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Abstract

We consider a class of region-based energies for image
segmentation and inpainting which combine region inte-
grals with curvature regularity of the region boundary. To
minimize such energies, we formulate an integer linear pro-
gram which jointly estimates regions and their boundaries.
Curvature regularity is imposed by respective costs on pairs
of adjacent boundary segments.

By solving the associated linear programming relaxation
and thresholding the solution one obtains an approximate
solution to the original integer problem. To our knowledge
this is the first approach to impose curvature regularity in
region-based formulations in a manner that is independent
of initialization and allows to compute a bound on the opti-
mal energy.

In a variety of experiments on segmentation and inpaint-
ing, we demonstrate the advantages of higher-order regu-
larity. Moreover, we demonstrate that for most experiments
the optimality gap is smaller than 2% of the global opti-
mum. For many instances we are even able to compute the
global optimum.

1. Introduction

Regularization is of central importance to image seg-
mentation and inpainting [14, 2, 22, 4]. The introduc-
tion of higher-order regularizers in respective energy min-
imization approaches is known to give rise to substantial
computational challenges. Some of the most powerful ap-
proaches to image segmentation are based on region inte-
grals with regularity terms defined on the region boundaries
[3, 15, 17, 5, 8, 9, 13]. While many such methods make use
of length as a regularity term, only few use curvature regu-
larity. This is in contrast to psychophysical experiments on
contour completion [12] where curvature was identified as
a vital part of human perception.

Length regularization has become an established
paradigm because there exist many powerful algorithms for
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Figure 1. In contrast to traditional length regularity, curvature
regularity in image segmentation allows to preserve semanti-
cally relevant thin and elongated structures.
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Figure 2. Curvature regularity strongly improves inpainting.

computing optimal solutions for length-regularized ener-
gies, either using discrete graph-theoretic approaches based
on the min-cut/max-flow duality [11, 5] or using contin-
uous PDE-based approaches using convex relaxation and
thresholding theorems [16]. To date, region-based problems
for segmentation using curvature regularity have been opti-
mized using local optimization methods only (cf. [17, 9]).
As a consequence, experimental results highly depend on
the choice of initialization.

In this paper, we propose a relaxed version of region-
based segmentation which can be solved optimally. The
key idea is to cast the problem of region-segmentation with
curvature regularity as an integer linear program (ILP). By
solving its LP-relaxation and thresholding the solution we
obtain a solution to the original integer problem and are able
to evaluate a bound on its quality. In addition, we show that
the method readily extends to the problem of inpainting.

Figure 1 demonstrates that the proposed method allows
to segment objects in a way which preserves perceptually
important thin and elongated parts. In this case the global

1



optimum was found since the relaxation was tight. Figure
2 demonstrates the superior performance of curvature reg-
ularity over length regularity in a corresponding inpainting
experiment.

Existing Work on Curvature Regularity. For contour-
or edge-based segmentation methods researchers have suc-
cessfully developed algorithms to optimally impose curva-
ture regularity using shortest path approaches [1] or ratio
cycle formulations [19] on a graph representing the product
space of image pixels and tangent angles [18]. In the region-
based settings considered, curvature is usually handled by
local evolution methods [7, 9, 17, 22]. The only exception
we are aware of is the inpainting approach of Masnou and
Morel [14] who can optimize the L1-norm of the curvature
in the absence of data terms using dynamic programming.

In this paper we propose an LP-relaxation approach to
minimize curvature in region-based settings. In contrast to
[14] it allows to impose arbitrary functions of curvature and
arbitrary data terms. The algorithmic formulation is based
on the concepts of cell complexes and surface continuation
constraints which have been pioneered by Sullivan [21] and
Grady [10] in the context of 3D-surface completion.

2. An Alternative Approach to Length-Based
Segmentation

In this section, we begin by casting the problem of
length-based image segmentation as an integer linear pro-
gram. In practice more efficient algorithms exist for this
problem [11, 16]. However, the presented method is readily
extended to include curvature regularity, see Section 3. In
Section 4 it is shown how to apply the same methodology
to inpainting.

Given an image I : Ω → R, the task is to divide its do-
main Ω ⊂ R2 into a foreground regionR and a background
region Ω\R by minimizing the functional

E(R) =
∫
R

gF (x) dx +
∫

Ω\R

gB(x) dx + ν|C| (1)

with gF : Ω → R and gB : Ω → R arbitrary functions
(depending on I), ν>0 a length weight and where C = ∂R
denotes the boundary of R with length |C|. The foreground
region R can consist of several connected regions, each of
which can have holes. By defining g(x) = gF (x)− gB(x)
one can consider the equivalent task of minimizing

E(R) =
∫
R

g(x) dx + ν|C| . (2)

In the proposed method the domain Ω is sub-divided into
a set of N non-overlapping basic regions (a so-called cell

Figure 3. A foreground region and its boundary line. Note that
the two have opposing senses of orientations.

complex). The optimal foreground region R is then com-
posed out of a subset of these regions. This results in an
optimization problem over all subsets of the basic regions.

