results in visually convincing

motion fields, Fig. 14(e), where boundaries are well

defined. Incorporating the color-constancy assumption

which formally only holds for non-occluded points de-

creases the quality of the motion fields at occlusion

boundaries, Fig. 14(f). Yet the numerical error measures

for flow fields such as the angular error and the endpoint

error are decreased by the color constancy: for the square

scene the mean angular error is 1.7◦ for γ = 0.2 and

2.55◦ for γ = 0 while keeping all other parameters fixed.

Obviously, the motion-blurred data term (10) yields a

basically correct motion field by integrating along the

motion path. The additional color-constancy assumption

provides subpixel accuracy [29]. The actual choice of γ



TABLE I

COMPARISON OF DIFFERENT OPTICAL FLOW METHODS FOR SIX SYNTHETIC TEST SCENES: THE MOTION FIELD COMPUTED USING

TV-L1
FOR ALTERNATE EXPOSURE IMAGES (AEI) PRESENTED IN THIS PAPER CONSISTENTLY YIELDS A SMALLER MEAN ANGULAR

ERROR (MAE). THE MEAN ENDPOINT ERROR (MEE) IS COMPARABLE TO MOTION FIELDS COMPUTED WITH COMPETITIVE OPTICAL

FLOW ALGORITHMS [10], [28] OR WITH ANTI-ALIASED MOTION ESTIMATION ALGORITHMS [5], [11].

Ben square windmill wheel corner fence

MAE MEE MAE MEE MAE MEE MAE MEE MAE MEE MAE MEE

Sand, Teller [10] 8.42 0.91 6.48 5.72 6.78 2.95 13.39 1.27 6.40 2.85 19.12 3.36

Zach et al. [28] 5.81 0.59 2.25 0.62 4.87 1.69 2.59 0.60 5.05 1.27 19.44 14.75

Lim et al. [11] 9.01 1.46 12.19 4.88 49.63 7.69 27.29 1.82 38.40 7.73 34.17 5.23

AEI, pointwise [5] 6.31 0.99 6.52 1.79 8.64 5.47 4.19 1.02 12.87 6.30 34.41 12.64

AEI, TV-L1 4.27 0.57 1.70 0.52 4.56 2.16 2.21 0.61 4.57 0.92 12.97 2.62

has been found to have only a small influence on the

mean angular error, Fig. 13.

The parameter β weighs the smoothness of the oc-

clusion timings in (13). We can assume the occlusion

times to be locally correlated, so we regularize them.

For comparison, we calculated motion fields with only

pointwise evaluation of the occlusion timings, i.e. β = 0.
The interpolated image for t = 0.25 using the results

of only the pointwise evaluation of the square scene is

shown in Fig. 14(h) or enlarged in Fig. 14(k): some

pixels at the occlusion boundaries are assigned wrong

timings, resulting in foreground pixels when they should

show background pixels. Apart from these visual arti-

facts, the mean angular error of the motion field with

only pointwise occlusion evaluation is increased to 2.05◦.
The assumption of correlated occlusion timings obvi-

ously encourages the algorithm to find more consistent

motion fields which is advantageous in most real-world

scenarios. The actual value of β > 0 has only small

influence on overall performance, Fig. 13. Similar results

are obtained for other test-scenes.
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Fig. 13. Comparison of the mean angular error (MAE) for different

parameter choices in our algorithm (AEI) to optimized errors of

optical flow algorithms [10], [28]. The actual choice of the parameter

γ or β while keeping the other parameter fixed has little influence

on the MAE: for scenes Ben (bold/ black) and corner (light/ green)

the MAE stays below optimized results of optical flow algorithms

(dashed lines) for a wide interval.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 14. The synthetic scene square: (a) a short-exposed, (b) a

long-exposed and (c) another short-exposed image are provided as

input. (d) The ground-truth motion field is compared to (e) the

motion field obtained by using only the motion-blur constraint and to

(f) the motion field obtained by using the motion-blur constraint plus

color-constancy assumption (color coding see Fig. 9, arrow length

scaled for clearer visualization). (g) Images interpolated (t = 0.25)
with ground-truth motion fields but without occlusion timings show

artifacts at occlusion borders, as (j) the enlargement of the white

box shows. (h) Artifacts are reduced by interpolation with pointwise

evaluated occlusion timings, see enlargement (k), and practically

vanish for (i) interpolation with regularized occlusion timings, en-

largement (l).



