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Abstract—We present the first ratio-based image segmentation
method which allows to impose curvature regularity of the //\
region boundary. Our approach is a generalization of the rato
framework pioneered by Jermyn and Ishikawa so as to allow
penalty functions that take into account the local curvatue of
the curve. The key idea is to cast the segmentation problem as

one of finding cyclic paths of minimal ratio in a graph where input length-based curvature-based
each graph node represents a line segment.
Among ratios whose discrete counterparts can be globally
minimized with our approach, we focus in particular on the
elastic ratio
L£(C) B
/ VI(C(s)) - (C'(s)) ds
: L(C) ’ ;
yﬁ(C)+/ e (s)|" ds ' input length-based curv.atl.Jre-.bz.slsed
0 Fig. 1. Effects of length-based and curvature-based regaten in image

. . . segmentation on synthetic images. A comparison of the globiaima of
that depends, given an imagel, on the oriented boundary fnctionals ) and2)¢ = 1, — 0) shows that curvature regularity gives
C of the segmented region candidate. Minimizing this ratio rise to fundamentally different segmentations. In pakicit induces gap
amounts to finding a curve, neither small nor too curvy, throgh  closing and contour completion.

which the brightness flux is maximal. We prove the existence
of minimizers for this criterion among continuous curves wih
mild regularity assumptions. We also prove that the discre¢

minimizers provided by our graph-based algorithm converge as  indicated that it is a key component in human scene under-
the resolution increases, to continuous minimizers. standing, curvature was introduced in the context of shape

In contrast to most existing segmentation methods with com- . \ .
putable and meaningful, i.e. non degenerate, global optimahe completion through the celebrated Euler's elastica energy

proposed approach is fully unsupervised in the sense that it foﬁ(c) |kc(s)|? ds, see [[65], [[3B], [[51] and the subsequent
does not require any kind of user input such as seed nodes. developments in[[61]144][133][]19]. Other applicationé
Numerical experiments demonstrate that curvature regulaity ryature are image segmentationl[43], [4], [3LJ[55].]1[14]

allows to substantially improve the quality of segmentatios. : - . - _
Furthermore our results allow to draw conclusions about inpainting B]' m]’ m]’ m]’m]’ image smoothing at

global optima of a parameterization-independent version bthe ~N0ISINg (see@] and ref(.erences EI[12]),. image analys#, [5
Snakes functional: the proposed algorithm allows to deterrime [27] or surface interpolation and smoothing_J[39[][63[ 25
parameter values where the functional has a meaningful sotion  [[7], [29].

and simultaneously provides the corresponding global sotion. A large body of this literature is devoted to optimizing

curvature-dependent functionals in a continuous and/sy di
. INTRODUCTION crete setting through a minimizing flow that merely yields

In this paper, we introduce a novel framework for imagl®¢@! optimizers. Very few methods allow to compuéobal

segmentation which allows to impose curvature regulavig. CPtimizers. An important exception is1[4]l1[3] where line
start with a brief overview of existing work on curvaturdtédrals depending on curvature are minimized by means
regularity and on image segmentation. of dynamic programming. Unfortunately, the run-time ofsthi

method is guaranteed to be quadratic in the number of image

pixels. In practice this is too slow for reasonable imagesiz

As a consequence the authors only consider curves in a band
Curvature regularity plays an important role in many fieldground an initial curve. In the context of image inpainting,

of computer vision and image processing - among theamother exception igT#9][T48] where the specific functlona

image segmentation, perceptual organization and inpgnti of total absolute curvature can be optimized globally.

Inspired by the psychophysical studies of KaniZsa [42] WhiC ¢ ther, recently combinatorial approaches to image seg-
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B. Image Segmentation as an Optimization Problem model is interesting for local optimization, it is easilyese

Over the past few decades numerous methods have ptat the global minimizers are meaningless: any degenerate
proposed for image segmentation. We focus on those ti§4fve reduced to a point in the image is a minimizer of this
are based on minimizing a suitable energy functional. TAdnctional. Meaningful global optima can be found when seed
corresponding functionals typically combine a data terrthwjnodes are given for foreground and background [9]. _

a regularity term (for a recent review segl[21]). Both terms The normalized cuts of Shi and Malik[62] produce fair
can incorporate either region or edge properties, yet tFesults W|thqut seed nqdes. Whl|.e the optimization probllsam_
regularity term generally penalizes certain propertieshef NP-hard, using relaxation techniques one can find a solution
region boundaries. which is independent of initialization. _ _

a) Region-based Methoddn region-based image seg- The ratio regions of Cox et al[[[20] provide meaningful

mentation the intensity inside the region is assumed to g¥bal optima together with a polynomial time complexity.
approximately constanf[52]. 18], to vary only slowly [5@] However, the complete search over all starting points takes
to be generated by a suitable probability model [69]. Recdpfohibitively long in practice. Moreover the method is Ited
methods allow to integrate flux into region-based formuld® Planar graphs. _ _
tions [Z1], [66], [45], [4®], in particular for the segmetita Finally, Jermyn and Ishikawa propose in][41] a class of ratio
of long and thin structures. functionals for image segmentation, including the ratidlat

In the region-based framework, global optima are usual¥€r Iength, whose global minimizers can be efficiently fun
not available in polynomial time. A region-based functibndY itérative negative cycle detection in a suitable graph.
with a very basic smoothness term could recently be optitmizté Contributi
globally [24]. For length regularity angivenregion statistics, On_ ribution o
global optima can be computed [8[,-]16[,-]54]. For curvature I_n this paper we e_xtend t_he class of globally opt_|m|zable
regularity there are local evolution methods1[28[.1[55] andatio functionals cpn5|dered |E[!41]: We show how to intégra
very recently, combinatorial methods [2€].[60]. curvature regularity of the region boundary. Specificallg w

b) Edge-based Method&ver since the pioneering work Propose an algorithm which computes in polynomial time

of Kass, Witkin and Terzopoulod[43], edge-based metglosedoriented curvesC : [0, £(C)] — Q C R? of length
ods [I5], [68], [40], [67] have formed one of the majopC(C') which minimize (discrete versions of) functionals of the

approaches to image segmentation. form £(©)
Let I : Q — IR denote the image to be segmented, with / h(I,C(s),C"(s), ke(s)) ds
Q) C R? the image domain. In their seminal work on the 0 1)
snakes model, Kass et d[.]43] propose to minimize an energy £(©) , '
computed along the region boundary described by a ofrve /0 9(C(s),C'(s), ki (s)) ds
[0,1] — Q. The criterion to be minimized reads: where h : C2(QR) x Q x S' x R? — R is arbitrary

1 1 1 1 ; 2 .
T 1D 9 (S* denotes the circle and’#(Q2,IR) the space of twice
a/o (@)l dt+ﬁ/0 [cr @) dt — /0 IVI(C®))I" dt continuously differentiable real-valued functions 6x) and

wherea and § are positive constants. The first two terms of ° Q.X §' xR? — R¥ such that. the d_enomlnr?\t.or Is strictly
this functional measure the smoothness of the curve. Rec%x?ls't've for all closed curve€’ with strlct_ly posmvg Iength.
that the second derivativ€”(t) coincides with the local >'"¢€ We assume arc-leﬂgtr/l/ parameterizaiidits) is a unit
curvature for arc-length parameterized curvés The third tangent vg_ctqr andc(s) = C. (s) is the curvatgre. .