In addition one needs access to the region boundary to
evaluate the length-based regularity term. In the given set-
ting this boundary is composed of the borders of the basic
regions, called edges. We denote by M the total number
of edges. The foreground region and the boundary are rep-
resented separately but estimated simultaneously. To make
sure that both fit together, the following constraints are im-
posed:

Surface continuation constraints. If a basic region is
part of the foreground region, along each of its edges the
foreground either continues with another basic region or a
boundary line.

That is, the foreground region may not terminate
abruptly. Rather on its border a boundary line is fitted. We
will now formalize this constraint in the form of an integer
linear program. It involves an indicator variable yi ∈ {0, 1}
for each basic region i. Here a value of 1 means that the re-
gion is part of the foreground, 0 that it belongs to the back-
ground.

For reasons that will become clear below, we consider
oriented boundary lines as depicted in Figure 3. These are
composed of basic line segments, where for each edge there
are two basic line segments, one for each orientation. We
obtain 2M line segments. Whether or not the line segment
j is part of the solution is expressed by the variable yN+j ∈
{0, 1}. We say that a region or a line segment is active if
its indicator variable is 1. All variables are combined into a
vector y.

The energy function (2) can now be written as a scalar
product w>y of a cost vector w ∈ RN+2M and the variable
vector y. Here wi reflects the integral of g(·) over the re-
spective basic region and wN+j the length (multiplied with
ν) of the respective boundary segment.

It remains to encode the surface continuation constraints.
A closer look reveals that there is one constraint for each
edge. To formalize it we need the notion of incidence to
an edge. This notion is visualized in Figure 4. To define



Figure 4. Line segments (red), regions and edges. Regions and
edges are assigned an orientation. This forms the basis for defining
incidence. For details see text.

it, each edge is arbitrarily assigned an orientation. Of the
two line segments corresponding to the edge, the one with
agreeing orientation is defined to be positive incident, the
other one negative incident. All other line segments are not
incident to the edge. The incidence of the line segment j to
the edge k is reflected in the coefficient

ak,N+j =

 1 if positive incident
−1 if negative incident
0 otherwise .

In addition there is also the incidence of basic regions to
edges. To define it each basic region is assigned a sense of
orientation (corresponding to the order in which the corner
points are traversed, compare Figure 3). Now, the basic re-
gion i is positive incident to edge k if the edge is one of its
borders and the two agree in orientation. If the edge is one
of its borders but in the opposite orientation, we have neg-
ative incidence. Otherwise the two are not incident. This
results in coefficients

ak,i =

 1 if positive incident
−1 if negative incident
0 otherwise .

All coefficients are combined into a matrix A ∈
{−1, 0, 1}M×(N+2M). The surface continuation constraint
for edge k simply says that for each edge there are as many
positive incident as negative incident active elements:∑

i

ak,i yi +
∑

j

ak,N+j yN+j = 0 .

Minimizing (2) can now be cast as solving the integer linear
program

min
y

w>y (3)

s.t. A y = 0

yl ∈ {0, 1} , l = 1, . . . , N+2M.

3. Generalization to Curvature Regularity
We now extend the above framework to include curva-

ture regularity. Here we focus on functionals of the form

E(R) =
∫
R

g(x) dx + ν|C|+ λ

∫
C

|κC(x)|p dH1(x) , (4)

where compared to (2) the integral of some power p > 0 of
the curvature κC of the region boundary C has been added.
In fact, the proposed method can handle arbitrary depen-
dences on position, tangent angle and curvature at points on
the region boundary. One merely has to change the weight
vector.

3.1. Curvature Cost via Pairs

To include dependences on curvature into the above de-
scribed method, we consider pairs of adjacent line segments
instead of single line segments. We only consider pairs cor-
responding to consistent orientations and denote F the set
of all such pairs.

We are now interested in which pairs of adjacent line seg-
ments occur in the boundary of the foreground region. This
is again expressed by indicator variables, where for simplic-
ity the indicator variable for the pair (j, j′) is denoted ȳjj′ .
That is, we no longer give an order of all variables. Region
indicators and indicators on pairs are combined into a vector
ȳ. This vector is paired with a weight vector w̄. While the
entries w̄i for the region indicators are as above, the entries
w̄jj′ now include a curvature cost for a line segment pair.
If the lines have length lj and lj′ , and between the lines the
tangent angle changes by α, following Bruckstein et al. [6]
the weight is given by

w̄jj′ = ν lj + λ min{lj , lj′}
(

α

min{lj , lj′}

)p

.

