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Foreword

Like all Ph.D. students, I submit this thesis with the aim to obtain a Ph.D. Yet, I have
also come to value such theses as a useful means to get to know a new scientific field. After
all T once got into this field by reading the Ph.D. thesis of my present supervisor, and this
has greatly helped me to find the topic I want to be working on. For this reason I have
tried to keep this thesis understandable to students in computer science, so that I could have
understood it when I finished my studies. I probably only partially succeeded in that - the
foremost aim is still to present the contributions I made in the last three years.

To further help students about to finish their studies, I want to address a topic I found
absent in all theses so far: Should I write a Ph.D. thesis? In my view you are definitely
qualified if you provide the following three prerequisites: (1) good or excellent grades during
your studies, preferably without having worked to exhaustion, (2) the desire never to stop
learning and (3) the desire to contribute, even if you have doubts you are capable to.

Once you started, do not expect to contribute much during the first year. In my experience
it takes about a year until you see some loose ends. That is, you no longer just see unsolved
problems, you start to realize that some of them can be solved — or at least improved. I hope
this thesis convinces you that in computer vision many improvements are possible.

In any case I hope this thesis finds a broad audience. For readers who want to deepen their
knowledge I have compiled a list of books I consider good starting points. For combinatorial
optimization I recommend [45], more advanced readers may also consider [137]. And for
continuous optimization I recommend [21]. Books on computer vision include [194] and [107].



Acknowledgments

Although I am the sole author of this thesis, naturally many people have contributed to
make it possible, and they should be acknowledged here. My foremost credit goes to my
supervisor, Prof. Dr. Daniel Cremers. I would like to thank him for making me think about
energy minimization, teaching me how to write things down, supporting me during all this
time and never losing faith in me and my ideas. Many thanks also to Prof. Hiroshi Ishikawa,
Ph.D., for agreeing to review my thesis and publishing all the results I have built on in this
thesis.

I would also like to thank Prof. Dr.-Ing. Hermann Ney who supervised my diploma thesis.
Although I did not have contact with him since I left his group, many of the ideas in this
work arose from what I have learned from him.

Someone I have not yet had the chance to work with is Prof. Dr. Fredrik Kahl. I hope this
will change in the future.

Many thanks also to my closest co-workers Prof. Dr. Simon Masnou, Frank R. Schmidt
and Dr. Thomas Pock. The many discussions with them have much helped to improve the
respective projects and also my understanding of the underlying theories. I would also like
to thank Dr. Thomas Brox - although we have never published together, I have learned a lot
from him.

Furthermore I am indebted to Dr. Bastian Goldliicke, Dr. Thomas Pock, Frank R. Schmidt
and Frank Steinbriicker who have proof-read an early version of this thesis and provided many
valuable comments.

Many thanks also to my family and friends for supporting me in my private life during
the last three years. Especially I would like to thank my mother for proof-reading the final
manuscript.

My final acknowledgment goes to all the people worldwide who are willing to share their
work with the world without asking for payment. In particular this includes all open source
programmers and the authors of Wikipedia. Their invaluable work provides an important
basis for research and has greatly helped to produce this thesis.



Notational Conventions

Throughout this thesis vectors variables appear in bold face, i.e. I write x € R?, but z € R.
The same rule applies to vector-valued functions, i.e. g: R — R? but ¢ : R3*Y — R.
The transpose of a vector v is denoted v'. Unless otherwise stated the expression |v| will
denote the Lo-norm (or Euclidean norm) of the finite-dimensional vector v. For infinite-
dimensional vectors (curves) this Euclidean norm is denoted as ||C|| to distinguish it from the
one-dimensional measure |C| of a set C C R2.

The vector inequality v > w expresses that v; > w; for all i. The set R™ denotes the set
of real numbers greater than 0, the set ]Rar the set of real numbers greater than or equal to
0. Similarly, the set N denotes the set of integer numbers greater than or equal to 0 and N™
all integer numbers greater than 0.

I intensively use the Kronecker symbol (for k,l € N)

1 iftk=1

0 else

(k1) = {

An important notion for this thesis is the image gradient. For a signal I:R? — R, the
gradient VI(x) at the place x = (z y)" € R? is defined as the vector

oL lim Letey)—I(zy)
VI(X) _ 8$ _ 6*»0 €

oI lim L@yte)—I(z.y)

oy 50 €

The reader is furthermore assumed familiar with basic knowledge in complexity analysis,
in particular the O-notation to analyze the worst-case run-time of an algorithm. For an
introduction see [187].

Lastly I assume some basic knowledge about graphs and about convex functions. In partic-
ular it will be of importance that convex functions can be optimized globally, e.g. via gradient
descent.



