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The Elastic Ratio: Introducing Curvature into
Ratio-based Image Segmentation

Thomas Schoenemann, Simon Masnou, and Daniel Cremers

Abstract—We present the first ratio-based image segmentation
method which allows to impose curvature regularity of the
region boundary. Our approach is a generalization of the ratio
framework pioneered by Jermyn and Ishikawa so as to allow
penalty functions that take into account the local curvature of
the curve. The key idea is to cast the segmentation problem as
one of finding cyclic paths of minimal ratio in a graph where
each graph node represents a line segment.

Among ratios whose discrete counterparts can be globally
minimized with our approach, we focus in particular on the
elastic ratio

∫

L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

ν L(C) +

∫

L(C)

0

|κC(s)|q ds

,

that depends, given an imageI , on the oriented boundary
C of the segmented region candidate. Minimizing this ratio
amounts to finding a curve, neither small nor too curvy, through
which the brightness flux is maximal. We prove the existence
of minimizers for this criterion among continuous curves with
mild regularity assumptions. We also prove that the discrete
minimizers provided by our graph-based algorithm converge, as
the resolution increases, to continuous minimizers.

In contrast to most existing segmentation methods with com-
putable and meaningful, i.e. non degenerate, global optima, the
proposed approach is fully unsupervised in the sense that it
does not require any kind of user input such as seed nodes.
Numerical experiments demonstrate that curvature regularity
allows to substantially improve the quality of segmentations.

Furthermore our results allow to draw conclusions about
global optima of a parameterization-independent version of the
Snakes functional: the proposed algorithm allows to determine
parameter values where the functional has a meaningful solution
and simultaneously provides the corresponding global solution.

I. I NTRODUCTION

In this paper, we introduce a novel framework for image
segmentation which allows to impose curvature regularity.We
start with a brief overview of existing work on curvature
regularity and on image segmentation.

A. Curvature in Vision and Image Processing

Curvature regularity plays an important role in many fields
of computer vision and image processing - among them
image segmentation, perceptual organization and inpainting.
Inspired by the psychophysical studies of Kanizsa [42] which
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Fig. 1. Effects of length-based and curvature-based regularization in image
segmentation on synthetic images. A comparison of the global minima of
functionals (5) and (2) (q = 1, ν = 0) shows that curvature regularity gives
rise to fundamentally different segmentations. In particular it induces gap
closing and contour completion.

indicated that it is a key component in human scene under-
standing, curvature was introduced in the context of shape
completion through the celebrated Euler’s elastica energy
∫ L(C)

0 |κC(s)|2 ds, see [65], [38], [51] and the subsequent
developments in [61], [44], [33], [19]. Other applicationsof
curvature are image segmentation [43], [4], [3], [55], [14],
inpainting [5], [17], [48], [30], [31], image smoothing andde-
noising (see [64] and references in [12]), image analysis [56],
[27] or surface interpolation and smoothing [39], [63], [25],
[7], [29].

A large body of this literature is devoted to optimizing
curvature-dependent functionals in a continuous and/or dis-
crete setting through a minimizing flow that merely yields
local optimizers. Very few methods allow to computeglobal
optimizers. An important exception is [4], [3] where line
integrals depending on curvature are minimized by means
of dynamic programming. Unfortunately, the run-time of this
method is guaranteed to be quadratic in the number of image
pixels. In practice this is too slow for reasonable image sizes.
As a consequence the authors only consider curves in a band
around an initial curve. In the context of image inpainting,
another exception is [49], [48] where the specific functional
of total absolute curvature can be optimized globally.

Further, recently combinatorial approaches to image seg-
mentation have arising, and in the case of a 4-connectivity
these can often be optimized globally [26], though without a
polynomial time guarantee. The more general method [60] is
practicable up to a 16-connectivity but is less likely to find
global solutions.
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B. Image Segmentation as an Optimization Problem

Over the past few decades numerous methods have been
proposed for image segmentation. We focus on those that
are based on minimizing a suitable energy functional. The
corresponding functionals typically combine a data term with
a regularity term (for a recent review see [21]). Both terms
can incorporate either region or edge properties, yet the
regularity term generally penalizes certain properties ofthe
region boundaries.

a) Region-based Methods:In region-based image seg-
mentation the intensity inside the region is assumed to be
approximately constant [52], [18], to vary only slowly [52]or
to be generated by a suitable probability model [69]. Recent
methods allow to integrate flux into region-based formula-
tions [41], [66], [45], [46], in particular for the segmentation
of long and thin structures.

In the region-based framework, global optima are usually
not available in polynomial time. A region-based functional
with a very basic smoothness term could recently be optimized
globally [24]. For length regularity andgivenregion statistics,
global optima can be computed [8], [16], [54]. For curvature
regularity there are local evolution methods [28], [55] and,
very recently, combinatorial methods [26], [60].

b) Edge-based Methods:Ever since the pioneering work
of Kass, Witkin and Terzopoulos [43], edge-based meth-
ods [15], [68], [40], [67] have formed one of the major
approaches to image segmentation.

Let I : Ω → R denote the image to be segmented, with
Ω ⊂ R2 the image domain. In their seminal work on the
snakes model, Kass et al. [43] propose to minimize an energy
computed along the region boundary described by a curveC :
[0, 1] → Ω. The criterion to be minimized reads:

α

∫ 1

0

|C′(t)|2dt + β

∫ 1

0

|C′′(t)|2dt −

∫ 1

0

|∇I(C(t))|2 dt

whereα andβ are positive constants. The first two terms of
this functional measure the smoothness of the curve. Recall
that the second derivativeC′′(t) coincides with the local
curvature for arc-length parameterized curvesC. The third
term aims at attracting the curve to places with large image
gradients. It is a well known limitation of the model that
for many choices of the weighting parameters, no meaningful
global optima can be found: the only minimizers would be
either points or curves with infinite length. In this paper we
state a parameterization-invariant version of the functional and
show that the proposed method allows to identify meaningful
global optima of this functional.

Amini et al. [4] optimize a modified snakes functional
using dynamic programming. To avoid meaningless solutions,
they enforce the curve to be polygonal with an a priori
known number of points, such that no two neighboring points
are less than a given distance apart. Although their method
provides polynomial time solutions, due to its quadratic run-
time complexity it is only applied in a small band around an
initial curve.

Caselles et al. [15] propose to minimize a line integral of
a positive edge indicator functiong(|∇I|), whereg decreases
monotonically with increasing gradient strength. Although this

model is interesting for local optimization, it is easily seen
that the global minimizers are meaningless: any degenerate
curve reduced to a point in the image is a minimizer of this
functional. Meaningful global optima can be found when seed
nodes are given for foreground and background [9].

The normalized cuts of Shi and Malik [62] produce fair
results without seed nodes. While the optimization problemis
NP-hard, using relaxation techniques one can find a solution
which is independent of initialization.

The ratio regions of Cox et al. [20] provide meaningful
global optima together with a polynomial time complexity.
However, the complete search over all starting points takes
prohibitively long in practice. Moreover the method is limited
to planar graphs.

Finally, Jermyn and Ishikawa propose in [41] a class of ratio
functionals for image segmentation, including the ratio offlux
over length, whose global minimizers can be efficiently found
by iterative negative cycle detection in a suitable graph.