term aims at attracting the curve to places with large imageA specific instance of1) is the so-callethstic rafia
gradients. It is a well known limitation of the model that £(0)
for many choices of the weighting parameters, no meaningful /,
global optima can be found: the only minimizers would be £(C)

either points or curves with infinite length. In this paper we v £(C) +/ ko (s)|? ds
state a parameterization-invariant version of the fumeti@and v

show that the proposed method allows to identify meaningftjiat allows to segment the input image £ — IR by deter-
global optima of this functional. mining a contourC which maximizes the flux of brightness

Amini et al. [4] optimize a modified snakes functionaPlong the norma(Q’(s))L_ (denoting the tangent vector'(s)
using dynamic programming. To avoid meaningless solufiorf§tated by+7), while minimizing a weighted sum of boundary
they enforce the curve to be polygonal with an a prio}pngth a}nd !ntegrated local curvature. Herendv are positive
known number of points, such that no two neighboring point§@l weighting factors anddenotes the scalar product]fi]?
are less than a given distance apart. Although their methtigte that changing the orientation of the cuven @) does
provides polynomial time solutions, due to its quadratio-ru N0t modify the denominator but changes the orientation of
time complexity it is only applied in a small band around af” (s), therefore the orientation @' (s)*, and, finally, the sign

VI(C(s)) - (C'(5))" ds Fluz(C)
T VL) + FIO) @)

initial curve. of the numerator. Therefore the minimum value is necegsaril
Caselles et al[T15] propose to minimize a line integral dtegative and the following equivalence holds
a positive edge indicator functiof(|VI|), whereg decreases ) Flux(C) |Flux(C)]

monotonically with increasing gradient strength. Althbubis A (o) I o I(e) M - () I X T(a)



This equivalence will be used in the proof of existence of-comegion-based combinatorial methods1[60]1[26] for curvatu
tinuous minimizers. We shall however keep using the "mirfegularity which could be extended to handle ratios in a
formulation because it is consistent with our graph apgroamanner similar to[[46],[153]. Region-based methods should
based on Lawler's Minimum Ratio Cycle algorithm, and alsbe used when (a) one has to handle region-based data terms.
to emphasize better the difference with the criterion ofnjer (b) one wants to find more than one connected component or
and Ishikawa involving only length in the denominatbri[41]Jgcomponents with holes (e.g. when seed nodes are given). (c)
that will be discussed in secti@ TIFA. one has run an edge-based method and got one of the rare
Remark that, for constant images, all curves have nwases where it produces self-intersections. In all otheesa
energy therefore all are solutions: there is no preferalilee proposed method is preferable: it avoids a subdivisfon o
segmentation, as it can be expected. pixels and hence has much less basic line segments to conside
The key contribution of the curvature term in the denomMoreover, it does not have region variables at all. In sunymar
nator of [2) is to energetically favor curves along whichlangit is able to handle larger images and neighborhoods, ther lat
variations are not too large. Figuk 1 demonstrates theceff giving rise to a better approximation of continuous curvatu
on synthetic images: In comparison to segmentations wit pun particular, the neighborhood used in this work subsumes
length regularization, using Jermyn and Ishikawa’s doter a 32-connectivity wherea§ [60] manages only 16 in practice
the proposed curvature regularity gives rise to contour-comnd [26] only approximately handles 8 neighbors. Further, w
pletions that are reminiscent of those observed in Karézsahow that it can be ported to the GPU where it is much faster.

psychophysical studie5142]. Let us finally mention that the problem of optimizing ratios
Another instance of{1) that we consider in this paper is tliefined on a graph has been recently investigated_ih [36],
snakes ratio [4q], [37]. The first paper adopts a relaxation approach for
L(C) the NP-hard ratio optimization problem, while the two latte
—/0 IVI(C(s))|" ds works transform, as we do, the ratio minimization into the

; (3) minimization of an objective function, although using oati
vL(C) + FIO) different from ours. J ° ’

with parameterg, ¢, v > 0. As we shall see later, the snakes preliminary version of this work appeared i [59]. This
ratio is closely related to a parameterization-invariamtrfu-  aytended version uses a different graph (each node repsesen
lation of the famous snakes model]43]. As a consequengeiine segment instead of a pair of an image pixel and a
our algorithm also allows to compute global minimizers Ofjjrection), and addresses the issues of an efficient phralle
this reformulation and simultaneously provides a parametgplementation as well as theoretical considerations ef th
set that gives rise to meaningful global optima. continuous optimization task: we address the question of

The proposed framework exhibits the following propertiegyistence of minimizers in the continuous domain (for the

most of them being naturally inherited from the model ofastic ratio) and prove the convergence of discrete mizersi
Jermyn and Ishikawa: to continuous minimizers as the resolution increases.

« We can find globally minimizing discrete curves for a The remainder of the manuscript is organized as follows.
bunch of functionals of the forn{]1) with a variety ofin SectiorD) we review and discuss the ratio cycle framework
data terms and regularity terms. In the numerator agy Jermyn and Ishikawa. In Sectid@lll, we generalize this
functional dependence on locatiafi(s), local tangent framework so as to incorporate curvature regularity and we
C’(s) and local curvaturec(s) of the curve is allowed. state the existence of solutions in the continuous settirdy a
In the denominator we require functions yielding positivéhe consistency of the discretized formulation, the praaffs
integrals for all closed curves. both claims being detailed in the appendix. In Secfioh IV, we

« The proposed method is fully unsupervised in the sengetail how a discretized version of the proposed functicaal
that it does not rely on any user input once the functiongk represented by means of an appropriate graph structure. |
parameters and the discretization scale have been chosgttion[¥, we detail how optimal solutions can be computed
It arises from our experiments that a unique set @ polynomial time by determining cycles in this graph. In
parameters can be used once for all. In contrast, m&éction[¥), we analyze a parameterization-invariant \oersi
existing globally optimal segmentation methods eitheff the Snakes functional and show how our algorithm can
give rise to trivial minimizers (typically the empty set)pe used to determine meaningful minimizers. In Sedfad VI
or require some user seeds as additional input — see @ provide numerical experiments which demonstrate that
example [8]. curvature regularity substantially improves the segnterta

« Global optima of the discretized functional can be deesults. We end with a summary and a conclusion.
termined in polynomial time by means of ratio cycles in

a a graph where nodes correspond to line segments, i.e.
each graph node is a pair of pixels. As a consequence
of this global optimization, solutions do not depend In [&1] Jermyn and Ishikawa proposed to optimize a crite-
on initialization or the choice of a particular numerication that exhibits two nice properties:
optimization scheme. 1) Its discrete counterpart can fgobally optimized in
Further, we discuss the strengths and weaknesses of the polynomial time. Interestingly, this property is quite
proposed edge-based approach compared to recent works on unusual in the context of image segmentation where

Il. SEGMENTATION BY OPTIMIZING RATIOS



for most fully unsupervised energy minimization apwhereri(s) is theinner unit normal toC at C(s). Therefore,
proaches the global optima are either meaningless (tythe minimization of [b) can equivalently be written as

ically the empty set) or not efficiently computable.