Abstract

This thesis aims at solving so-called shape optimization problems, i.e. problems where the
shape of some real-world entity is sought, by applying combinatorial algorithms. I present
several advances in this field, all of them based on energy minimization. The addressed
problems will become more intricate in the course of the thesis, starting from problems that
are solved globally, then turning to problems where so far no global solutions are known.

The first two chapters treat segmentation problems where the considered grouping criterion
is directly derived from the image data. That is, the respective data terms do not involve any
parameters to estimate. These problems will be solved globally.

The first of these chapters treats the problem of unsupervised image segmentation where
apart from the image there is no other user input. Here I will focus on a contour-based method
and show how to integrate curvature regularity into a ratio-based optimization framework.
The arising optimization problem is reduced to optimizing over the cycles in a product graph.
This problem can be solved globally in polynomial, effectively linear time. As a consequence,
the method does not depend on initialization and translational invariance is achieved. This
is joint work with Daniel Cremers and Simon Masnou.

I will then proceed to the integration of shape knowledge into the framework, while keeping
translational invariance. This problem is again reduced to cycle-finding in a product graph.
Being based on the alignment of shape points, the method actually uses a more sophisticated
shape measure than most local approaches and still provides global optima. It readily ex-
tends to tracking problems and allows to solve some of them in real-time. I will present an
extension to highly deformable shape models which can be included in the global optimization
framework. This method simultaneously allows to decompose a shape into a set of deformable
parts, based only on the input images. This is joint work with Daniel Cremers.

In the second part segmentation is combined with so-called correspondence problems, i.e.
the underlying grouping criterion is now based on correspondences that have to be inferred
simultaneously. That is, in addition to inferring the shapes of objects, one now also tries
to put into correspondence the points in several images. The arising problems become more
intricate and are no longer optimized globally.

This part is divided into two chapters. The first chapter treats the topic of real-time
motion segmentation where objects are identified based on the observations that the respective
points in the video will move coherently. Rather than pre-estimating motion, a single energy
functional is minimized via alternating optimization. The main novelty lies in the real-time
capability, which is achieved by exploiting a fast combinatorial segmentation algorithm. The
results are furthermore improved by employing a probabilistic data term. This is joint work
with Daniel Cremers.

The final chapter presents a method for high resolution motion layer decomposition and
was developed in combination with Daniel Cremers and Thomas Pock. Layer decomposition
methods support the notion of a scene model, which allows to model occlusion and enforce
temporal consistency. The contributions are twofold: from a practical point of view the pro-
posed method allows to recover fine-detailed layer images by minimizing a single energy. This



is achieved by integrating a super-resolution method into the layer decomposition framework.
From a theoretical viewpoint the proposed method introduces layer-based regularity terms
as well as a graph cut-based scheme to solve for the layer domains. The latter is combined
with powerful continuous convex optimization techniques into an alternating minimization
scheme.

Lastly I want to mention that a significant part of this thesis is devoted to the recent trend of
exploiting parallel architectures, in particular graphics cards: many combinatorial algorithms
are easily parallelized. In Chapter 3 we will see a case where the standard algorithm is hard
to parallelize, but easy for the respective problem instances.
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1. Introduction

Computer vision is a compilation of inference problems: given an image or a set of images,
the aim is to infer properties of the scene depicted in the image. For example, in image
segmentation the aim is to partition the image into a set of meaningful regions. In 3D-
reconstruction one is given several views of an object and wants to deduce its geometry. In
motion estimation the task is to infer how the points in a video are moving over time. A
complete list might well fill the entire page.

1.1. Shape Optimization

This thesis is concerned with a specific type of inference problems which is called shape
optimization: these problems aim at inferring the shape of the objects in the scene. Here the
term shape can take on different nuances, ranging from the 3D-depth profile of the object to
its projection onto an image. Examples for shape optimization include the following problems:

e Image Segmentation. Here one is given an image and aims at identifying the objects
in the reflected scene. To this end the points in the image are grouped into regions,
where (in a correct solution) a region corresponds to the projection of a scene object
into the image.

e Tracking Deformable Objects. In this setting one is given a video and the position
of an object in the first frame. The aim is to trace the object over the video and thereby
infer the evolution of its shape.

e Stereo Reconstruction. This problem aims at reconstructing the depth profile of a
scene by analyzing its projection onto two (or more) camera images. The positions of
the cameras relative to one another are known for the algorithm.

e Layer Decomposition and Structure and Motion. Given a video, the aim of
Structure and Motion is to infer the structure of the (deforming) scene reflected in the
video. This involves decomposing the scene into separately moving objects and inferring
the shape of each object. For layer decomposition these shapes are restricted to planar
surfaces.

For each of these problems a large number of approaches have been proposed. In this thesis
we concentrate on those which are based on energy minimization.