C. Contribution

In this paper we extend the class of globally optimizable
ratio functionals considered in [41]: We show how to integrate
curvature regularity of the region boundary. Specifically we
propose an algorithm which computes in polynomial time
closedoriented curvesC : [0,L(C)] → Ω ⊂ R2 of length
L(C) which minimize (discrete versions of) functionals of the
form

∫ L(C)

0

h(I, C(s), C′(s), κC(s)) ds

∫ L(C)

0

g(C(s), C′(s), κC(s)) ds

, (1)

where h : C2(Ω,R) × Ω × S
1 × R2 → R is arbitrary

(S1 denotes the circle andC2(Ω,R) the space of twice
continuously differentiable real-valued functions onΩ) and
g : Ω × S

1 ×R2 → R+ such that the denominator is strictly
positive for all closed curvesC with strictly positive length.
Since we assume arc-length parameterization,C′(s) is a unit
tangent vector andκC(s) = C′′(s) is the curvature.

A specific instance of (1) is the so-calledelastic ratio:
∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

ν L(C) +

∫ L(C)

0

|κC(s)|q ds

=:
Flux(C)

ν L(C) + F q
κ(C)

, (2)

that allows to segment the input imageI : Ω → R by deter-
mining a contourC which maximizes the flux of brightness
along the normal

(

C′(s)
)⊥

(denoting the tangent vectorC′(s)
rotated by+π

2 ), while minimizing a weighted sum of boundary
length and integrated local curvature. Hereq andν are positive
real weighting factors and· denotes the scalar product inR2.
Note that changing the orientation of the curveC in (2) does
not modify the denominator but changes the orientation of
C′(s), therefore the orientation ofC′(s)⊥, and, finally, the sign
of the numerator. Therefore the minimum value is necessarily
negative and the following equivalence holds

min
C

Flux(C)

ν L(C) + F q
κ (C)

⇔ max
C

|Flux(C)|

ν L(C) + F q
κ(C)

·
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This equivalence will be used in the proof of existence of con-
tinuous minimizers. We shall however keep using the ”min”
formulation because it is consistent with our graph approach
based on Lawler’s Minimum Ratio Cycle algorithm, and also
to emphasize better the difference with the criterion of Jermyn
and Ishikawa involving only length in the denominator [41],
that will be discussed in section II-A.

Remark that, for constant images, all curves have null
energy therefore all are solutions: there is no preferable
segmentation, as it can be expected.

The key contribution of the curvature term in the denomi-
nator of (2) is to energetically favor curves along which angle
variations are not too large. Figure 1 demonstrates this effect
on synthetic images: In comparison to segmentations with pure
length regularization, using Jermyn and Ishikawa’s criterion,
the proposed curvature regularity gives rise to contour com-
pletions that are reminiscent of those observed in Kanizsa’s
psychophysical studies [42].

Another instance of (1) that we consider in this paper is the
snakes ratio:

−

∫ L(C)

0

|∇I(C(s))|p ds

ν L(C) + F q
κ (C)

, (3)

with parametersp, q, ν ≥ 0. As we shall see later, the snakes
ratio is closely related to a parameterization-invariant formu-
lation of the famous snakes model [43]. As a consequence,
our algorithm also allows to compute global minimizers of
this reformulation and simultaneously provides a parameter
set that gives rise to meaningful global optima.

The proposed framework exhibits the following properties,
most of them being naturally inherited from the model of
Jermyn and Ishikawa:

• We can find globally minimizing discrete curves for a
bunch of functionals of the form (1) with a variety of
data terms and regularity terms. In the numerator any
functional dependence on locationC(s), local tangent
C′(s) and local curvatureκC(s) of the curve is allowed.
In the denominator we require functions yielding positive
integrals for all closed curves.

• The proposed method is fully unsupervised in the sense
that it does not rely on any user input once the functional
parameters and the discretization scale have been chosen.
It arises from our experiments that a unique set of
parameters can be used once for all. In contrast, most
existing globally optimal segmentation methods either
give rise to trivial minimizers (typically the empty set)
or require some user seeds as additional input – see for
example [8].

• Global optima of the discretized functional can be de-
termined in polynomial time by means of ratio cycles in
a a graph where nodes correspond to line segments, i.e.
each graph node is a pair of pixels. As a consequence
of this global optimization, solutions do not depend
on initialization or the choice of a particular numerical
optimization scheme.

Further, we discuss the strengths and weaknesses of the
proposed edge-based approach compared to recent works on

region-based combinatorial methods [60], [26] for curvature
regularity which could be extended to handle ratios in a
manner similar to [46], [53]. Region-based methods should
be used when (a) one has to handle region-based data terms.
(b) one wants to find more than one connected component or
components with holes (e.g. when seed nodes are given). (c)
one has run an edge-based method and got one of the rare
cases where it produces self-intersections. In all other cases,
the proposed method is preferable: it avoids a subdivision of
pixels and hence has much less basic line segments to consider.
Moreover, it does not have region variables at all. In summary,
it is able to handle larger images and neighborhoods, the latter
giving rise to a better approximation of continuous curvature.
In particular, the neighborhood used in this work subsumes
a 32-connectivity whereas [60] manages only 16 in practice
and [26] only approximately handles 8 neighbors. Further, we
show that it can be ported to the GPU where it is much faster.
Let us finally mention that the problem of optimizing ratios
defined on a graph has been recently investigated in [36],
[46], [37]. The first paper adopts a relaxation approach for
the NP-hard ratio optimization problem, while the two latter
works transform, as we do, the ratio minimization into the
minimization of an objective function, although using ratios
different from ours.

A preliminary version of this work appeared in [59]. This
extended version uses a different graph (each node represents
a line segment instead of a pair of an image pixel and a
direction), and addresses the issues of an efficient parallel
implementation as well as theoretical considerations of the
continuous optimization task: we address the question of
existence of minimizers in the continuous domain (for the
elastic ratio) and prove the convergence of discrete minimizers
to continuous minimizers as the resolution increases.

The remainder of the manuscript is organized as follows.
In Section II we review and discuss the ratio cycle framework
of Jermyn and Ishikawa. In Section III, we generalize this
framework so as to incorporate curvature regularity and we
state the existence of solutions in the continuous setting and
the consistency of the discretized formulation, the proofsof
both claims being detailed in the appendix. In Section IV, we
detail how a discretized version of the proposed functionalcan
be represented by means of an appropriate graph structure. In
Section V, we detail how optimal solutions can be computed
in polynomial time by determining cycles in this graph. In
Section VI, we analyze a parameterization-invariant version
of the Snakes functional and show how our algorithm can
be used to determine meaningful minimizers. In Section VII
we provide numerical experiments which demonstrate that
curvature regularity substantially improves the segmentation
results. We end with a summary and a conclusion.

II. SEGMENTATION BY OPTIMIZING RATIOS

In [41] Jermyn and Ishikawa proposed to optimize a crite-
rion that exhibits two nice properties:

1) Its discrete counterpart can beglobally optimized in
polynomial time. Interestingly, this property is quite
unusual in the context of image segmentation where
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for most fully unsupervised energy minimization ap-
proaches the global optima are either meaningless (typ-
ically the empty set) or not efficiently computable.