Although the length of segment j′ is not reflected in this
weight, indeed the length of the boundary is correctly rep-
resented: the constraints stated in the next section ensure
that each active boundary segment is present in two active
pairs (once as the first and once as the second entry).

3.2. Deriving the Constraint Set

To ensure a consistent solution, two types of constraints
are introduced. First of all, the surface continuation con-
straints are transfered to the new setting. To this end, the
incidence of pairs of line segments to edges is defined. Our
definition is based on the first of the two line segments. This
is expressed by coefficients

bk,jj′ =

 1 if line j is positive incident to edge k
−1 if line j is negative incident to edge k
0 otherwise .



In other words bk,jj′ = ak,N+j . When also defining bk,i =
ak,i for the region indicators, the surface continuation con-
straint for edge k reads∑

i

bk,i yi +
∑

(j,j′)∈F

bk,jj′ ȳjj′ = 0 .

In addition, there is another type of constraint that has to
be imposed:

Boundary continuation constraints. If a pair of line seg-
ments is part of the boundary, there is another pair of line
segments in the boundary that contains the second line seg-
ment as the first entry. Likewise, there is a pair that contains
the first line segment as the second entry.

Here we have one constraint for every line segment. To
formalize it we define coefficients

bM+l,jj′ =

 1 if l = j
−1 if l = j′

0 otherwise .

The above constraint set can now be expressed as equations∑
(j,j′)∈F

bM+l,jj′ ȳjj′ = 0 .

In fact, these equations occur in standard shortest path
methods.

When choosing a suitable order of the indicator vari-
ables, all coefficients can be combined into a matrix B and
we obtain the integer linear program

min
ȳ

w̄>ȳ (5)

s.t. B ȳ = 0

ȳl ∈ {0, 1} , ∀ l.

3.3. Optimization via LP-Relaxation

In general, solving integer linear programs is an NP-hard
problem (e.g. [20, chapter 18.1]). We therefore proceed
by solving the associated linear programming relaxation,
where we use the dual simplex method as implemented in
the Clp Package1.

In some cases, solving the LP-relaxation results in inte-
gral solutions. Hence, in such cases the relaxation is tight
and the globally optimal solution is obtained. In general,
however, one finds fractional solutions that are not convex
combinations of feasible integral solutions. From such a so-
lution we obtain a (suboptimal) integral solution by thresh-
olding the region variables and extracting the corresponding
integral boundary variables.

1The Clp package is available online at http://www.coin-or.
org/Clp. It is based on the COIN library http://www.coin-or.
org.

To evaluate the quality of the resulting solution, we com-
pute the energy gap between the fractional and the integral
solution. The cost of the optimal integral solution must be
in between the two energies. Experimentally we have found
the gap to be rather small, with a maximum of 2% relative.

4. Inpainting
The presented framework can be easily extended to the

task of inpainting, i.e. to fill in damaged regions of a given
image I : Ω → R. We denote the minimal and maximal
intensity level Il and Iu respectively.

As discussed by Masnou and Morel [14], energies of the
type ∫

Ω

|∇I(x)|
∣∣∣∣div

(
∇I(x)
|∇I(x)|

)∣∣∣∣p dx
can be rewritten as integrals along level lines, i.e. as

Iu∫
Il

∫
Γt

|κΓt
(x)|p dH1(x) dt ,

where Γt denotes all level lines for level t.
For simply-connected inpainting domains, Masnou and

Morel showed how to minimize the case of p= 1 globally
via dynamic programming. The scheme presented in this
work allows to handle arbitrary domains and arbitrary ex-
ponents p. In general the solutions will not be globally opti-
mal: Ideally the boundary variables reflect level lines but for
non-binary variables the corresponding solutions will not
reflect level lines.

To adjust the scheme to inpainting, one only has to
change the integrality constraints to

yi ∈ [Il, Iu], i = 1, . . . , N

for the variables representing basic regions and to

ȳjj′ ∈ [0, Iu]

for the variables representing boundary segments. In addi-
tion, one must fix the region variables on the border of the
damaged region to the given intensities. Then, after setting
the weights w̄i for the region variables to 0, the algorithm is
run.

5. Experiments
We evaluate the proposed method on both image seg-

mentation and inpainting tasks. For the accurate reflection
of curvature it is important to have a sufficiently fine dis-
cretization of directions. To this end, pixels are subdivided
into several basic regions as shown in Figure 5. The em-
ployed subdivisions correspond to 8- or 16-connectivities
in graph cut frameworks. In all cases we use a curvature
power of p = 2. The experiments were run on a Core 2
machine with 2.66 Ghz.

http://www.coin-or.org/Clp
http://www.coin-or.org/Clp
http://www.coin-or.org
http://www.coin-or.org


for 8-connectivity. for 16-connectivity.