1.2. Energy Minimization

The previous section has introduced a number of shape optimization problems. In all of these
problems the structure of the desired information is readily formalized in mathematical terms.
For example, given a gray-scale image I:Q — R on the domain 2 C R? (usually a rectangle),

10



1.2. Energy Minimization

a segmentation into L regions can be expressed as a function [:Q — {1,...,L}. That is,
each point in the domain is assigned a segment. Note that segments need not be connected
regions.

The problems are then reduced to picking a solution in a precisely defined space of (can-
didate) solutions. It remains to define which solution to choose for a given input. In this
thesis the approach of energy minimization is pursued: each conceivable solution is assigned
a certain cost (or energy), where better solutions are assigned a lower cost. The remaining
task is then to find the solution with optimal cost, i.e. to minimize the energy. This approach
leaves two issues that need to be addressed for each problem individually:

e Firstly, one has to design a cost function which obviously needs to depend on the input
data. To be of any practical use it must also be efficiently computable for any candidate
solution. It is often postulated that the cost function have a single global minimum. In
this thesis this condition is somewhat relaxed, but we still want all global minima to be
meaningful solutions.

To illustrate this, consider the following problem: given an image, find a bear in the
image or decide that none exists. Now, if the image contains two bears, we should be
willing to accept any of them as a solution, so cost functions with two global minima
should be allowed.

One might argue that the proper problem formulation should be to find all bears in the
image. Yet, such problems are often computationally much harder to solve. And the
way science works is to progress wherever progress is possible, always hoping that it
will eventually lead to solving the problems that are presently not satisfactorily solved.

e Secondly, given an energy, how to find a global minimum efficiently? This is actually an
intricate problem since the solution space is generally so large that one cannot possibly
look at each candidate solution individually: if one discretizes the domain €2 into N
pixels, in the segmentation example given above there are L'V candidate solutions to
consider. For the case of L = 2 regions and a small image of 16 x 16 = 256 pixels, this
number amounts to roughly 1077. A computer working at 10 Ghz would need at least
10% years to look at all solutions - provided that the processing of a specific solution
takes only one machine cycle.

It turns out that many computer vision problems can be reduced to problems that are
known to be efficiently solvable and the number of such reductions increases steadily.
Yet, there are problems where it is easy to come up with an appropriate energy func-
tional, but no efficient method to minimize it is known. A prominent example is the
area of motion analysis which is treated in the second part of this thesis. Instead of giv-
ing up on the optimization task, in practice one tries to find robust local minimization
schemes.

The approach of energy minimization will be pursued throughout this thesis. While the
central topic is shape optimization, we will meet two basic kinds of stating these problems:
they are either formulated as segmentation problems or as correspondence problems. Each of
these two kinds will now be illustrated by a short example.

11



1. Introduction

input image. segmentation without segmentation with
length regularity. length regularity.

Figure 1.1.: Regularity terms are needed to get close to human perception. The results show
segmentations into L = 2 regions. (For the output images the input was darkened
to improve the visibility of the region boundaries).

1.2.1. Example for a Segmentation Problem: Image Segmentation

In segmentation problems one tries to group the points in an image or a video into regions
corresponding to objects in the scene. A classical example is the task of image segmentation.

Given a gray-value image [ : 2 — R and a number of regions L, a segmentation of the
image is expressed as a function [:Q — {1,..., L}. This approach is also called region-based
image segmentation since each point in €2 is explicitly assigned a region. In Chapter 2 we will
meet an alternative approach called contour-based segmentation.

A simple approach to image segmentation is to assume that pixels with similar intensities
belong to the same segment. For example, one can assume that the intensities of segment [
are all in the vicinity of some fixed value p;. For reasons explained later on such a value is
called the mean value of a segment. To assign each pixel to the best fitting value, one can
minimize the function )

EQ) = / (160 — pugey) . (1.1)
Q

Since the argument (or input) of the function E': (@ — {1,...,L}) — R is again a function,
FE is usually called a functional. 1t is common only to include the quantities to be optimized
in the arguments of the functional. Hence neither I nor any p; appear on the left-hand side.

Functional (1.1) is easy to optimize globally: for each point x € ) one evaluates the squared
difference for every possible label I. The optimal label [(x) for x is then given by the label
inducing the minimal cost, where ties are split arbitrarily:

l(x) = arg mjin (I(x) - uj)Q .

Given such a label assignment, one can also solve for the optimal f1;: these values are obtained
by computing the mean over the respective intensities I, hence the name “mean values”.
Iterating the two processes provides a local minimization scheme for the functional®

B Aih) = [ (160 = o) dx (12

Q

!The arising optimization task is an instance of the famous L-means problem. This problem is known to be
NP-hard.