2) It does not suffer from a shrinking bias. Since the length
of the curve is factored out, the formulation is essentially
scale invariant: taking an image with a single binary
object (or a smooth approximation of it), the energy
remains constant for all rescalings of the object, see [41].
This is an important aspect in the context of image
segmentation where, clearly, the same object may be
observed at all sorts of scales. It is therefore preferable
that the energy does not exhibit a bias towards smaller
scales.

We will first state the contour-based formulation, and then turn
to the region-based one.

A. Contour-based Problem Statement

In Jermyn and Ishikawa’s approach, the image domain is
segmented into two regions separated by anoriented curve
C. In the most general setting, which has less invariance
properties, this curve minimizes a ratio of the form

∫ L(C)

0

~v(C(s)) ·
(

C′(s)
)⊥

ds

∫ L(C)

0

g(C(s)) ds

, (4)

where the curveC is parameterized with arc-length,~v : Ω →R2 is a vector field,
(

C′(s)
)⊥

is the unit normal to the curve
that coincides withC′(s) rotated by+π

2 and g : R2 → R+

is a positive weight function.
In particular, Jermyn and Ishikawa propose to minimize the

average outward flux [66] that we calllength ratio in this
paper:

∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

L(C)
=

Flux(C)

L(C)
, (5)

Like for the elastic ratio, due to the role of the curve orien-
tation, minimizing (5) over oriented curves is equivalent to
maximizing its absolute value.

It therefore amounts to finding curves aligned with strong
image edges. The normalization by length avoids trivial optima
(zero-length or infinite-length curves). Yet, in practice the
found regions tend to be small and usually do not coincide
with human perception. As a remedy, Jermyn and Ishikawa
propose a balloon force. To understand how this works we
must first look at the region-based interpretation.

B. Conversion to a Region-based Form

Jermyn and Ishikawa [41] also demonstrate that the edge
criterion in (4) can be transformed into a region-based criterion
by means of the Gauss-Green theorem. DenotingC a simple
and smooth curve inR2 and Cin the connected region
enclosed byC, the Gauss-Green Theorem states that for any
smooth field~v onR2

∫

Cin

div~v dx = −

∫ L(C)

0

~v(C(s)) · ~nC(s) ds, (6)

where~nC(s) is theinner unit normal toC at C(s). Therefore,
the minimization of (5) can equivalently be written as

max
C

|

∫

Cin

∆I(x) dx|

L(C)
,

where∆I = div(∇I) is the Laplace operator. This expression
gives some indications on the optimal regions and confirms
what can be observed experimentally: the optimal regions are
likely to contain high values of∆I with constant sign, which
often occurs for small regions in the vicinity of edges, i.e.in
zones where∇I changes a lot.

To include the balloon force weighted withβ one only has
to add±β to ∆I(x) (see [41] for details). The arising problem
can be written as

max
C

|Flux(C) ±
∫

Cin

β dx|

L(C)
, (7)

and will be termedextended length ratioin the following. It
provides substantially better results in practice, although the
choice ofβ is delicate for it influences the result significantly.

III. C URVATURE REGULARITY IN RATIO OPTIMIZATION

We propose a different remedy, instead of incorporating
balloon forces as Jermyn and Ishikawa did, to the problem that
minimizers of the length ratio are usually very small curves:
in addition to the length of the curve, we will also penalize
its curvature, and thus consider the minimization of (2).

Why should this particular energy help to avoid small curves
more than the length ratio? The reason is that the curvature
term discourages direction changes: the curvature along a line
segment is zero. Hence the curvature term will not grow in
parts where the curve goes straight, so that for long and not
oscillating curves the denominator will be roughly similarto
the length only, and the ratio will not differ much from the
length ratio. In contrast, for small curves, the curvature term
will be much larger than the length so the ratio will be much
smaller, in absolute value, than the length ratio.

As the minimization of (2) is intensively studied in this
paper, we now prove the existence of minimizers under some
mild assumptions on the imageI and on the length of curves.

A. Existence of minimizers of the elastic ratio forq > 1

Assuming thatΩ is bounded, the existence of minimizers
of the elastic ratio (2) wheneverq > 1 is rather easy to prove
among closed curves with length uniformly bounded by a con-
stant – that can be chosen arbitrarily large – and that admitsa
uniform parameterization in the Sobolev spaceW2,q([0, 1], Ω̄)
[32]. Recall that this space contains all functions from[0, 1]
onto Ω̄ that are, together with their distributional first and
second derivatives,Lq-integrable. Sinceq > 1, this space,
endowed with the norm‖C‖2,q = (‖C‖q+‖C′‖q+‖C′′‖q)1/q,
has the essential property that any bounded sequence admits
a weakly converging subsequence, which is the key to find a
minimizer. We shall not tackle the casep = 1, that corresponds
to seeking parameterized curves with first derivative having
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bounded variation, for it requires slightly more intricateargu-
ments and is beyond the scope of this paper. Takingq < 1
yields a somewhat ill-posed problem since‖ · ‖q does not
satisfy the triangle inequality anymore, therefore is not anorm.
In the sequel, we restrict toq > 1 for proving existence of
continuous minimizers.

For simplicity, we assume that the imageI is continuously
differentiable onΩ̄. As mentioned before, due to the influence
of curve orientation, minimizing (2) is equivalent to maximiz-
ing

|Flux(C)|

ν L(C) + F q
κ (C)

· (8)

Using a uniform parameterization on[0, 1] (indicated by a
variablet instead ofs) this ratio can be rewritten as

∣

∣

∣

∣

∫ 1

0

∇I(C(t)) · C′(t)⊥ dt

∣

∣

∣

∣

ν L(C) + [L(C)]1−2q

∫ 1

0

|C′′(t)|q dt

, (9)

whereC′(t)⊥ denotes the vectorC′(t) rotated byπ
2 . Let A >

0 and define

W2,q
A ([0, 1], Ω̄) = {C ∈ W2,q([0, 1], Ω̄), L(C) ≤ A}.

We assume thatI and A are such that there exists at least a
simple closed curve inW2,q

A ([0, 1], Ω̄), q > 1, for which the
numerator in (9) is non zero, otherwise the problem is trivial:
for constant images,any curve is solution because all curves
have null energy. The following theorem holds, whose proof
is given in the appendix.

Theorem 1:Under the assumptions above, there exists a
curve that minimizes the elastic ratio whenq > 1 among
all curves inW2,q

A ([0, 1], Ω̄) that are either simple or limit of
simple curves. A minimizer also exists among the whole class
of curves inW2,q

A ([0, 1], Ω̄).

B. The Class of Optimizable Functionals

We are not able to prove for the most general functional
model (1) the existence of continuous global minimizers
and their consistent discrete approximation with the proposed
approach. Nevertheless, our algorithm can computediscrete
global minimizers ofdiscrete counterparts of (1), therefore
global minimizers for a bunch of discrete functionals with a
great variety of data and regularity terms.

In section IV, we will describe how ratios of the form (1)
can be globally optimized after a suitable discretization.It
should be noted that self-intersecting curves can occur. Yet, in
our experiments we observed them only for very small length
weightsν.