2) It does not suffer from a shrinking bias. Since the length |/ Al(x) dz|
of the curve is factored out, the formulation is essentially max Cm—’
scale invariant: taking an image with a single binary ¢ L(C)

object (or a smooth approximation of it), the energwhereAl = div(VI) is the Laplace operator. This expression
remains constant for all rescalings of the object, 5€& [4}ives some indications on the optimal regions and confirms
This is an important aspect in the context of imag@hat can be observed experimentally: the optimal regioas ar
segmentation where, clearly, the same object may [ieely to contain high values oA with constant sign, which
observed at all sorts of scales. It is therefore preferaldéten occurs for small regions in the vicinity of edges, ire.
that the energy does not exhibit a bias towards smallgsnes wheré&/I changes a lot.

scales. To include the balloon force weighted withone only has
We will first state the contour-based formulation, and thent to add+-43 to AI(z) (see [41] for details). The arising problem
to the region-based one. can be written as
A. Contour-based Problem Statement |[Fluz(C) icj_ B dz|
max -~ , (7)

In Jermyn and Ishikawa’s approach, the image domain is c L(C)

segmented into two regions separated byocsiented curve

C. In the most general setting, which has less invarianggd _W'” be terme_dextended length ra_\tlm the_ following. It
properties, this curve minimizes a ratio of the form provides substantially better results in practice, altiothe

£(0) choice of3 is delicate for it influences the result significantly.
/0 F(C(s)) - (C'(s)) " ds

3

/ﬁ(c)g(c(s))ds We propose a different remedy, instead of incorporating
0 balloon forces as Jermyn and Ishikawa did, to the problemn tha
where the curvel is parameterized with arc-lengtfi,; @ — minimizers of the length ratio are usually very small curves
R? is a vector fieId,(C’(s))L is the unit normal to the curve in addition to the length of the curve, we will also penalize
that coincides withC’(s) rotated by+% andg : R* — R* its curvature, and thus consider the minimization[df (2).
is a positive weight function. Why should this particular energy help to avoid small curves
In particular, Jermyn and Ishikawa propose to minimize thmaore than the length ratio? The reason is that the curvature
average outward flux([66] that we cdingth ratio in this term discourages direction changes: the curvature aloigea |
paper: segment is zero. Hence the curvature term will not grow in
£(C) parts where the curve goes straight, so that for long and not
/ VI(C(s)) - (C”(s))L ds Flua(C oscillating curves the denominator will be roughly simitar
0 = ua( ), (5) the length only, and the ratio will not differ much from the
£(C) £(C) length ratio. In contrast, for small curves, the curvatument
Like for the elastic ratio, due to the role of the curve orienwill be much larger than the length so the ratio will be much
tation, minimizing ) over oriented curves is equivaleat tsmaller, in absolute value, than the length ratio.
maximizing its absolute value. As the minimization of [R) is intensively studied in this
It therefore amounts to finding curves aligned with strongaper, we now prove the existence of minimizers under some

image edges. The normalization by length avoids triviairopt mijld assumptions on the imageand on the length of curves.
(zero-length or infinite-length curves). Yet, in practideet

found regions tend to be small and usually do not coincide
with human perception. As a remedy, Jermyn and Ishikavh
propose a balloon force. To understand how this works weAssuming that( is bounded, the existence of minimizers

(4)  Nl. CURVATURE REGULARITY IN RATIO OPTIMIZATION

Existence of minimizers of the elastic ratio for- 1

must first look at the region-based interpretation. of the elastic ratio[{2) whenever> 1 is rather easy to prove
_ _ among closed curves with length uniformly bounded by a con-
B. Conversion to a Region-based Form stant — that can be chosen arbitrarily large — and that admits

Jermyn and Ishikawg [41] also demonstrate that the edgeiform parameterization in the Sobolev spagé ([0, 1], )
criterion in @) can be transformed into a region-base@ddn [32]. Recall that this space contains all functions fréimi]
by means of the Gauss-Green theorem. Denafing simple onto €2 that are, together with their distributional first and
and smooth curve inR? and C;, the connected regionsecond derivativesl.?-integrable. Since; > 1, this space,
enclosed byC, the Gauss-Green Theorem states that for aspdowed with the norfiC||z,, = (/|C||7+|C"[|7+]|C"[|)"/,

smooth fields on R2 has the essential property that any bounded sequence admits
£(C) a weakly converging subsequence, which is the key to find a
/ divide = —/ 9(C(s)) - fic(s) ds, (6) minimizer. We shall not tackle the cage= 1, that corresponds
0

o to seeking parameterized curves with first derivative hgvin



bounded variation, for it requires slightly more intricaeyu-
ments and is beyond the scope of this paper. Taking 1
yields a somewhat ill-posed problem singe ||, does not
satisfy the triangle inequality anymore, therefore is nobem.
In the sequel, we restrict tg > 1 for proving existence of
continuous minimizers.
For simplicity, we assume that the imag@és continuously
differentiable or). As mentioned before. due to the influenc ig. 2. An example of inconsistent normals for self-intets®y curves. While
. o L . T . e ratio cycle algorithm does allow to estimate a local redrmector, there is
of curve orientation, minimizind]2) is equivalent to maxim no way of locally determining whether this normal vectorresponds to an

ing inner or anouternormal. As a consequence, regional terms cannot be globally
|Flux(C)| converted, by means of the Gauss-Green Theorem, to boutetarg written
N T g (8) as flux in the direction of a normal defined continuously alting oriented
’/E(C) + Fn (C) curve (see text). Since self-intersecting curves cannoticai foe excluded,

the proposed framework therefore does not allow a consigtéggration of

Using a uniform parameterization df, 1] (indicated by a regional terms.

variablet instead ofs) this ratio can be rewritten as

1
/ VI(C1)) - O/(t)L dt‘ The reason is that, as.mention_ed above, we cannot_ exclude
0 ) the emergence of self-intersecting curves — see Fifilire 2.
Since the algorithm only deals with continuously oriented
curves, in case of self-intersection the normal to the curve
will actually be inner at some locations of the curve and oute
at other locations. Therefore the conversion of the flux term
into a regional term by means of the Gauss-Green theorem
WQA"‘([O, 1],Q) = {C € W>9(]0,1],Q), £(C) < A}. (as presented gbove) no longer a_pplies. More specifically_we
) cannot replace in equatidd (6) the inner normal to the doisain
We assume thaf and A are such that there exists at least Boundary by(C’(s))l for everys (or —(C/(S))l depending
. . 2, = . | . . .
simple closed curve ifW7%([0,1],), ¢ > 1, for which the o the curve orientation). As a consequence, when including
numerator in[{B) is non zero, otherwise the problem is thivigegional terms by means of the Gauss-Green theorem, fer self

for constant imagesany curve is solution because all curvespersecting curves the respective cost no longer coisaidth
have null energy. The following theorem holds, whose progfa actual regional energy.

is given in the appendix.