12



1.2. Energy Minimization

where compared to (1.1) only the left-hand side has changed. Here {x;} is a short-hand
notation for {u;|j = 1,...,L}. An example result for the described (local) minimization
scheme is provided in Figure 1.1 (middle). This clearly shows that (1.2) is not suited for image
segmentation: the functional lacks important notions of human scene interpretation. One of
these notions is called spatial smoothness and refers to the knowledge that neighboring points
are likely to belong to the same segment. Mathematically it can be imposed by penalizing
the length of the segmentation boundary, i.e. the set of all discontinuities of [. For simplicity
this set is denoted C, its length (or measure) is denoted |C|. This length is weighted by a
positive weight v € R™ and added to (1.2). The arising functional is known as the piecewise
constant functional of Mumford and Shah [158]:

B ) = [ (169 = o) dx + v1C (1)
Q

As Figure 1.1 demonstrates this leads to substantially better segmentations when choosing an
appropriate length weight. Again, these are local minimizers. For details on their computation
see Chapter 2.9.3.

Terms like the length penalty are generally called regularity terms, this one is called length
reqularity. Such terms serve to express a certain prior knowledge about what the optimal
solution should look like. Often they do not depend on the data, but there are also some that
do: for example one might lower the cost for discontinuities passing through regions of high
image gradients [159, 27, 175, 108].

Terms like in (1.2) are called data terms: their main purpose is to link the input data to
the candidate solution. A typical computer vision functional has one or more data terms in
combination with one or more regularity terms. This structure will be followed throughout
the thesis, where we will encounter different ways to combine the terms: instead of sums one
can also consider ratios of data and regularity terms.

1.2.2. Example for a Correspondence Problem: Rectified Stereo

The second type of problems addressed in this thesis is called correspondence problems.
Instead of grouping points in an image (or video), the aim is here to set points across images
into correspondence. More precisely one wants to find the same scene point in each of the
images.

As an example consider the problem of rectified stereo, where the aim is to reconstruct
a depth-profile of the scene via its image in two specially aligned cameras providing images
I1:Q — R and Iy : Q — R. As visualized in Figure 1.2, the cameras are set beside each
other so that their camera axes are parallel. Many points on the surface are observed in both
camera images (some will be occluded by other points on the surface). Now, when knowing
the projections of a surface point onto both images it is straightforward to reconstruct the
depth of the point. The problem of stereo is therefore generally identified with inferring for
each point in the image I the corresponding point in the image I». The problem of occlusion
is usually ignored.

Due to the special camera setup one knows that a point (z,y) in image I; can only corre-
spond to points with the same y-coordinate in I, i.e. to points of the form (x + d(x,y),y)
with d(z,y) € R. It remains to solve for the unknown distances d(x, y), also called disparities.
The problem of (rectified) stereo is therefore generally stated as computing a disparity map

d: Q) —R.

13



1. Introduction

a surface

o = image planes

camera 1 camera 2

Figure 1.2.: A two-dimensional slice through a stereo system. A surface point (unless oc-
cluded) is projected onto the positions z; and z3 in the two cameras. The differ-
ence of these coordinates allows to infer the depth of the surface point.

This problem is also called disparity estimation. Many popular approaches rely on energy
minimization as reflected in a widely accepted benchmark for the problem — the Middlebury
stereo benchmark?.

A basic data term for an energy minimization approach is derived from the assumption
that the observed intensities of a surface point should be similar in both images:

[ 1@.y) = La(a + day). )l dody
Q

By itself, this term provides a multitude of global optima: in a scanline (a line with a constant
y-coordinate) usually many intensity values occur repeatedly. The above data term does not
clarify which one to choose in this situation. This shows that plausible data terms do not
always suffice to define a precise optimization problem.

It is not hard to come up with data terms that disambiguate these cases, e.g. using
patch comparisons. Yet, this is not really necessary: here, too, it is desirable to integrate
notions of human scene interpretation like spatial smoothness. These terms usually suffice
for disambiguation. A functional that leads to good results and can be optimized globally
[114, 170] is given by

E(d) =/\Il(x7y) — Iy(z +d(z,y),y)| dv dy + a/!Vd(%y)\dxdy : (1.4)
Q Q

where a € R* is a smoothness weight.

1.3. Combinatorial Optimization in Computer Vision

Energy minimization approaches reduce real-world problems to mathematical optimization
problems. Any such approach must directly face the question of how to find the minimum

2http://vision.middlebury.edu/stereo/.
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1.3. Combinatorial Optimization in Computer Vision

of the considered energy. In this thesis combinatorial algorithms will be employed. They are
therefore reviewed in this section.

Real-world scenes are continuous entities, i.e. they are not quantized (or at least the
quantization is so fine that it can be neglected): for example, the color of an object can take
on an infinite number of nuances, a surface can decrease smoothly in depth etc. Consequently,
the arising optimization tasks cover a continuous space of candidate solutions. They are part
of a field called continuous optimization: the space of candidate solutions is expressed as
real-valued combinations of a (finite or infinite) number of basis solutions.

Nevertheless, this thesis aims at employing combinatorial optimization: here the candidate
solutions are given as integer-valued combinations of finitely many basis solutions. Moreover
the ranges of these integers must be finite.