C. A Comment on Region-based Terms

Following Jermyn and Ishikawa [41], one might want to
include regional terms into the algorithmic framework – such
as log-likelihoods of color probabilities commonly used in
region-based segmentation methods. Unfortunately, however,
our algorithmic framework does not allow the introduction of
arbitrary regional terms.

f(x)=1f(x)=1

Fig. 2. An example of inconsistent normals for self-intersecting curves. While
the ratio cycle algorithm does allow to estimate a local normal vector, there is
no way of locally determining whether this normal vector corresponds to an
inner or anouternormal. As a consequence, regional terms cannot be globally
converted, by means of the Gauss-Green Theorem, to boundaryterms written
as flux in the direction of a normal defined continuously alongthe oriented
curve (see text). Since self-intersecting curves cannot a priori be excluded,
the proposed framework therefore does not allow a consistent integration of
regional terms.

The reason is that, as mentioned above, we cannot exclude
the emergence of self-intersecting curves – see Figure 2.
Since the algorithm only deals with continuously oriented
curves, in case of self-intersection the normal to the curve
will actually be inner at some locations of the curve and outer
at other locations. Therefore the conversion of the flux term
into a regional term by means of the Gauss-Green theorem
(as presented above) no longer applies. More specifically we
cannot replace in equation (6) the inner normal to the domain’s
boundary by

(

C′(s)
)⊥

for everys (or −
(

C′(s)
)⊥

depending
on the curve orientation). As a consequence, when including
regional terms by means of the Gauss-Green theorem, for self-
intersecting curves the respective cost no longer coincides with
the actual regional energy.

Let us exemplify this on the specific example of Figure 2.
While the regional integral off over the area enclosed by the
curve – corresponding to the left-hand-side of equation (6)–
is

∫

Cin
f dx = 2 (assuming for simplicity that|Cin| = 1), the

curve integral gives:

∫ L(C)

0

~vf (C(s)) ·
(

C′(s)
)⊥

ds = 0, (10)

with ~v chosen such thatdiv~vf = f , using for instance the

simple formula~vf (x, y) =
1

2
(

∫ x

0

f(t, y) dt,

∫ y

0

f(x, t) dt). To

obtain (10), we have simply applied the Gauss-Green theorem
separately to both loops with

(

C′(s)
)⊥

representing the inner
normal for one loop and the outer normal for the other. Thus
for such self-intersecting curves, we cannot write

∫

Cin

div~v dx = ±

∫ L(C)

0

~v(C(s)) ·
(

C′(s)
)⊥

ds.

A solution would be to chooselocally either
(

C′(s)
)⊥

or

−
(

C′(s)
)⊥

but there is no general rule to determine locally
which one is the inner normal. Therefore boundary properties
such as the flux in direction of

(

C′(s)
)⊥

cannot be converted
to respective region-based energies.

As a consequence of this limitation, we shall not consider
regional terms in this paper, but rather restrict ourselvesto
edge-based expressions.
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IV. T HE OPTIMAL CURVE AS CYCLE IN A GRAPH

To globally optimize functionals of form (1) we discretize
the space of all possible curves: a curve is now defined
as a contiguous subset among finitely many line segments.
Nevertheless, we have the continuous optimization task in
mind, and the optimal discrete curve is viewed as a polygonal
approximation of the optimal continuous one: its length and
curvature estimates approximate the values of the continuous
solution. Convergence is discussed in section IV-C.

To be able to use the path-based method described later on,
we build a graph where each edgee is assigned a numerator
edge weightn(e) and a denominator edge weightd(e). Each
closed curveC in the discrete search space corresponds to
some cycleΓ in the graph. In the end we will minimize the
ratio problem

min
Γ

∑

e∈Γ

n(e)

∑

e∈Γ

d(e)
· (11)

The numerator and denominator sums should hence reflect the
respective integrals in (1).

For the length ratio (5) Jermyn and Ishikawa [41] build
a graph with one node for each image pixel and where
edges represent line segments connecting pixels in an8-
neighborhood. The edge weights correspond to the respective
integrals along the line segments.

For functionals of form (1) a more elaborate graph structure
is needed: the optimization algorithm supports only edge
weights depending onsingleedges. However, if edges directly
correspond to line segments, one cannot approximate the cur-
vature of the desired continuous curve: line segments always
have zero curvature.

The graph in [59] has nodes corresponding to a pair of an
image pixel and an incoming direction. In this work we take
a slightly different approach, depicted in Figure 3, that allows
a more consistent definition of discrete curvature: each node
in the graph represents a line segment connecting two image
pixels. More precisely the search space consists of all pairs of
pixels that are spaced apart from one another not more than
a certain distanceR : if P is the pixel set of the image, the
node setV ⊂ P2 of the graph is expressed as (with| · | the
L2-norm)

V = { (~p1, ~p2) | 0 < |~p1 − ~p2| ≤ R }.

Edges in the graph connect nodes sharing an image pixel.
More precisely the edge set is

E = {
(

(~p1, ~p2), (~p2, ~p3)
)

∈ V2 | ~p1 6= ~p3 }.

An edge now represents an oriented polygonal curve consisting
of two line segments, both of length≤ R. We now turn to the
question of how to define suitable edge weights to approximate
the continuous functional (1).

A. Estimating Curvature, Normals and Tangent Angles

To define the edge weights one first needs to calculate the
tangent vector – or, equivalently, the tangent angle with respect
to thex-axis – and the curvature of the corresponding part of

l1a

l2a l2b

l3a

l4b

l5b

l6bl7b

l8a

l9a

l10b

l1a l2a l3a l4b

l5bl6bl7bl8a

l9a

l10b

Fig. 3. Top: a grid, here representing a 4-connectivity, with a cycle (drawn in
thick lines). Note that for every line segment two orientations are considered.
Bottom: A part of the arising graph for curvature optimization. Eachoriented
line segment represents a node in the graph. Edges link consistently oriented
line segments.

the curve. Recall that an edge represents a polygonal curve
consisting of two adjacent line segments, say~p1~p2 and~p2~p3.
For these two line segments the corresponding tangent angles
with respect to thex-axis,α1,2 andα2,3, are computed using
the function atan2 on the difference vector of the respective
end points (recall thatatan2(y, x) is the principal value in]−
π, π] of the argument ofx+iy, and that it is a routine function
in C++). This difference vector also allows to calculate curve
normals: to this end the vector is normalized and rotated by
+π

2 .
Estimating curvature is a more difficult issue. To allow

optimal convergence properties, we follow the results of
Bruckstein, Netravali, and Richardson [11]. Denotingl1,2 and
l2,3 the lengths of the two line segments, the absolute curvature
at point~p2 is estimated as

|κ|(~p1, ~p2, ~p3) =
|α1,2 − α2,3|S1

1
2 min(l1,2, l2,3)

, (12)

where the angle difference is taken on the circleS
1 to correctly

account for the jump over2π. The sign of the curvature
(if needed) is determined by whether the angle between the
line segments exceeds180 degrees or not. We discuss below
convergence properties of this process.

B. Computing the Edge Weights

We first give edge weights for both ratios (2) and (3)
considered in the experimental section. For the numerator we
discretize each line segment via Bresenham’s method [10].
Then, we evaluate the data term for each pixel using the above
mentioned segment normal and sum the obtained values.

For the denominator, we evaluate length-based and
curvature-based terms separately. The length of the curve is
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Minimum Ratio Cycle Algorithm

Input: A graphG = (V, E) with two edges weightsn(e) and
d(e) for each edge.

Output: A cycle Γ minimizing the ratio
∑

e∈Γ
n(e)/

∑

e∈Γ
d(e).