Theorem 1:.U.nQer the assum_pt|0n§ above, there eXIStS \Bhile the regional integral of over the area enclosed by the
curve that minimizes the elastic ratio when> 1 among cu

all curves inWi’q([O, 1],9) that are either simple or limit of rve - corresponding to the left-hand-side of equaon-(6)

X o . is [ fdx =2 (assuming for simplicity tha{C;,| = 1), the
simple curves. A minimizer also exists among the whole Claﬁﬁrve integral gives:

of curves inW%%([0, 1], Q).

)

v £(C) + [L(C) 2 / " (1)) di

whereC’(t)*+ denotes the vectat’(¢) rotated bys. Let A >
0 and define

Let us exemplify this on the specific example of Figlle 2.

£(C) .
B. The Class of Optimizable Functionals /0 7r(C(s)) - (C'(s)) " ds = 0, (10)

We are not able to prove for the most general functional

model [1) the existence of continuous global minimizewith v chosen such thaliv s, = f, using LOF instance the

and their consistent discrete approximation with the psepo simple formulaii; («, y) — l( f(t.y)dt, [ f(a.t)dt). To
approach. Nevertheless, our algorithm can compligerete ) ' . 2o " 0
global minimizers ofdiscrete counterparts of[1), therefore®Ptain (1), we have simply applied the Gauss-Green theorem

. 1 . .

global minimizers for a bunch of discrete functionals with §eparately to both loops witfC”(s)) ~ representing the inner
great variety of data and regularity terms. normal for one loop and the outer normal for the other. Thus

In section[I¥, we will describe how ratios of the forid (1)for such self-intersecting curves, we cannot write
can be globally optimized after a suitable discretizatitin. £(0)
should be_ noted that self-intersecting curves can occuy.ifve / div i de — i/ F(C(s)) - (C’(s))L ds.
our experiments we observed them only for very small length Cin 0
weightsv.

A solution would be to chooséocally either (C”(s))L or

C. A Comment on Region-based Terms —(C’(s))L but there is no general rule to determine locally

Following Jermyn and Ishikawd_[41], one might want tavhich one is the inner normal. Therefore boundary propertie
. . . L o . I
include regional terms into the algorithmic framework —fsucsuch as the flux in direction C(fC’(é)) cannot be converted
as log-likelihoods of color probabilities commonly used 0 respective region-based energies.
region-based segmentation methods. Unfortunately, hesvev As a consequence of this limitation, we shall not consider
our algorithmic framework does not allow the introductidn oregional terms in this paper, but rather restrict oursebees
arbitrary regional terms. edge-based expressions.



IV. THE OPTIMAL CURVE AS CYCLE IN A GRAPH
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To globally optimize functionals of fornT)1) we discretize
the space of all possible curves: a curve is now defined Tl 124 ll% T Llao
as a contiguous subset among finitely many line segments.
Nevertheless, we have the continuous optimization task in
mind, and the optimal discrete curve is viewed as a polygonal
approximation of the optimal continuous one: its length and ZSaT
curvature estimates approximate the values of the contguo
solution. Convergence is discussed in sediion]V-C.

To be able to use the path-based method described later on,
we build a graph where each edgeés assigned a numerator
edge weightz(e) and a denominator edge weighte). Each
closed curveC in the discrete search space corresponds to
some cyclel’ in the graph. In the end we will minimize the
ratio problem

> n(e)

min <5 (12)
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The numerator and denominator sums should hence reflect the

respective integrals ifk1).
Fp the | q[h fi % J d Ishikawal[41] buil Fig. 3. Top: a grid, here representing a 4-connectivity, with a cyclexdrin
or the length ra IO[] ) ermyn and Ishika [ ] UllGhick lines). Note that for every line segment two oriertasi are considered.

a graph with one node for each image pixel and whepBattom: A part of the arising graph for curvature optimization. Eactented
edges represent line segments connecting pixels irR-an line segment represents a node in the graph. Edges linkstensy oriented

neighborhood. The edge weights correspond to the respectit® Se9ments:

integrals along the line segments.

For functionals of form[l) a more elaborate graph structufge curve. Recall that an edge represents a polygonal curve
is needed: the optimization algorithm supports only edg@nsisting of two adjacent line segments, $ay> and pzps.
weights depending osingleedges. However, if edges directlyFor these two line segments the corresponding tangentsangle
correspond to line segments, one cannot approximate the &ith respect to ther-axis, a, » andas 3, are computed using
vature of the desired continuous curve: line segments aiwd§i¢ function atan2 on the difference vector of the respectiv
have zero curvature. end points (recall thattan2(y, =) is the principal value i —

The graph in[[59] has nodes corresponding to a pair of an 7] of the argument of +y, and that it is a routine function
image pixel and an incoming direction. In this work we taki C++). This difference vector also allows to calculateveur
a slightly different approach, depicted in Figlle 3, thédvas normals: to this end the vector is normalized and rotated by
a more consistent definition of discrete curvature: eachenotis - o ) n ]
in the graph represents a line segment connecting two imag@_stlmatlng curvature is a more difficult issue. To allow
pixels. More precisely the search space consists of alsudir OPtimal convergence properties, we follow the results of
pixels that are spaced apart from one another not more tH3fickstein, Netravali, and Richardsdn[11]. Denoting and
a certain distance : if P is the pixel set of the image, thel2.3 thle Iengths o]‘ the two line segments, the absolute curvature
node sety c P? of the graph is expressed as (with| the at Pointps is estimated as
Famnom) Kl o, ) = 122023l )

V={(7,5)|0< |5 — | < R}. 2 minhz, lz2)
%pere the angle difference is taken on the cifldo correctly
account for the jump oveRr. The sign of the curvature
(if needed) is determined by whether the angle between the
E={((pr,p2), (P2, P3)) € V| P1 # Pis }- line segments exceeds0 degrees or not. We discuss below

, _convergence properties of this process.
An edge now represents an oriented polygonal curve comgisti

of two line segments, both of length R. We now turn to the B. Computing the Edge Weights

guestion of how to define suitable edge weights to approxdmat ) ; ) ,
the continuous functional(1). We first give edge weights for both ratioEl (2) arfd (3)

considered in the experimental section. For the numeragor w
discretize each line segment via Bresenham’s method [10].
Then, we evaluate the data term for each pixel using the above
To define the edge weights one first needs to calculate thentioned segment normal and sum the obtained values.
tangent vector — or, equivalently, the tangent angle wispeet For the denominator, we evaluate length-based and
to thez-axis — and the curvature of the corresponding part ofirvature-based terms separately. The length of the csrve i

Edges in the graph connect nodes sharing an image pi
More precisely the edge set is

A. Estimating Curvature, Normals and Tangent Angles



Minimum Ratio Cycle Algorithm Moore-Bellman-Ford Algorithm

Input: A graphg = (V, &) with two edges weights(e) and Input: A directed graphg = (V, £) with (possibly negative
d(e) for each edge. edge weightsu(e) for each edge. A root nodec V.