Why combinatorial optimization when clearly continuous entities are sought? It is not
my aim to convince anyone that combinatorial optimization is the thing to use or that it
is superior to continuous methods. I believe that the best suited method should be used
for any given problem. However, it is difficult (if not impossible) to predict which approach
will ultimately be the best: at each point in time science is only a momentary reflection of
approaches investigated so far. Hence, it is sensible to follow different lines.

Below I have compiled a few points why combinatorial optimization should be considered:

e Computers are discrete-state machines. Therefore, any optimization scheme will even-
tually rely on a discretization. Combinatorial methods simply discretize the solution
space. This has the advantage that the implementation remains transparent as the
discretization is clearly stated. In addition, one can rely on standard (black-box) opti-
mization tools such as graph libraries. Hence, it should not be hard for other researchers
to re-implement the methods.

Whether this results in a favorable performance for the problem at hand will depend
on the application.

e Many continuous optimization techniques are terminated prematurely, e.g. when hand-
ling the minimization of convex but non-linear functionals. The respective optimization
task is then not solved exactly as this would require too much run-time. In these cases
a combinatorial approach may be preferable: although it will not solve exactly the
same problem, at least the modified optimization task is solved exactly in a comparable
amount of time. The results are then more easily predictable.

e Lastly, having studied computer science I find the discrete world much simpler to un-
derstand. I believe that many people feel similarly and in the end we are looking for
solutions everyone can use. With the advent of the computer, discrete optimization
methods have gained popularity very rapidly. Today this previously little noticed field
may already have outranked the continuous math which has been studied intensively
for centuries.

Again, it is not the aim of this thesis to convince the reader of combinatorial optimization.
The aim is rather to show that it is worth considering combinatorial optimization even though
the corresponding real-world problems are continuous ones.

The remainder of this section contains an overview of common combinatorial optimization
frameworks used in computer vision. Continuous approaches are discussed briefly in the next
section.

15



1. Introduction

The image viewed as
a 4-connected lattice.

The graph used to
segment the image.

Figure 1.3.: Image segmentation via graph cuts: to segment an image a graph is built where
each pixel is linked to two additional nodes, s and ¢. Then an optimal s/t cut
corresponds to an optimal region-based segmentation.

1.3.1. Region-based Methods

Above we have already met segmentation and correspondence problems. For both types
suitable data terms can be formulated in terms of region integrals. This is different for the
regularity terms: whereas for correspondence problems again region integrals are suitable, for
segmentation problems usually the region boundaries are considered.

The two-dimensional nature of images renders region-based optimization problems much
more difficult than one-dimensional problems. While the latter can often be addressed via
dynamic programming [10], this does not extend to higher dimensional problems.

For a long time no global solutions were available for region-based problems. Greig et
al. [99] were the first to introduce a global optimization method which reduces two-region
segmentation to computing the optimal cut in a graph. Yet, for almost a decade their method
received little notice until it was rediscovered by Boykov et al. [26, 27]. It turns out that
the foundations were already explored by Hammer in 1965 [104]. This method will now be
reviewed in detail. To this end, we consider a discrete approximation [24] of the problem

(1.3):

1

min Y U -p)? F v Y (1= 81,Uy)) . (1.5)
1:P—{0,1} 0 xl(m—i o

7 x:1(x)=1 x,y:|x—y|| <1

where P is the set of pixels in a given (discrete) image I:P — R and 4(-, ) is the Kronecker-§
(see page 5). Such a problem, involving a function [ defined on a discrete set and taking on
a finite number of values, is called a labeling problem. If the value set contains exactly two

values it is called a binary labeling problem.

Graph Cuts

Problem (1.5) can be stated in terms of a graph of the form as shown in Figure 1.3: the graph
contains a node for each pixel in P as well as two additional nodes s and t. Each pixel is
connected to its 4 closest neighbors, the respective directed edges are assigned a weight of v.
Also, for each pixel there is an edge from s and an edge to t. The edge from s is assigned the
weight (I(x) — p1)?, the edge to t the weight (I(x) — po)?.

16
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Each labeling I can now be identified with what is called an s/t-cut in the graph. Intuitively
an s/t-cut is a minimal® set of edges so that the removal of these edges separates s from t.
Mathematically it is more convenient to view a cut as a binary labeling 1:V — {0,1} on the
node set V, so that I(s) = 0 and I(t) = 1. The edges in the cut are then all edges starting at
a node labeled 0 and ending in a node labeled 1.

This already shows that cuts are closely related to labeling problems: when removing the
components for s and ¢, a cut [ is precisely a labeling I. The cost of a cut [ is now simply the

sum of the edge cost over all edges in the cut:

ch= Y dww),
~ (vw)es:
l(v)=0, [(w)=1
where ¢(-) denotes the weight of an edge. The reader can easily verify that with the above
stated edge weights the cost of a cut [ is exactly the energy (1.5) for the corresponding labeling
l.