1) Find an upper boundλ on the optimal ratioλopt

2) Compute edge weightsw(e) = n(e)−λd(e) for each edge
e ∈ E .

3) Call the Moore-Bellman-Ford algorithm (Fig. 5) for the
graphG and the edge weightsw. If it returns a negative
cycle, setλ to its ratio and go to 2). Otherwise output the
last found cycle andstop.

Fig. 4. Ratio optimization after Lawler [47]. Shown is the linear search
variant, also known as Dinkelbach’s method [23].

readily calculated as the sum of all line segment lengths. For
the curvature term, we evaluate the expression (12) and take
the desired power of it. Finally, to get the integral of this term,
the length of the segment needs to be included in the weights.
Here again, we follow the results of [11], summing over all
edges(~p1, ~p2, ~p3) the quantity

1
2 min(l1,2, l2,3) · [|κ|(~p1, ~p2, ~p3)]

q .

The general case (1) is more difficult to handle for it
may contain terms like

∫ L(C)

0 I(C(s)) |κC(s)| ds, where the
integrand depends on position and curvature simultaneously.
This makes it much harder to reflect the continuous functional
in terms of discrete sums. Our solution is presently to calculate
the Bresenham lines, then to calculate the values ofh(·, ·, ·)
and g(·, ·, ·) for each pixel, using the above given estimates
for normals and curvature. These values are then summed to
form the edge weights.

C. Consistency of the discrete elastic ratio minimization

We defer the question of how to compute the optimal
polygonal curve to the next section and assume for the
moment that it is solved. We should mention, however, that
the optimization algorithms require the weightsn(e) andd(e)
to be subject to some regular quantization, i.e. they must be
multiples of a certainǫ > 0. Termination is guaranteed for any
such quantization, but the complexity depends onǫ. Details
are given in section V-D. The next theorem, whose proof is
given in the appendix, states an important property of our
approach when applied to the elastic ratio (2) withq > 1: it
is consistent, i.e., continuous (global) minimizers are limits of
discrete (global) minimizers.

Theorem 2:For every q > 1, any sequence of simple
discrete minimizers of the discrete elastic ratio associated with
increasing resolutions has a subsequence that converges toa
continuous minimizer of the elastic ratio.

V. RATIO OPTIMIZATION OVER CYCLES IN A GRAPH

We now address the task of finding the cycle of optimal
ratio in the described graph, i.e. how to solve the task

min
Γ

∑

e∈Γ

n(e)

∑

e∈Γ

d(e)

Moore-Bellman-Ford Algorithm

Input: A directed graphG = (V, E) with (possibly negative)
edge weightsw(e) for each edge. A root noder ∈ V.

Output: A distance labelc(v) and a predecessor nodep(v)
for every nodev ∈ V in the graph. If the graph contains
negative cycles such a cycle is returned.

1) Set c(r) = 0, c(v) = ∞ for v ∈ V\{r}. Mark p(v) as
invalid for all v.

2) Setchanges := false
For all v ∈ V: check all incoming edgese = (ṽ, v). If
c(ṽ) + w(e) < c(v)

c(v) = c(ṽ) + w(e), p(v) = ṽ
changes := true

3) If changes = false stop.
Otherwise check the predecessor entriesp for cycles. If a
cycle is found, return the cycle. Else go to 2).

Fig. 5. Distance calculation and negative cycle detection via the Moore-
Bellman-Ford algorithm [34], [50], [6], [1].

over all cyclesΓ, wheren(e) andd(e) are subject to a regular
ǫ-quantization withd(e) ≥ 0, and such that the denominator
sum is strictly positive for any cycle in the graph. To this
end, we use a variant of the Minimum Ratio Cycle algorithm
proposed by Lawler [47]: instead of binary search, we use
linear search as proposed by Dinkelbach [23], which is much
faster in practice.

The basic algorithm is shown in Figure 4. It is based on
iterated negative cycle detection in a graph with single edge
weights. Letλ be some ratio and define edge weights

w(e) = n(e) − λd(e).

Now suppose the graph contains a negative cycleΓ with
respect to the edge weightsw(e). By applying equivalence
transformations one sees that any such cycle must be of better
ratio thanλ and vice versa:

∑

e∈Γ

w(e) < 0 ⇔
∑

e∈Γ

[n(e) − λd(e)] < 0

⇔
∑

e∈Γ

n(e) < λ
∑

e∈Γ

d(e) ⇔

∑

e∈Γ n(e)
∑

e∈Γ d(e)
< λ. (13)

Notice that the third step is valid only because of the positivity
of all conceivable denominator sums. This is the reason for the
previously introduced restriction on the denominator.

The above equivalence transformation shows that the graph
contains a negative cycle with respect tow(e) if and only if
the optimal ratio is lower thanλ. If one is able to find negative
cycles, this immediately gives rise to the algorithm in Figure
4: starting from some upper bound on the optimal ratio –
0 for all addressed problems – negative cycle detection and
ratio adjustments are alternated. Every time a negative cycle
is found,λ is set to its ratio. The last found cycle must be of
optimal ratio.

Negative cycle detection is performed efficiently by the
Moore-Bellman-Ford algorithm [34], [50], [6], [1] for distance
calculations. The algorithm, depicted in Figure 5, is based
on dynamic programming: starting from an initial distance
labeling, the label of any node is reduced whenever the labels
of its predecessors allow such an improvement. If the graph
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does not have negative cycles, the algorithm terminates with
the correct distance labeling. Otherwise, after a few steps
the parent entries will permanently contain cycles. Regularly
checking for cycles then allows to extract a negative cycle,
which is necessary to update the ratio.

While the basic algorithm in Figure 4 must be carried out
sequentially, the negative cycle detection in Figure 5 allows
a lot of freedom for the implementation. We now discuss
how to efficiently implement negative cycle detection, both
in a sequential and in a parallel way. The key for efficiency
lies in how to implement step 2) in Figure 5. Concerning
the numerical implementation we noticed that both double
precision and integer optimization lead to the global optimum.
We use integer operations for both implementations.

A. Sequential Negative Cycle Detection

Efficient sequential implementations [1, page 140] make use
of a queue for implementing step 2 in Figure 5. Nodes whose
distance labelcannotchange in the present iteration (because
none of their neighbors changed their label in the last one) will
then not be visited. Every time the distance label of a node
is changed, the node is added to the end of a queue. As long
as there are nodes in the queue, the front one is removed and
its neighbors are checked for possible distance improvements.
While the worst case complexity remains the same, in practice
significant speed-ups are obtained.

To optimize the run-time an explicit representation of the
entire graph is suitable. However, its memory consumption is
very high: only images up to size256×256 can be processed
with 2 GigaByte of memory. We therefore implemented a
version where edges (and their weights) are computed on-the-
fly. This solves the memory issues, but increases the run-time
significantly.

B. Parallel Negative Cycle Detection

State-of-the-art graphics hardware allows highly parallel
implementations of a certain class of algorithms. This class
does not contain the queue-based implementation just de-
scribed. However, in the form described in Figure 5, step
2) can be implemented in parallel. The method we use is
to our knowledge unpublished, but can be shown to run in
pseudo-polynomial time by a similar argument as [1, page
140]. It uses two buffers of distance labels, where the second
is updated based on the first. Distances and parent pointers
are stored in matrices, i.e. there are no node structures at all.
The cycle check is done on the CPU every25 iterations, its
computational costs (including memory transfer between GPU
and CPU) are negligible in practice.