Output: A cycle T minimizing the ratio Output: A distance labek(v) and a predecessor noggv)
doecrnle)/ Y crdle). for every nodev € V in the graph. If the graph contains

. . . negative cycles such a cycle is returned.
1) Find an upper bound on the optimal ratio\,:

2) Compute edge weights(e) = n(e) — Ad(e) for each edge 1) Sete(r) = 0, ¢(v) = oo for v € V\{r}. Mark p(v) as
ecf. invalid for all v.
3) Call the Moore-Bellman-Ford algorithm (Fifl 5) for the 2) Setchanges := false
graph G and the edge weights. If it returns a negative For all v € V: check all incoming edges = (v,v). If
cycle, set\ to its ratio and go to 2). Otherwise output the c(?) +w(e) < e(v)
last found cycle andtop. c(v) = c(v) +w(e), plv) =0
changes : = true
Fig. 4. Ratio optimization after Lawlef-[#7]. Shown is thedar search 3) If changes = fal se stop.
variant, also known as Dinkelbach's methgdl[23]. Otherwise check the predecessor entriegor cycles. If a
readily calculated as the sum of all line segment lengths. Fo ~ cycle is found, return the cycle. Else go to 2).

the Cur\_/ature term, We etvaluate the eXpreS@ (12) _and t@f& 5. Distance calculation and negative cycle detectientive Moore-
the desired power of it. Finally, to get the integral of thésm, Beliman-Ford algorithm[T34] [1H0] 16][11].
the length of the segment needs to be included in the weights.

Here again, we follow the results df[11], summing over alyer all cyclesI’, wheren(e) andd(e) are subject to a regular
edges(p1, p2, p3) the quantity e-quantization withd(e) > 0, and such that the denominator
sum is strictly positive for any cycle in the graph. To this
end, we use a variant of the Minimum Ratio Cycle algorithm
The general casdl(1) is more difficult to handle for iproposed by Lawler[J47]: instead of binary search, we use
may contain terms likef,"“) T(C(s)) |k (s)| ds, where the linear search as proposed by Dinkelbalch [23], which is much
integrand depends on position and curvature simultangougaster in practice.
This makes it much harder to reflect the continuous functiona The basic algorithm is shown in Figuk& 4. It is based on
in terms of discrete sums. Our solution is presently to dateu iterated negative cycle detection in a graph with singleeedg
the Bresenham lines, then to calculate the valuea(af,-) weights. LetA be some ratio and define edge weights
andg(-,-,-) for each pixel, using the above given estimates
for ngo(rmal)s and curvapture. Thege values aregthen summed to w(e) = nfe) — Ad(e).
form the edge weights. Now suppose the graph contains a negative cyiclevith
respect to the edge weights(e). By applying equivalence
C. Consistency of the discrete elastic ratio minimization ~ransformations one sees that any such cycle must be of bette

. ._ratio than\ and vice versa:
We defer the question of how to compute the optlmafl

polygonal curve to the next section and assume for thezw(e) < O@Z[n(e)—)\d(e)] <0
moment that it is solved. We should mention, however, that

smin(l 2, la3) - [|K|(P1, P, 73)]" -

er ecT’

the optimization algorithms require the weights:) andd(e) S pn(e)
to be subject to some regular quantization, i.e. they must be & Zn(e) < /\Zd(e) = Zee a0 <A (13)
multiples of a certairr > 0. Termination is guaranteed for any e€l’ e€ll eel

such quantization, but the complexity dependseoetails Notice that the third step is valid only because of the paiti
are given in sectiol V-D. The next theorem, whose proof {f all conceivable denominator sums. This is the reasorhfer t
given in the appendix, states an important property of ogfeviously introduced restriction on the denominator.
approach when applied to the elastic rafib (2) wjth- 1: it The above equivalence transformation shows that the graph
is consistent, i.e., continuous (global) minimizers aneith of contains a negative cycle with respectu¢e) if and only if
discrete (global) minimizers. the optimal ratio is lower tha. If one is able to find negative
Theorem 2:For everyq > 1, any sequence of simplecycles, this immediately gives rise to the algorithm in Fau
discrete minimizers of the discrete elastic ratio assediatith &: starting from some upper bound on the optimal ratio —

increasing resolutions has a subsequence that converges tofor all addressed problems — negative cycle detection and

continuous minimizer of the elastic ratio. ratio adjustments are alternated. Every time a negativiecyc
is found, A is set to its ratio. The last found cycle must be of
V. RATIO OPTIMIZATION OVER CYCLES IN A GRAPH optimal ratio.

We now address the task of finding the cycle of optimal Negative cycle detection is performed efficiently by the

ratio in the described graph, i.e. how to solve the task ~ Moore-Bellman-Ford algorithm [34] [50[L[6].1] for diahce
calculations. The algorithm, depicted in Figue 5, is based

gejr”(e) on dynamic programming: starting from an initial distance
mrin > dle) labeling, the label of any node is reduced whenever the dabel

o= of its predecessors allow such an improvement. If the graph



does not have negative cycles, the algorithm terminatds wivith 0. This amounts to initializing all distance labels with
the correct distance labeling. Otherwise, after a few stepsAfter k iterations the distance label of any node contains
the parent entries will permanently contain cycles. Retyla the weight of the cheapest path of lengtipassing through it.
checking for cycles then allows to extract a negative cyclé/hile in theory one can still hav®’| iterations until a negative
which is necessary to update the ratio. cycle arises, in practice we expect a number of iterations in
While the basic algorithm in Figuld 4 must be carried ouhe order of the length of the most negative cycle in the graph
sequentially, the negative cycle detection in Figllre 5vedlo  This initialization could be used for the sequential imple-
a lot of freedom for the implementation. We now discussientation as well. However, we do not consider this sensible
how to efficiently implement negative cycle detection, botfirst of all, the memory requirements are high since iniiall
in a sequential and in a parallel way. The key for efficienagvery node in the graph is added to the queue. Also one will
lies in how to implement step 2) in Figufd 5. Concerninpave to visit every node in the graph at least once, which
the numerical implementation we noticed that both doubteduces the efficiency of the method in practice. For the first
precision and integer optimization lead to the global optim negative cycle detection, we choose a root node in the center
We use integer operations for both implementations. of the image. In subsequent calls the root node is selected as
one of the nodes in the last found cycle.
A. Sequential Negative Cycle Detection

Efficient sequential implementatioris [1, page 140] make ugg Complexity of the Method
of a queue for implementing step 2 in Figlile 5. Nodes whose . .
distance labetannotchange in the present iteration (becaus& The described graph to estimate curvature contai(®|