D. Real-World Recordings

We also test our method on real-world recordings. We

use the built-in HDR mode of a PointGrey Flea2 camera

to alter exposure time and gain between successive

frames. By adjusting the gain, we ensure that corre-

sponding pixels of static regions in the short-exposed

and long-exposed images are approximately of the same

intensity. With the HDR mode we are able to acquire

I1, IB and I2 with a minimal time gap between the

images. The remaining gap is due to the fixed 30 fps

camera frame rate and the readout time of the sensor.

The recorded images and the estimated motion fields are

shown in Fig. 16. The scenes juggling, walking, model

train 1, model train 2 and tracking, Fig. 16 first to fifth

row, are all recorded with 6.02 ms exposure time for I1,

a 27.31 ms gap between I1 and IB , 39.65 ms exposure

time for IB followed by a gap of 0.48 ms and the

recording of I2 with an exposure time of 6.02 ms. For the

waving scene, Fig. 16, sixth row, we use exposure times

of 20.71 ms for I1 and I2 and 124.27 ms exposure time

for IB , resulting in measured gaps of 12.45 ms between

I1 and IB and 0.48 ms between IB and I2.

The juggling scene demonstrates vividly the advan-

tages of using short and long exposures: the motion

is very fast and the sharp images I1, I2 require short

exposure times of 6.02 ms. Yet the camera can only

process an image every 33.33 ms. Using only short

exposures leads to long gaps of 27.31 ms of unrecorded

motion between images. For our method, we replace

every second short exposure image with a long exposure

image, reducing the gap to 0.48 ms which is due to read-

out time of the sensor and other hardware constraints.

IB records scene motion during the whole exposure time

and provides us with temporally anti-aliased information.

Notice that one of the balls still visible in I1 disappears in

I2, making standard optical flow computations unfeasi-

ble, but the motion-blurred image captures the path taken

by the ball and enables correct motion field estimation.

For this reason, our method can even handle the small

ball leaving the picture.

In the walking scene a person walks by on a street

and the leg moves on the order of magnitude of its width

while her right arm is half occluded by the body. Our

algorithms handles both difficulties correctly.

The scenes model train 1 and 2 contain moving

shadows and the highlights on the last wagon that are

handled robustly by our algorithm.

For the tracking scene, the camera follows the motion

of a walking person so that objects in the background

experience large displacements while the foreground re-

mains comparatively static. Notice how even the person’s

black backpack is assigned the appropriate foreground

motion, though it is hardly visible in front of the dark

background.

In the waving scene, the algorithm is capable of deal-

ing with disoccluded texture where the hand uncovers

the face.

VII. LIMITATIONS AND DISCUSSION

Motion field estimation from alternate exposure im-

ages shares some of the limitations inherent to all optical

flow methods. Like in all purely image-based methods,

motion in poorly textured regions cannot be detected

uniquely. This can be seen in the black background of

the waving scene, Fig. 16.

Also common to all optical flow methods, we assume

that motion is the only source of change in brightness,

disregarding highly reflecting and transparent surfaces

from the calculations.

Further we made the assumption, common in optical

flow estimation, that the short exposures are free of

motion blur. Practically this is regarded as satisfied if

motion during the short exposure time is smaller than

half a pixel.

Image noise also is a common problem and considered

in the use of a suitable norm for the data-term and the

regularization. While the gain and therefore the noise

level in the short exposures of the alternate exposure

images is increased in comparison to optimal short

exposures, our algorithm does not compare single pixel

values but integrates over several pixels so that noise

with zero mean can cancel out.