In case that — as above — all edge weights are positive, the minimal cut in the graph can be
computed efficiently: over the last 60 years a number of polynomial time algorithms have been
developed [89, 73, 64, 95, 96]. For problems in computer vision commonly the adaptation of
Boykov and Kolmogorov [25] is used*, which excels in speed for the sparse graphs used in
vision. Interestingly, no polynomial time bound was ever proven for this algorithm and it is
generally not believed that one exists.

The problem (1.5) is only one of the functionals that can be optimized via graph cuts. The
class of such problems is significantly larger, the only constraint being that a reduction to a
graph with positive edge weights exists. As shown in [104, 135] this holds for functions of the
form

E(l(x1),...,l(xN)) = Zdi(l(xz‘)) + Zbi,j(l(xi),l(xj)),
i 1,7

satisfying the so-called submodularity condition:
b;;(0,0) + b;;(1,1) < b;;(0,1) + b;;(1,0) .
One can also include certain terms depending on three variables:
BG). 1) = S dillx0) + 3 bag 0, 16) + 30 bl 10%:). 1))
i ij i,k
where the respective conditions can be found in [168]. Terms depending on four or more
variables have also been considered [91]. Most applications in computer vision use only terms

for two variables: only few terms depending on three or more variables satisfy the respective
conditions.

Multi-label problems

Graph cuts are also successfully used to optimize multi-label problems. Ishikawa [114] shows®
how to globally optimize functions of the form

E(l(x1),...,l(xN)) = Zdi(l(xi)) + Zbi,j(l(xi) —U(x5)) , (1.6)
i 1,7

3Here minimal means that no proper subset satisfies the same property.
4Free source code is available at http://www.adastral.ucl.ac.uk/~vladkolm/software.html.
A less general form was given independently by Veksler [203].
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segments. segment boundaries.

Figure 1.4.: Instead of searching regions, one can also search for their boundaries. This makes
another type of optimization method applicable.

where the b; ; are convex functions and I(x;) € {1,...,L}. The key idea is to introduce a
node for each combination of spatial position x and label [(x). The price for global optimality
is hence an increased memory consumption.

Functions of the form (1.6) are useful for correspondence problems. In particular, a dis-
cretized version of (1.4) falls into this class. For segmentation problems, however, the use of
convex interactions is generally not a reasonable choice. Here one usually wants to minimize
an instance of the Potts model [171]:

E(l(x1),...,l(xn)) = Zdi(l(xz‘)) + VZ [1—6(l(x:),U(x5))]
i i,J

In the continuous interpretation one again minimizes the length (or measure) of the discon-
tinuity set.

Minimizing general instances of the Potts model is known to be an NP-hard problem [27].
Consequently, at present no polynomial time minimization algorithm is known (and unless
P=NP none will ever be found). For this kind of problems the expansion moves [27] have
proven valuable: here an approximate solution is found by globally solving a sequence of
binary subproblems, called moves. There is a move for each « € {1,...,L}. In the move for
« (called the a-expansion), each pixel x; can change its label to a or keep its previous label.
For the Potts model this scheme performs quite robustly.

Strengths and Weaknesses of Region-based Methods

Region-based methods offer the possibility to include region integrals in the functional in a
very natural way. They can be applied for segmentation problems in spaces of any dimen-
sion, e.g. for volume segmentation. Although popular energies for multi-region segmentation
problems are so far not globally optimizable, their local minimization fits rather naturally
into this framework — this is much less elegant for contour-based approaches.

Correspondence problems are supported as well and when convex potentials are used even
global solutions are available.

The major weakness of region-based methods is their limitation to length regularity for
segmentation problems. If dependences on the curvature of the region boundary or even
higher order dependences are desired, one is currently limited to local curve evolution. This
can be arbitrarily far from the optimum. The same limitation applies to the integration of
point correspondences for shape priors.
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1.3. Combinatorial Optimization in Computer Vision

1.3.2. Contour-based Methods

Above we have seen that many computer vision problems are naturally written as region-
based problems in two or more dimensions. For a certain class of segmentation problems it is
possible to state the problem in terms of one-dimensional objects. This offers bridges to other
communities such as speech recognition [173, 120] and machine translation [29, 162] which
deal with inherently one-dimensional objects.

Consider the problem of segmenting an image into two regions. This problem can be
equivalently® formulated as searching the region boundaries. These boundaries are sets of
one-dimensional objects. As shown in Figure 1.4, each such object is either an open curve
(meeting the image border) or a closed one.