9 X . 9 -
none of their neighbors changed their label in the last oril¢) w or)snc;g:rsé 2?;98 ?)a(]:; noe%e Iess C%mr]ee?\;%%fﬁll)mnaefgord
then not be visited. Every time the distance label of a nog ' ([P|]") edges.

is changed, the node is added to the end of a queue. As |(§1r?l orithm is known to terminate n tlmé)(nm) on a graph
n nodes andm edges. This gives us a worst case

as there are nodes in the queue, the front one is removed an . : .
its neighbors are checked for possible distance improvEmer?ompleX'ty ofO([P|2R6? for one negative cycle dgtechon.
While the worst case complexity remains the same, in practic F'na”y’ there is the issue of the number of distance cal-
significant speed-ups are obtained. culations that need to be performed. Let- 0 be the level
To optimize the run-time an explicit representation of thgf quantization,w, be the maximum absolute numerator

entire graph is suitable. However, its memory consumpti;on\fve'ght anduw, the maximal denominator weight, both before

verv high: onlv images up to SiZgs6 x 256 can be rOcessed.quantization. One can _shoEl41] that the n.umber of iteration
y g y Images Up " P thenO(m3w?w,, /€?) in the worst case, withn the number

with 2 GigaByte of memory. We therefore implemented d | tice th ber of iterati is | :
version where edges (and their weights) are computed on-t Ee ges.ig practice the number of ferations 15 less tian
re=10"° and a radiusk = 3.

fly. This solves the memory issues, but increases the ru@-ti ) . .
y y In total this results in a run-time a®(|P|° R¥w2w, /).

significantly.
g 4 While this seems very high, in practice we observe a linear
dependence on the number of image pixels. On the GPU, even

B. Parallel Negative Cyc_le Detection _ images of size640 x 480 are processed in less than half an
State-of-the-art graphics hardware allows highly pafallgoyr ysing a radius of.

implementations of a certain class of algorithms. This <las
does not contain the queue-based implementation just de-
scribed. However, in the form described in Figlile 5, step
2) can be implemented in parallel. The method we use isIn this section we show that the presented class of opti-
to our knowledge unpublished, but can be shown to run mizable ratio functionals allows to draw conclusions abaut
pseudo-polynomial time by a similar argument Bs [1, pagerameterization-invariant version of the snakes modethé
140]. It uses two buffers of distance labels, where the s#coariginal work of Kass et al[[43] the model was stated as

is updated based on the first. Distances and parent pointers

1 1 1
are stored in matrices, i.e. there are no node structurds§ at a/ |v](c(5))|2 dt + a/ |C”(t)|2 dt + 5/ |C”(t)|2 dt.
The cycle check is done on the CPU eve@¥y iterations, its 0 0 0

computational costs (including memory transfer betweebd GP This expression is not invariant to the chosen parameteriza

VI. MINIMUM RATIO CYCLES AND SNAKES

and CPU) are negligible in practice. tion of the curve. Kass et al. probably chose this formutatio
as it allows to remove numerical instabilities when dealing
C. Choosing the Root Node with explicit parameterizations of the curve. From a today’

For the Moore-Bellman-Ford algorithm for distance calcuR€rspective one would want a parameterization-invariant f
lation (Fig.[B), a root node must be fixed. While the choice épulation which might read like this:
this root node does not affect the optimality property of the £(C)
ratio optimization process, it can have significant infllena —/ IVI(C(s))]*ds + M\L(C) + AF2(0). (14)
the performance. 0

For the parallel implementation it is useful to add an extidere we have modified the role of the weighting parameters:
root node and connect it to every node by an edge weightede is now given a relative weight> 0 to balance the relation



of length and curvature regularity as well as a weight 0 Image Run-time

to influence both regularity terms at once. Name Resolution | CPU-expl. | CPU-impl. | GPU
This funct_|0nal is cl_o§ely relate_d to tmnakes_ ratio(@). _ Seal 200 x 133 364s 812s 35s

When applying the Minimum Ratio Cycle algorithm to this

ratio withp = ¢ = 2 (having in mind the equivalences [{13)), Bunny 260 180 1567s 1593 101s
one ends up computing &, < 0 and an optimal curve’,, Berkeley #3| 321 x 481 N/A 8673s | 1046s
such that Baseball #2| 450 x 314 N/A 14810s | 151s
L(Copt) 5 TABLE |
- / |VI(C°DI(S))| ds Comparison of run-times for the different implementatio8$U run-time is
0 = /\Opt, shown with explicit storage of edges and with on-the-fly catafion.

VL(Con) + F2(Copr)

thus For this reason Jermyn and Ishikawal[41] proposed to

£(Cop) integrate a suitably weighted balloon force. Figliied@mon-
_ / IV I(Con(5))|? ds4 | Ao VL(Cop) +| Aop F2(Ce) = 0, Strates that there are fairly large parameter ranges gingedgo

0 almost identical segmentations. The functional theredeems
and any other curve has larger energy with respect to the satleust to the choice of the area weight. However, there is no
parameter|\,,|. Hence, the snakes ratio provides valuablgarameter which works well for all the shown images.
insights into the modified snakes modell(14): given a redativ Nonetheless the extended length ratio produces meaningful
weight between length and curvature regularity, minimizingbjects in several cases and we consider it somewhat comple-
the snakes ratio provides an absolute regularity wejghi mentary to the elastic ratio: each gives rise to segmemitio
for which the parameterization-invariant snakes mddé) e that cannot be produced with the respective other. Whether o
a meaningful optimum and the algorithm also provides theants to favor objects with large area or with low curvatufre o
associated optimal curve. This means that now a model cantbe region boundary will generally depend on the applicatio
optimized globally for which previously only local solutis

were available. B. Efficiency on CPU and GPU

Due to the large search space, an efficient optimization of
the elastic ratio is desirable. We implemented the algorith
On several images from different domains we demonstraigih on the CPU and on the GPU as described in SeEfon V.
the performance of the proposed method. We focus on therhe ryn-times for several images are given in Tdble I. For
elastic ratio withg = 2, but also discuss the snakes rafib (3the smallest image the explicit graph uses roughly half the
In particular we show that: system memory. Here the explicit storage of edges is about
« The elastic ratio with squared curvature allows objeelice as fast as the implicit one — both on the CPU. For the
segmentation for a large variety of domains. The leng#fecond image, both perform almost equally: here the entire
weight v was adjusted experimentally on a variety oystem memory of 4 GB was needed for explicit storage.
images. We found).15 to give reliable results that are The speed-up of the GPU version over the CPU one with
stable for a fairly large range of values of around implicit storage is between a factor 8fand a factor ofl00.
0.15. Practically, having fixed’ = 0.15 and R = 3, our The huge deviations are due to the different natures of the
algorithm turns to be fully unsupervised. algorithms (queue-based vs. full parallel). In particuthese
o Our fully unsupervised method is able to outperformiifferences result in a different sequence of intermediaies.
region-based methods: it is less sensitive to shadingAll given run-times are quite high, lying above half a
effects which allows to find more precise boundaries. minute. However, we once again emphasize that the proposed
« Our method is robust to noise, i.e. even for very noisyiethod separates objects from the background ifully
pictures it produces results comparable to those on noisgisupervised manner (i.e. does not rely on any user input,
free pictures. Again, we stress that all results can lige parameters set being fixed once for all).
obtained with the same values »fand R.