Figure 5. The chosen basic regions for a pixel and their equiva-
lent connectivities for graph cuts.

input λ = 0.125

λ = 0.25 λ = 0.5

λ = 1 λ = 2

Figure 6. Intensity-based segmentation with different curva-
ture weights.

5.1. Image Segmentation

Our first experiment for image segmentation combines
the data term of the piecewise constant Mumford-Shah
functional [15] with a regularity term consisting of squared

input with seeds 8-connectivity 16-connectivity

Figure 8. Effect of the connectivity. Both results are globally
optimal.

curvature:∫
R

(I(x)− µF )2 dx +
∫

Ω\R

(I(x)− µB)2 dx

+λ

∫
C

|κC(x)|2 dH1(x) .

Here we fix the mean values µF , µB based on the mini-
mal and maximal intensities in the image. Figure 6 shows
results on the well-known camera man image for different
curvature weights. In this case the system to solve involves
roughly 1 million variables and 300.000 constraints.

The results demonstrate that even with large weights
one can segment long and thin objects. Moreover, the LP-
relaxation is quite tight here: all shown results are within
2% relative2 of the global optimum. They were generated
using the 8-connectivity, where the run-times vary between
10 and 20 minutes.

In a second experiment the approach is extended to in-
clude seed nodes and the data terms are replaced by the neg-
ative logarithm of color histograms pF and pB computed
for the user-labeled pixels. This time also a length term is
included:

−
∫
R

log(pF (I(x))) dx −
∫

Ω\R

log(pB(I(x))) dx

+ ν|C|+ λ

∫
C

|κC(x)|2 dH1(x) .

In Figure 7, basic regions corresponding to the 8-
connectivity were used as the 16-connectivity gave compa-
rable results.

However, Figure 8 shows that usually the 16-
connectivity is preferable. For the latter there were roughly
500.000 basic regions. In Figure 9 it is shown that on these
data curvature helps much to achieve connectedness. More-
over, here the global optima are found.

2This is w.r.t. the original energy as in (1) (but with curvature term),
not the transformed one as in (2).



input with seeds thresholding scheme length only curvature only length and curvature
(global optimum) (within 0.05% relative) (within 0.02% relative)

Figure 7. Comparison of length and curvature. We show results for the highest weights that do not disconnect the two front legs from
the torso. The computed solutions are very close to the global optimum.

input with seeds thresholding scheme length only length and curvature
(global optimum) (global optimum)

Figure 9. Curvature helps to establish connectedness. We show the visually best results for all approaches, using the 16-connectivity.

damaged image close up

inpainting close up

Figure 10. The proposed method is useful for inpainting.

The result in Figure 1 was also generated with the 16-
connectivity. It was computed in 3.5 hours and is the global
optimum of the energy. Note that curvature regularity al-
lows to well preserve thin and elongated structures which
are typically supressed by algorithms which rely on length-
based regularity.

5.2. Inpainting

We now turn to the problem of inpainting, where we
present two experiments using the 8-connectivity. Figure 10
shows a result on the well-known New Orleans image. The
close ups show that the proposed method works excellently
in filling in the destroyed regions.

In Figure 11 we provide a comparison of length-based
and curvature-based inpainting for a Japanese temple. Here
it becomes evident that curvature terms are important as oth-
erwise the regions are filled in with mostly homogeneous
intensity values.

6. Conclusion
We proposed the first approach to minimize curvature

regularity for region-based image segmentation that is in-
dependent of initialization. In addition, we showed that the
method can be extended to the problem of inpainting. In
both these applications, curvature plays an important role.
To this end, the problem is formulated as an integer linear
program and its LP-relaxation is solved. By thresholding
the region variables an integral solution is obtained. The
experiments indicate that the produced solutions are close
to the global optimum.



damaged image close up

with length with curvature

Figure 11. Curvature is better suited for inpainting than length.

In numerous experiments on segmentation and inpaint-
ing we show that curvature regularity helps to substantially
improve results with respect to algorithms which merely im-
pose length regularity.

As we are representing both basic regions as well as pair-
wise line segments in our formulation, the sizes of the cor-
responding optimization problems become quite large even
for moderate image resolutions. Nevertheless, in this work
we have used a standard implementation of the dual simplex
method for computing the solutions and obtained reason-
able running times. To develop specialized solvers exploit-
ing the particular problem structure at hand is an avenue of
future research.
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