Methods that search for region boundaries instead of regions are called contour-based meth-
ods. In computer vision their use is usually restricted to applications where a single closed
boundary, called a contour, is sought. To ease this discussion I will start with optimization
over open curves, a problem which has been thoroughly researched in the field of path plan-
ning in robotics [200, 128, 118]. Before, however, some notation about open curves and curve
integrals needs to be set up.

Curves

Given an image I:Q — R on the domain Q C R?, we are interested” in splitting the image
into two parts, so that the splitting border is a one-dimensional curve meeting the image
border at its two end-points.

Mathematically, such a border can be described as the image Im(C) of a continuous
function C:[0,1] — Q:

8

Im(C) = {x| C(t) = x for some ¢ € [0,1]} ,

which is called a curve. In practice it is convenient to describe the curve by the function C,
rather than work with the set of points Im(C) directly. In particular this allows to impose
the constraints of meeting the image border by enforcing that C(0) € 99 and C(1) € 99
where 0f) is the boundary of €.

However, care has to be taken: there are infinitely many functions C: [0,1] — R which
yield the same trajectory. For example, if C describes a curve, then the image of the function

C:[0,1] - Q
C(t) = C(#*)
is identical to that of C. One says there are different parameterizations of the same curve.
In this thesis we will meet a number of optimization problems over curves. The respective

objective functions are called curve integrals. An example for a curve integral is the definition
of the length of a curve C:

1
Il = [1ciwlat, (17)
0

SStrictly speaking this loses the information which region is which. However, this is often not important or
easily recovered using external information.

TAt this point one usually puts an example from robotics. I have refrained from this since robotics problems
usually depend on the parameterization of the curve (vehicles are not moving at unit speed).

8German: “stetig”.

19



1. Introduction

d
7Cile \ o Ch(t)

where C(t) = p is the derivative of the curve C(t) = evaluated at t.
E02|t Cz(t)

Functional (1.7) has the property (see e.g. [85, §24]) that it is independent of the chosen
curve parameterization. This is a very common property of most computer vision tasks: for
computer vision the notion of “speed” is usually irrelevant. One is simply interested in the
set of points forming the border.

There are two special kinds of parameterizations which allow to simplify curve integrals.
The first one is called uniform parameterization. This form forces the absolute derivative
|C¢(t)| to be constant everywhere. For (1.7) one would hence get |C(t)| = ||C||. The second
well-known parameterization is the parameterization by arc-length. It enforces the absolute
derivative to be |Cy(t)| = 1 everywhere. This implies that the curve can no longer be defined
on the interval [0, 1] as this would only allow curves of length 1. Instead the interval [0, ||C||]
is taken. When optimizing over curves of different length, this implies that the domain of
the curve cannot be fixed beforehand. Using arc-length parameterization, e.g. the weighted
length (for the weight function w:Q — R)

1
Juw(cw)icuw)d
0

of a curve can be rewritten as the much more compact formula

Il
/w(C(s)) ds .
0

In this thesis, I have mostly refrained from these short-hand notations since there are not so
many curve integrals. Moreover, for closed curves the domain S! (see below) will be favored,
which is not compatible with arc-length parameterization.

Optimization over (Open) Curves

We return to the problem of splitting an image into two parts and simplify it a little: now
the two points where the splitting curve C meets the image border are fixed beforehand.
These two points are called xg,x; € 92 and the respective constraints are C(0) = xg and
C(l) = X1.

When splitting an image one will not want to separate parts that belong together. Finding
the optimal splitting then turns again into an optimization problem. In a very simple form
one designs a weight function

w:Q— R,

which may e.g. assign low cost to places of high image gradients. The task is then to minimize
the cost

1
)|C dt . 1.8
C:C(0) xo7 (1)= xlo/w ’ t )‘ ( )

This is called an isotropic optimization problem: the cost for the curve passing through some
point does not depend on the direction the curve takes at this point.
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X1
X0
the domain 2 cost for passage the optimal splitting border.
discretized into cells. (coded as gray values).

Figure 1.5.: Splitting an image into two parts can be solved by computing the shortest path
in a graph.

A fairly simple way to approximately minimize functional (1.8) is to discretize the problem:
to this end, the domain €2 is divided into cells as illustrated in Figure 1.5. Each cell corresponds
to a node in a graph. Cells are connected to neighboring cells, e.g. the 8 closest ones, via
edges. Each path in the graph now corresponds to a curve C in the domain . To reflect (1.8),
each edge e is assigned a weight w(e). This weight is obtained by evaluating the function w(-)
at the two endpoints of the edge, averaging these values and multiplying with the length of
the corresponding line segment. The resulting optimization problem is known as computing
the shortest path in a graph and can be solved by Dijkstra’s method [63].

In this approach one reduces the set of valid curves C to those having a polygonal form as
given by the edges. This raises the question of how well the modified problem approximates
the original one. In this case it can be shown that for a fixed connectivity there will always
remain some bias (called metrication error). If this bias proves problematic for a given
application, one can either choose a high connectivity or revert to the continuous analogs
described in the next section.