VIl. EXPERIMENTS

C. Robustness and Comparison to Region-based Approaches

For a comparison to region-based approaches we imple-
In Figure[® we show a comparison of ratio functionals opented variants of Mumford-Shah-like functiondls] B
images containing objects in front of cluttered backgraund )
In two cases the Ifength ratio finds a m_eaningful object, i'@(ul,uQ,Ql):Z /((I—Quz') 1o, + )\|Vui|2> da+v]99].
when the entire object boundary has a high contrast. On these =129 o1
images the elastic ratio produces comparable results.
In the majority of cases, however, the length ratio tendst we thank Greg Mori for sharing his data with us.
to find small homogeneous regions. The figure shows thatNote that this functional is not identical with the origindumford-Shah

in many of these cases the elastic ratio is able to |OC%@roa_ch since lthe smoothness terms in the expression feeegtanded into
€ entire domairn.

meaningful objects. This trend is confirmed by Fidre 7, eher 35, may object that comparing explicit and implicit segratioh methods
we show some results on the Berkeley database. is unfair. We actually wanted to stress the stability issue.

A. Length Ratio vs. Elastic Ratio
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| (i

Segmentations obtained with thength ratio.

i

Segmentations obtained with tledastic ratio.

Fig. 6. The elastic ratio provides more meaningful segntiemts than the length ratio, in particular in the presencgantially low contrast.

B3

Segmentations obtained with tledastic ratio.
Fig. 7. The results on the Berkeley database confirm thatl#stie ratio is better suited for object segmentation thanlength ratio.

where a piecewise smooth approximation by two functiord its squared absolute. We recall from Section VI that
u1,ug: €2 — R and a partition of the image plak expressed all these results are global solutions of a suitably weighte
by characteristic functionsg,,, into two disjoint regions2;  parameterization-invariant reformulation of the snakesct
and €2, is computed by alternating globally optimal updatesonal. More precisely, our algorithm always finds paramete
for uy, us and; in a manner similar to[35]. One could alsosets for which the global minimizer has energytherefore
use the recent method [57].-]58], based on convex relaxatiave cannot draw conclusions about the global minimizers of
and obtain an approximate solution. the parameterization-invariant snakes functional foeotba-
In the comparative results of Figurk 9, already for the noiseameter sets. Still, we believe that other meaningful patam
free image we could not find any length parameter where thets do not lead to significantly better results.
above Mumford-Shah variants separate the object from the
background. For the highly noisy images, despite the a#apti \when using the balancing weight = 0.15 for length
smoothness terms, numerous small regions arise. In contrggainst curvature — which works well for the elastic ratio —
the elastic ratio identifies the object almost perfestithout the results are discouraging: in most cases the curve gaes on
needing to adjust any parameter with respect to noise levelyay, turns around and goes almost exactly the same way back.
The results presented in Figdrd 10 illustrate the robustnege consider these solutions as valid in the original sen@ [4
of the elastic ratio with respect to the length weightthe since they do not self-intersect. While some line segments
object is found for a fairly large range of Up to a certain occur repeatedly with opposing directions of traversal, in
point, the contour becomes more complex with increasing the continuous solution space there will be a curve without

From this point on, the length term becomes dominant and thgetitions and almost the same costs — at least if the image
functional approaches the length ratio. gradient is continuous.

D. Results for the Snakes Ratio When reducing the length weight (— 0) larger regions
Figure[I1 presents results for a slightly modified snakese found. These are often very close to convex and usually
ratio: for robustness we use the gradient absolute insteda not correspond to meaningful objects.



11

B =141 =19 ’ 8=1.45 8 =1.56 8 =1.925
With a suitable area weight{3), the extended length ratiofinds meaningful regions.

The elastic ratio can identify body parts.

Fig. 8. Where the elastic ratio identifies body parts, thegtlematio finds only small homogeneous regions. With a sldtabea weight the extended length
ratio can find meaningful regions.

VIIl. CONCLUSION length-based regularity, it does not impose a shrinkags bia
o ] and mimics the notion of contour completion familiar from
We proposed an algorithmic framework which allows tanizsa’s psychophysical experiments.
impose curvature regularity in ratio optimization. Therseg- Lastly, we gave a parameterization-invariant reformafati
tation problem is cast as one of minimizing ratio functi@nalyf the snakes model and showed that a specific instance of our

over cyclic paths in a graph where each node represents a fgde| allows to identify meaningful global solutions ofshi
segment. Optimal cycles are determined in polynomial tim@formulation.

using Lawler’s algorithm. While we cannot a priori exclude

self-intersecting curves, we did not observe self intdisas ACKNOWLEDGMENTS

in the reported experiments except for very small length This work was supported by the German Research Founda-

weightsv that are not meaningful. We proved the existendgon, grant #CR-250/1-2. We thank Mathias Hauptmann and

of minimizers of the elastic ratio in the continuous setting=rank R. Schmidt for helpful discussions. We also thank Greg

Moreover, we proved that upon refinement of the discretmati Mori for sharing data with us.

the solutions of the discretized energy converge — possibly

taking a subsequence — to a minimizer of the continuous APPENDIX

energy. A. Existence of globally minimizing curves for the elasditta
Numerous experimental comparisons demonstrate that curThis paragraph is devoted to proving Theodgm 1. We will

vature regularity allows to substantially improve the ttiattal prove that there exists a curve that minimizes the elastic
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[

g ]

piecewise constant Mumford-Shah . :
for three different length weights Mumford-Shah elastic ratio

Fig. 9. Noise Robustness and Comparison to Region-basedoAgimes. The elastic ratio extracts the object almost gigrfand is robust to noise, with
no need to tune any parameter depending on the level of raisentrast, both the piecewise constant and the piecewismth Mumford-Shah functionals
fail to differentiate the object from the backgroundifplocal minimizers are shown, see text for details). Fer piecewise smooth version, the smooth
approximations are shown.

v =0.01 v =0.05 v =0.25 v=20.3 v =05 v =0.75 v=1
Fig. 10. Robustness to variations in the parameter setbhgdastic ratio: For a fairly large parameter range a megninpart of the image is found.

ratio, or equivalently that maximizeEl(9), among curved thaontrolled. With no loss of generality, we can assume that
are either simple or continuous limits of simple curves. Thidere existsi; > 0 such that, for every, € N
general result of existence of a minimizer among the whole
class of curves ifW%9(]0, 1], ) can be proven analogously. ' r L
|| Vi) e a

Let us turn to the maximization ofJ(9). Under the as- “© L
sumptions of the theorem, the set of reachable energies is > a1 (v L(Ch) + [E(Cn)]1_2q/ |7 (4)]2 dt).
bounded thus admits a supremum. Take a maximizing se- N o

quence(Cr)nen, 1-. the energy oll, tends to the supre- pe (g the regularity of the imagk there exists alsa, such

mum asn tends to infinity, of simple closed curves in ‘ 1 Lo ()L ‘< <
W2%9(10,1],Q) with uniform parameterization of0, 1]. We that | Jo VI(Ca(t)) - CL(D)" di| < a2L(Cn) < azA, thus

will first prove that the sequendg”,,) is uniformly bounded 1
in W24([0,1],Q), which guarantees that there is a weakly v £(C,)+ [,C(On)]lﬂq/ |CY (#)|7 dt <
converging subsequence. To show that a uniform bound exists 0
we prove that each term in tH&2¢ norm can be uniformly and therefore there exists a constaptsuch that for every

CLQA

)
ay

(15)
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snakes ratiowith v = 0.01.