In contrast to most optical flow methods, we are

able to include occlusion explicitly into our image for-

mation model. Arbitrarily large occlusion as well as

disocclusions can be handled under the assumption that

a scene-point changes its state of visibility only once.

This assumption on the visibility state infers an object

dependent limit on the maximal translation, as e.g. for

a static background point an occluding object can move

at most as far as its width before the background point

reappears.

As a further difference, our image formation model

works with motion paths instead of displacement fields.

While motion paths can theoretically have arbitrary

forms, the assumption that they are linear allows to

convert from motion paths to displacement vectors by

warping. Actually, linear motion paths imply that the

displacement of all pixels on the path is uniform and of



constant speed. But as motion paths are allowed to vary

for neighboring pixels, the approach can successfully

handle also much more complex motions.

Finally, while recording the alternate exposure se-

quence, we replace one short exposure with a long expo-

sure. To show the sequence to a viewer uninterested in

motion detection, the long exposed frame may simply be

skipped, or, to ensure a sufficient frame rate, intermediate

images can be easily and quite faithfully interpolated

with the proposed method.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have proposed a variational approach

to optical flow from a set of alternately exposed im-

ages. We refine the optimization of a general image

formation model that is able to handle occlusions, large

displacements and objects moving out of the image.

Based on the image formation model, we derive a TV-

L1 energy functional which we solve with an efficient

dual method. Our experiments show that making use of a

long-exposed image improves the accuracy of the motion

field calculation: the mean angular error and the mean

endpoint error are reduced, not only for linear motion

but also for rotational types of motion. So far, we model

changes in illumination only implicitly by the robust L1

norm, but we hope to incorporate changing illumination

into future motion-blurred image formation models. In

future work, we also want to apply the optimization

method to non-linear motion paths which promises to

be even more favorable for frame interpolation.

APPENDIX

FOURIER TRANSFORM OF THE TEMPORAL

DERIVATIVE

With the notations of Sect. III and assuming u, v 6= 0
the Fourier transform of the temporal intensity function

φ(t) = f(x0, y0, t) is

Φ(τ) =

∫

e−2πiτtφ(t) dt

=

∫

e−2πiτtf0(x0 − tu, y0 − tv) dt

=

∫∫

δ(y − (y0 − tv))e−2πiτtf0(x0 − tu, y) dy dt

=

∫∫∫

e−2πi(η(y−y0+tv)+τt)f0(x0 − tu, y) dy dt dη.

Substituting x = x0 − tu ⇔ t = x0−x
u

for u 6= 0 gives

Φ(τ) = −1
|u|

∫∫∫

e−2πi(η(y+
x0−x

u
v−y0)+τ

x0−x

u
)

f0(x, y) dy dx dη

= −1
|u|

∫∫∫∫

e−2πi(ηy+ξx)e2πi(ηy0+ξx0)

δ(ξ + τ+ηv
u

)f0(x, y) dy dx dη dξ

= −

∫∫

e2πi(ηy0+ξx0)

δ(τ + ξu + ηv)F0(ξ, η) dξ dη

= −

∫∫

e2πi(ηy0+ξx0) F (ξ, η, τ) dξ dη
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(a) (b) (c) (d)

Fig. 15. Results for the synthetic test scenes (from top to bottom) Ben, windmill, wheel, corner, fence: (a) the motion blurred image,

(b) motion fields calculated with our algorithm (directions color coded, see Fig. 9), (c) images interpolated at t = 0.25 with our motion

paths using Eq. (9). Note that the occlusion time provided by our algorithm yields well defined occlusion borders. (d) For comparison,

images interpolated at t = 0.25 with ground-truth displacement fields but without occlusion timings using the method described in [29]

show artifacts at occlusion borders.



(a) (b) (c) (d)

Fig. 16. The built-in HDR mode of our PointGrey camera alters exposure time and gain between succeeding frames so that (a) short,

(b) long, and (c) short exposures can be acquired at comparable brightness and with minimal temporal gap between frames. (d) Reconstructed

motion fields for the real-world scenes (from top to bottom) juggling, walking, model train 1, model train 2, tracking and waving.