C. Choosing the Root Node

For the Moore-Bellman-Ford algorithm for distance calcu-
lation (Fig. 5), a root node must be fixed. While the choice of
this root node does not affect the optimality property of the
ratio optimization process, it can have significant influence on
the performance.

For the parallel implementation it is useful to add an extra
root node and connect it to every node by an edge weighted

with 0. This amounts to initializing all distance labels with
0. After k iterations the distance label of any node contains
the weight of the cheapest path of lengthk passing through it.
While in theory one can still have|V| iterations until a negative
cycle arises, in practice we expect a number of iterations in
the order of the length of the most negative cycle in the graph.

This initialization could be used for the sequential imple-
mentation as well. However, we do not consider this sensible:
first of all, the memory requirements are high since initially
every node in the graph is added to the queue. Also one will
have to visit every node in the graph at least once, which
reduces the efficiency of the method in practice. For the first
negative cycle detection, we choose a root node in the center
of the image. In subsequent calls the root node is selected as
one of the nodes in the last found cycle.

D. Complexity of the Method

The described graph to estimate curvature containsO(|P| ·
R2) nodes. Since each node is connected withO(R2) neigh-
bors, there areO(|P|R4) edges. The Moore-Bellman-Ford
algorithm is known to terminate in timeO(nm) on a graph
with n nodes andm edges. This gives us a worst case
complexity ofO(|P|2R6) for one negative cycle detection.

Finally, there is the issue of the number of distance cal-
culations that need to be performed. Letǫ > 0 be the level
of quantization,wn be the maximum absolute numerator
weight andwd the maximal denominator weight, both before
quantization. One can show [41] that the number of iterations
is thenO(m3w2

dwn/ǫ3) in the worst case, withm the number
of edges. In practice the number of iterations is less than50
for ǫ = 10−3 and a radiusR = 3.

In total this results in a run-time ofO(|P|5R18w2
dwn/ǫ3).

While this seems very high, in practice we observe a linear
dependence on the number of image pixels. On the GPU, even
images of size640 × 480 are processed in less than half an
hour using a radius of3.

VI. M INIMUM RATIO CYCLES AND SNAKES

In this section we show that the presented class of opti-
mizable ratio functionals allows to draw conclusions abouta
parameterization-invariant version of the snakes model. In the
original work of Kass et al. [43] the model was stated as

−

∫ 1

0

|∇I(C(s))|2 dt + α

∫ 1

0

|C′(t)|2 dt + β

∫ 1

0

|C′′(t)|2 dt.

This expression is not invariant to the chosen parameteriza-
tion of the curve. Kass et al. probably chose this formulation
as it allows to remove numerical instabilities when dealing
with explicit parameterizations of the curve. From a today’s
perspective one would want a parameterization-invariant for-
mulation which might read like this:

−

∫ L(C)

0

|∇I(C(s))|2 ds + λνL(C) + λF 2
κ (C). (14)

Here we have modified the role of the weighting parameters:
one is now given a relative weightν > 0 to balance the relation
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of length and curvature regularity as well as a weightλ > 0
to influence both regularity terms at once.

This functional is closely related to thesnakes ratio(3).
When applying the Minimum Ratio Cycle algorithm to this
ratio withp = q = 2 (having in mind the equivalences in (13)),
one ends up computing aλopt ≤ 0 and an optimal curveCopt

such that

−

∫ L(Copt)

0

|∇I(Copt(s))|
2 ds

νL(Copt) + F 2
κ (Copt)

= λopt,

thus

−

∫ L(Copt)

0

|∇I(Copt(s))|
2 ds+ |λopt|νL(Copt)+|λopt|F

2
κ (Copt) = 0,

and any other curve has larger energy with respect to the same
parameter|λopt|. Hence, the snakes ratio provides valuable
insights into the modified snakes model (14): given a relative
weightν between length and curvature regularity, minimizing
the snakes ratio provides an absolute regularity weight|λopt|
for which the parameterization-invariant snakes model (14) has
a meaningful optimum and the algorithm also provides the
associated optimal curve. This means that now a model can be
optimized globally for which previously only local solutions
were available.

VII. E XPERIMENTS

On several images from different domains we demonstrate
the performance of the proposed method. We focus on the
elastic ratio withq = 2, but also discuss the snakes ratio (3).
In particular we show that:

• The elastic ratio with squared curvature allows object
segmentation for a large variety of domains. The length
weight ν was adjusted experimentally on a variety of
images. We found0.15 to give reliable results that are
stable for a fairly large range of values ofν around
0.15. Practically, having fixedν = 0.15 andR = 3, our
algorithm turns to be fully unsupervised.

• Our fully unsupervised method is able to outperform
region-based methods: it is less sensitive to shading
effects which allows to find more precise boundaries.

• Our method is robust to noise, i.e. even for very noisy
pictures it produces results comparable to those on noise-
free pictures. Again, we stress that all results can be
obtained with the same values ofν andR.

A. Length Ratio vs. Elastic Ratio

In Figure 6 we show a comparison of ratio functionals on
images containing objects in front of cluttered background.
In two cases the length ratio finds a meaningful object, i.e.
when the entire object boundary has a high contrast. On these
images the elastic ratio produces comparable results.

In the majority of cases, however, the length ratio tends
to find small homogeneous regions. The figure shows that
in many of these cases the elastic ratio is able to locate
meaningful objects. This trend is confirmed by Figure 7, where
we show some results on the Berkeley database.

Image Run-time

Name Resolution CPU-expl. CPU-impl. GPU

Seal 200× 133 364s 812s 35s

Bunny 260× 180 1567s 1593s 101s

Berkeley #3 321× 481 N/A 8673s 1046s

Baseball #2 450× 314 N/A 14810s 151s

TABLE I
Comparison of run-times for the different implementations. CPU run-time is

shown with explicit storage of edges and with on-the-fly computation.

For this reason Jermyn and Ishikawa [41] proposed to
integrate a suitably weighted balloon force. Figure 81 demon-
strates that there are fairly large parameter ranges givingrise to
almost identical segmentations. The functional thereforeseems
robust to the choice of the area weight. However, there is no
parameter which works well for all the shown images.

Nonetheless the extended length ratio produces meaningful
objects in several cases and we consider it somewhat comple-
mentary to the elastic ratio: each gives rise to segmentations
that cannot be produced with the respective other. Whether one
wants to favor objects with large area or with low curvature of
the region boundary will generally depend on the application.

B. Efficiency on CPU and GPU

Due to the large search space, an efficient optimization of
the elastic ratio is desirable. We implemented the algorithm
both on the CPU and on the GPU as described in Section V.

The run-times for several images are given in Table I. For
the smallest image the explicit graph uses roughly half the
system memory. Here the explicit storage of edges is about
twice as fast as the implicit one – both on the CPU. For the
second image, both perform almost equally: here the entire
system memory of 4 GB was needed for explicit storage.

The speed-up of the GPU version over the CPU one with
implicit storage is between a factor of8 and a factor of100.
The huge deviations are due to the different natures of the
algorithms (queue-based vs. full parallel). In particular, these
differences result in a different sequence of intermediateratios.