Fig. 11. Experimental results using the snakes ratio detrainsthat the gradient norm is less powerful than the fluxgesiit does not account for edge
orientation.

neN that

1
/ |Cn(t)|q dt < as. /1 VI(On(t)) . O,ll(t)l dt — /1 VI(O(t)) . O/(t)l dt,
0 0

Observing that2 is bounded andC/,(t)| = £(C,) < A for
everyt € [0,1] and everyn € N, due to the assumptionand we finally get that
of uniform parameterization, we conclude that the sequence
(Cp)nen is uniformly bounded inW24([0,1],Q), ¢ > 1.
Therefore (see for instancde[32][Thm 1, p.144]), theretexas
subsequence, still denoted @3, ),,cn, that converges weakly _
in W4([0, 1], ©2) and strong(lylr)Cl([O 1],Q) to a limit curve v L(C) + L) 2q/0 CT ()] at
C. The strong convergence i6'([0,1],9) ensures thatC 1

/ VI(C, (1)) - C ()" dt‘

0

/01 VI(C(t))-C'(t)* dt}

is either simple or limit of simple curves with tangential

self-contacts but no crossing . In additiof(C,,) — L(C) > lim sup T .
(thereforeC' € W%%([0,1],9)) and neN v L(C) + [E(On)]l—%/ 107 (1)|4 dt
1 1 0
/O |C7 (1) dt < 1i7ggi£f/0 |Cy ()] dt. (16) The sequencéC,,) being maximizing, we conclude that

o ] ~is a curve, limit of simple curves, that maximizdd (8) in
Let us now check that the limit curv@ has strictly positive W“([O 1],). The same proof can be used to establish the

length. From[[I5), we deduce that existence of maximizers among all%? curves, either simple
L(Cn) = . azA or not, considering that Fenchel's Theorem also applies for
/ ke, (s)|%ds = [L( q/ |Cn(H)|"dt < ——.  nonsimple curves, see Remark 5 page 40Z1n [13].
0

Extending Fenchel’s Theorem [13][Theorem 5.7.3]W)2>
curves by approximation, we know that for every € B. Consistency of the discrete elastic ratio minimization

]N,/E(C”) ke, (s)|ds > 2r. By the Holder inequality, it We prove now Theorerl 2, _i.e. that the limit, as the reso-
lution increases, of a converging sequence of discretelgsimp

minimizers of the discrete elastic ratio (i.B;n(e)/ > d(e)
L [EEn with suitable weights computed as in sectibn_IV-B) is a
L(Cp)" /0 [k, (s)|* ds = (2m)1, minimizer of @) in the continuous domain. Let us first recall
that the usual way to study relations between discrete and co

thus £(C,)?~" > 227 passing to the limit, we concludetinuous minimizers involves a particular notion of convarge
that £(C) > 0. Therefore we can deduce frof)16) that  for functionals, thel-convergenceI22]. It has a particularly

useful property: if a sequence of energy functionals I'-
/ |O” ()| dt / |O” |‘1 dt
2q

follows that

converges to a function&l and a sequende:,,) of minimizers
. of F, converges tar then x is a minimizer of F. In this
framework the results of Bruckstein et al. [n]11] are dihect
Besides, the contlnwty oI and the p0|ntW|se convergenceelated to our problem. Bruckstein et al. consider the space
of C,,(t) to C(t), andC,(t) to C'(¢) for everyt € [0,1] imply  of curves with finite length and finite total absolute curvatu

< liminf(v L(C,

n—oo

1



endowed with the metrid defined by

(1]
[2]
(3]

d(Cl, CQ) = inf sup |Cl (t) — CQ(\IJ(t))|,

:[0,1]—[0,1] 1 [0,1]

with C;, C2 parameterized or0, 1] and ¥ in the class of
all homeomorphisms fronj0, 1] to [0,1]. Then they prove,
using the discrete definition of curvatufel(12) and usings
convergence metric for sequence of curves, that the déscret
£(C) 4]
counterpart off |kc(s)]|2 ds computed on polygons with

n edgesI'-converges tofoﬂ(c) |k (s)]?ds asn tends tooco
and the maximal length of polygon edges tends to zero. NO\%?]
remark that the existence (in the continuous domain) of eecur
maximizing [B) is equivalent — if{8) is not trivially zero o't
the existence of a curve minimizing

[6]
[7]
v L(C) + FI(C) 8]

|Flux(C)| (A7)

in the class ofW?2:¢ curves with length uniformly greater than 9]
a suitable constant. I% denotes the pixel size, let us define
F,, as the functional that associates any polygdndefined [10]
on the grid with [11]
Fo(Py) = Z d(e),

ech, [12]

whered(e) is computed as in secti@@T¥B arfd, is assumed (13!
to have a maximal edge length smaller thanwith & a [14]
constant independent @f, andn. According to the result by
Bruckstein et al.,F,, ['-converges, ag > 1, to the functional [15]
F(C)=vL(C)+ FIC). [16]
Besides, remark that the smoothness/ofmplies that its
discrete gradient computed with finite differences uniftyrm (17
converges to the continuous gradiénf. Take any sequence
of simple polygong P,,) with uniformly bounded length that [18]
converges for the metri¢ to a limit curveC. Let int(P,,) and 1]
int(C) denote the sets enclosed By andC, respectively, and
Li(p,)» Liw(c) the associated characteristic functions. By the
theory of functions of bounded variatiohl [2], the derivatv [20]
D1,(p,) weakly-« converge taD1,,(c) asn — oo. It follows
from the Gauss-Green Theorem 8k functions [2] that

Z n(e) — Fluz(C),

ec P,

[21]

[22]

23
a(e) (23]

| I"-converges to

and we deduce that the ratig=<c [24]

nie
(@I32) asn tends toco. Therefore, téﬁﬁg a sequence of simple
discrete minimizers of this ratio, there exists a subsegeen
that converges to a minimizer of{17) in the continuoug5]
domain. Such minimizer being non degenerate according 19
. . - r[n ]
our assumption that the length is uniformly bounded fro

below, we conclude that for any sequence of simple discrete

L n(e)
minimizers ofzfi%
ZeEPn d(e)

converges to a continuous minimizer @f (2) s~ oc. This
achieves the proof of convergence.

. [27
, there exists a subsequence that

(28]
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