All given run-times are quite high, lying above half a
minute. However, we once again emphasize that the proposed
method separates objects from the background in afully
unsupervised manner (i.e. does not rely on any user input,
the parameters set being fixed once for all).

C. Robustness and Comparison to Region-based Approaches

For a comparison to region-based approaches we imple-
mented variants of Mumford-Shah-like functionals [52]2,3

E(u1, u2, Ω1)=
∑

i=1,2

∫

Ω

(

(I−ui)
2

σ2
I

1Ωi
+ λ|∇ui|

2

)

dx+ν|∂Ωi|.

1 We thank Greg Mori for sharing his data with us.
2Note that this functional is not identical with the originalMumford-Shah

approach since the smoothness terms in the expression here are extended into
the entire domainΩ.

3One may object that comparing explicit and implicit segmentation methods
is unfair. We actually wanted to stress the stability issue.
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Segmentations obtained with thelength ratio.

Segmentations obtained with theelastic ratio.

Fig. 6. The elastic ratio provides more meaningful segmentations than the length ratio, in particular in the presence ofpartially low contrast.

Segmentations obtained with thelength ratio.

Segmentations obtained with theelastic ratio.
Fig. 7. The results on the Berkeley database confirm that the elastic ratio is better suited for object segmentation than the length ratio.

where a piecewise smooth approximation by two functions
u1, u2 :Ω → R and a partition of the image planeΩ, expressed
by characteristic functions1Ωi

, into two disjoint regionsΩ1

and Ω2 is computed by alternating globally optimal updates
for u1, u2 andΩ1 in a manner similar to [35]. One could also
use the recent method [57], [58], based on convex relaxation,
and obtain an approximate solution.

In the comparative results of Figure 9, already for the noise-
free image we could not find any length parameter where the
above Mumford-Shah variants separate the object from the
background. For the highly noisy images, despite the adaptive
smoothness terms, numerous small regions arise. In contrast,
the elastic ratio identifies the object almost perfectlywithout
needing to adjust any parameter with respect to noise level.

The results presented in Figure 10 illustrate the robustness
of the elastic ratio with respect to the length weightν: the
object is found for a fairly large range ofν. Up to a certain
point, the contour becomes more complex with increasingν.
From this point on, the length term becomes dominant and the
functional approaches the length ratio.

D. Results for the Snakes Ratio

Figure 11 presents results for a slightly modified snakes
ratio: for robustness we use the gradient absolute instead

of its squared absolute. We recall from Section VI that
all these results are global solutions of a suitably weighted
parameterization-invariant reformulation of the snakes func-
tional. More precisely, our algorithm always finds parameter
sets for which the global minimizer has energy0, therefore
we cannot draw conclusions about the global minimizers of
the parameterization-invariant snakes functional for other pa-
rameter sets. Still, we believe that other meaningful parameter
sets do not lead to significantly better results.

When using the balancing weightν = 0.15 for length
against curvature – which works well for the elastic ratio –
the results are discouraging: in most cases the curve goes one
way, turns around and goes almost exactly the same way back.
We consider these solutions as valid in the original sense [43]
since they do not self-intersect. While some line segments
occur repeatedly with opposing directions of traversal, in
the continuous solution space there will be a curve without
repetitions and almost the same costs – at least if the image
gradient is continuous.

When reducing the length weight (ν → 0) larger regions
are found. These are often very close to convex and usually
do not correspond to meaningful objects.
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The length ratio usually identifies small homogeneous regions.

β = 0.8 β ∈ [0.71, 0.88] β = 1.2 β = 1.375 β = 0.9

β ∈ [0.9, 1.4] β ∈ [0.9, 1.85] β ∈ [1.25, 1.4] β ∈ [1.38, 1.555] β ∈ [1, 1.9]

β = 1.41 β = 1.9 β = 1.45 β = 1.56 β = 1.925
With a suitable area weight (±β), the extended length ratiofinds meaningful regions.

The elastic ratio can identify body parts.

Fig. 8. Where the elastic ratio identifies body parts, the length ratio finds only small homogeneous regions. With a suitable area weight the extended length
ratio can find meaningful regions.

VIII. C ONCLUSION

We proposed an algorithmic framework which allows to
impose curvature regularity in ratio optimization. The segmen-
tation problem is cast as one of minimizing ratio functionals
over cyclic paths in a graph where each node represents a line
segment. Optimal cycles are determined in polynomial time
using Lawler’s algorithm. While we cannot a priori exclude
self-intersecting curves, we did not observe self intersections
in the reported experiments except for very small length
weightsν that are not meaningful. We proved the existence
of minimizers of the elastic ratio in the continuous setting.
Moreover, we proved that upon refinement of the discretization
the solutions of the discretized energy converge – possibly
taking a subsequence – to a minimizer of the continuous
energy.

Numerous experimental comparisons demonstrate that cur-
vature regularity allows to substantially improve the traditional

length-based regularity, it does not impose a shrinkage bias
and mimics the notion of contour completion familiar from
Kanizsa’s psychophysical experiments.

Lastly, we gave a parameterization-invariant reformulation
of the snakes model and showed that a specific instance of our
model allows to identify meaningful global solutions of this
reformulation.
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APPENDIX

A. Existence of globally minimizing curves for the elastic ratio

This paragraph is devoted to proving Theorem 1. We will
prove that there exists a curve that minimizes the elastic
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piecewise constant Mumford-Shah
for three different length weights

piecewise smooth
Mumford-Shah elastic ratio

Fig. 9. Noise Robustness and Comparison to Region-based Approaches. The elastic ratio extracts the object almost perfectly and is robust to noise, with
no need to tune any parameter depending on the level of noise.In contrast, both the piecewise constant and the piecewise smooth Mumford-Shah functionals
[52] fail to differentiate the object from the background (only local minimizers are shown, see text for details). For the piecewise smooth version, the smooth
approximations are shown.

ν = 0.01 ν = 0.05 ν = 0.25 ν = 0.3 ν = 0.5 ν = 0.75 ν = 1

ν = 0.01 ν = 0.05 ν = 0.25 ν = 0.3 ν = 0.5 ν = 0.75 ν = 1

Fig. 10. Robustness to variations in the parameter settingsof elastic ratio: For a fairly large parameter range a meaningful part of the image is found.

ratio, or equivalently that maximizes (9), among curves that
are either simple or continuous limits of simple curves. The
general result of existence of a minimizer among the whole
class of curves inW2,q

A ([0, 1], Ω̄) can be proven analogously.

Let us turn to the maximization of (9). Under the as-
sumptions of the theorem, the set of reachable energies is
bounded thus admits a supremum. Take a maximizing se-
quence(Cn)n∈N, i.e. the energy ofCn tends to the supre-
mum as n tends to infinity, of simple closed curves in
W2,q

A ([0, 1], Ω̄) with uniform parameterization on[0, 1]. We
will first prove that the sequence(Cn) is uniformly bounded
in W2,q([0, 1], Ω̄), which guarantees that there is a weakly
converging subsequence. To show that a uniform bound exists,
we prove that each term in theW2,q norm can be uniformly

controlled. With no loss of generality, we can assume that
there existsa1 > 0 such that, for everyn ∈ N
|

∫ 1

0

∇I(Cn(t)) · C′
n(t)⊥ dt|

≥ a1(ν L(Cn) + [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt).

Due to the regularity of the imageI, there exists alsoa2 such
that

∣

∣

∣

∫ 1

0
∇I(Cn(t)) · C′

n(t)⊥ dt
∣

∣

∣
≤ a2L(Cn) ≤ a2A, thus

ν L(Cn) + [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt ≤

a2A

a1
, (15)

and therefore there exists a constanta3 such that for every
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snakes ratiowith ν = 0.15.

snakes ratiowith ν = 0.01.
Fig. 11. Experimental results using the snakes ratio demonstrate that the gradient norm is less powerful than the flux, since it does not account for edge
orientation.

n ∈ N
∫ 1

0

|C′′
n(t)|q dt ≤ a3.

Observing thatΩ is bounded and|C′
n(t)| = L(Cn) ≤ A for

every t ∈ [0, 1] and everyn ∈ N, due to the assumption
of uniform parameterization, we conclude that the sequence
(Cn)n∈N is uniformly bounded inW2,q([0, 1], Ω̄), q > 1.
Therefore (see for instance [32][Thm 1, p.144]), there exists a
subsequence, still denoted as(Cn)n∈N, that converges weakly
in W2,q([0, 1], Ω̄) and strongly inC1([0, 1], Ω̄) to a limit curve
C. The strong convergence inC1([0, 1], Ω̄) ensures thatC
is either simple or limit of simple curves with tangential
self-contacts but no crossing . In addition,L(Cn) → L(C)
(thereforeC ∈ W2,q

A ([0, 1], Ω̄)) and
∫ 1

0

|C′′(t)|q dt ≤ lim inf
n→∞

∫ 1

0

|C′′
n(t)|q dt. (16)

Let us now check that the limit curveC has strictly positive
length. From (15), we deduce that
∫ L(Cn)

0

|κCn
(s)|q ds = [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt ≤

a2A

a1
.

Extending Fenchel’s Theorem [13][Theorem 5.7.3] toW2,q

curves by approximation, we know that for everyn ∈N,
∫ L(Cn)

0

|κCn
(s)| ds ≥ 2π. By the Hölder inequality, it

follows that

L(Cn)
q−1

∫ L(Cn)

0

|κCn
(s)|q ds ≥ (2π)q,

thusL(Cn)q−1 ≥ a1(2π)q

a2A . Passing to the limit, we conclude
thatL(C) > 0. Therefore, we can deduce from (16) that

ν L(C)+

∫ 1

0

|C′′(t)|q dt

[L(C)]2q−1
≤ lim inf

n→∞
(ν L(Cn)+

∫ 1

0

|C′′
n(t)|q dt

[L(Cn)]2q−1
).

Besides, the continuity of∇I and the pointwise convergence
of Cn(t) to C(t), andC′

n(t) to C′(t) for everyt ∈ [0, 1] imply

that
∫ 1

0

∇I(Cn(t)) · C′
n(t)⊥ dt →

∫ 1

0

∇I(C(t)) · C′(t)⊥ dt,

and we finally get that

∣

∣

∣

∣

∫ 1

0

∇I(C(t)) · C′(t)⊥ dt

∣

∣

∣

∣

ν L(C) + [L(C)]1−2q

∫ 1

0

|C′′(t)|q dt

≥ lim sup
n∈N ∣

∣

∣

∣

∫ 1

0

∇I(Cn(t)) · C′
n(t)⊥ dt

∣

∣

∣

∣

ν L(Cn) + [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt

.

The sequence(Cn) being maximizing, we conclude thatC
is a curve, limit of simple curves, that maximizes (8) in
W2,q

A ([0, 1], Ω̄). The same proof can be used to establish the
existence of maximizers among allW2,q

A curves, either simple
or not, considering that Fenchel’s Theorem also applies for
nonsimple curves, see Remark 5 page 402 in [13].

B. Consistency of the discrete elastic ratio minimization

We prove now Theorem 2, i.e. that the limit, as the reso-
lution increases, of a converging sequence of discrete simple
minimizers of the discrete elastic ratio (i.e.

∑

n(e)/
∑

d(e)
with suitable weights computed as in section IV-B) is a
minimizer of (2) in the continuous domain. Let us first recall
that the usual way to study relations between discrete and con-
tinuous minimizers involves a particular notion of convergence
for functionals, theΓ-convergence [22]. It has a particularly
useful property: if a sequence of energy functionalsFn Γ-
converges to a functionalF and a sequence(xn) of minimizers
of Fn converges tox then x is a minimizer ofF . In this
framework the results of Bruckstein et al. in [11] are directly
related to our problem. Bruckstein et al. consider the space
of curves with finite length and finite total absolute curvature



14

endowed with the metricd defined by

d(C1, C2) = inf
Ψ:[0,1]→[0,1]

sup
t∈[0,1]

|C1(t) − C2(Ψ(t))|,

with C1, C2 parameterized on[0, 1] and Ψ in the class of
all homeomorphisms from[0, 1] to [0, 1]. Then they prove,
using the discrete definition of curvature (12) and usingd as
convergence metric for sequence of curves, that the discrete
counterpart of

∫ L(C)

0 |κC(s)|q ds computed on polygons with

n edgesΓ-converges to
∫ L(C)

0
|κC(s)|q ds as n tends to∞

and the maximal length of polygon edges tends to zero. Now
remark that the existence (in the continuous domain) of a curve
maximizing (8) is equivalent – if (8) is not trivially zero – to
the existence of a curve minimizing

ν L(C) + F q
κ(C)

|Flux(C)|
(17)

in the class ofW2,q curves with length uniformly greater than
a suitable constant. If1n denotes the pixel size, let us define
Fn as the functional that associates any polygonPn defined
on the grid with

Fn(Pn) =
∑

e∈Pn

d(e),

whered(e) is computed as in section IV-B andPn is assumed
to have a maximal edge length smaller thanδ

n with δ a
constant independent ofPn andn. According to the result by
Bruckstein et al.,Fn Γ-converges, asq > 1, to the functional

F (C) = ν L(C) + F q
κ(C).

Besides, remark that the smoothness ofI implies that its
discrete gradient computed with finite differences uniformly
converges to the continuous gradient∇I. Take any sequence
of simple polygons(Pn) with uniformly bounded length that
converges for the metricd to a limit curveC. Let int(Pn) and
int(C) denote the sets enclosed byPn andC, respectively, and
1int(Pn), 1int(C) the associated characteristic functions. By the
theory of functions of bounded variation [2], the derivatives
D1int(Pn) weakly-⋆ converge toD1int(C) asn → ∞. It follows
from the Gauss-Green Theorem forBV functions [2] that

∑

e∈Pn

n(e) → Flux(C),

and we deduce that the ratio

∑

e∈Pn
d(e)

∣

∣

∑

e∈Pn
n(e)

∣

∣

Γ-converges to

(17) asn tends to∞. Therefore, taking a sequence of simple
discrete minimizers of this ratio, there exists a subsequence
that converges to a minimizer of (17) in the continuous
domain. Such minimizer being non degenerate according to
our assumption that the length is uniformly bounded from
below, we conclude that for any sequence of simple discrete

minimizers of

∑

e∈Pn
n(e)

∑

e∈Pn
d(e)

, there exists a subsequence that

converges to a continuous minimizer of (2) asn → ∞. This
achieves the proof of convergence.
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