First-order Dependences Optimization over curves is a well-studied problem and more gen-
eral functionals than (1.8) have been considered. These include problems with so-called
anisotropic cost where the cost for passage through a point x = C(t) depends on the direc-
tion of passage, i.e. the angle ac(t) of the tangent to the curve (relative to the z-axis) at this

point:
1

oo / w(C(t), ac(t)) |Cu(t)| dt . (1.9)
0

There is a one-to-one correspondence between this tangent and the normalized first deriva-
tive Cy(t)/|C¢(t)|. One therefore speaks of a first-order dependence. Note that functional
(1.9) is again invariant to parameterization.

The above described approach via Dijkstra’s method directly extends to anisotropic prob-
lems: an edge gives direct access to the direction of the curve. Yet, now a high connectivity
is necessary to reflect the continuous problem accurately. Since this implies a high memory
consumption, methods which iteratively refine the grid have been proposed [126, 118].

Second-order Dependences In (1.9) we have met a first-order dependence, where the first
derivative enters in a way that guarantees invariance to parameterization. An analog concept
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simply-connected region. not simply-connected: not simply-connected:
the region encloses a hole. two connected regions.

Figure 1.6.: Illustration of simply-connected regions. The statements affect the black regions.

exists for second-order dependences: this concept is called curvature’. The curvature rc(t)
of C at the point C(t) is a scalar, possibly negative value. For an arc-length parameterized
curve it is directly given by the derivative of the tangent angle

- dac(t)
Cdt

rkc(t)

which is probably the most intuitive definition. Equivalently one can define curvature via the
osculating circle, i.e. the circle that best fits the curve at a given point. The inverse radius
of this circle corresponds to the absolute of the curvature. These definitions imply that the
curvature of a straight line is 0 and that of a circle is plus or minus its inverse radius. For
further details see [206].

Functionals depending on curvature are generally written as

1

C:C(O)r)rcl(i)?C(l)xlo/w(c(t)’ac(t)’ﬁc(t)) |Ce(t)]dt (1.10)

where applications include [5, 128].

These functionals do not directly fit into the above described graph-based approach. Yet,
as observed by Amini et al. [5] they can be made to fit by considering an augmented graph:
to this end the problem dimension is increased, so that when leaving a node one still has
access to the direction when entering it. This will be discussed in detail in Chapter 2.

Optimization over Closed Curves

So far we have considered splitting an image into two parts, where the splitting curve meets
the image border at two pre-specified points. Typical computer vision problems are not of
this form: firstly, they do not pre-specify end points and secondly they usually require closed
curves. These latter curves can be seen as curves where the starting point equals the end point.
To express that the curve is closed one usually changes its domain to the (one-dimensional)
unit circle S':

S! = {x e R?|[x| =1} .

The curve is then written as C:S' — €. The two changes in the problem statement render
the problems harder to solve: Dijkstra’s method requires a starting point. Yet, both men-
tioned changes demand that this starting point be optimized, too. For the second point one

9The discussion of curvature is largely inspired by [206], http://en.wikipedia.org/wiki/Curvature.

22


http://en.wikipedia.org/wiki/Curvature

1.4. A Glimpse into the Continuous World

additionally has to impose that the starting point is equal to the end point, which requires
duplicating the starting node in the graph.

The most straightforward solution — an exhaustive search over the starting point — would
require at least quadratic run-time. This is too much for practical problems. Yet, recently
methods appeared that can solve the problem in effectively'” linear time. These include ratio
optimization approaches [117, 141] and methods based on branch and bound [186].

A prominent example for an application is the task of identifying a foreground region in
the image. These approaches — including the ones presented in Chapter 2 and 3 — assume
that the foreground region has a single boundary, a so-called simply-connected region. This
notion is visualized in Figure 1.6.

Strengths and Weaknesses of Contour-based Methods

Since contour-based methods optimize over region boundaries explicitly, they are well suited
for segmentation problems where the regularity terms affect the region boundaries directly. To
have direct access to the boundaries allows to easily integrate dependences on the curvature of
the curve or even higher order derivatives. Many novelties in this thesis rely on this strength,
which also allows to include shape knowledge.

It is often claimed that contour-based methods do not extend to higher dimensional seg-
mentation problems like finding a (2D-) surface in a volume. In fact this extension is possible
but requires a change of methodology: these approaches are based on minimum cost flows
[196] or linear programming [97].

On the other hand, there are a number of disadvantages: firstly, the approaches only apply
to two-region segmentation problems. Correspondence problems cannot be handled, at least
not in region-based formulations.

Moreover, since region boundaries never self-intersect (they are so-called Jordan curves),
one would want to impose this constraint in the respective segmentation methods. So far,
however, no efficient method is known. In some cases the problem statement guarantees that
the algorithms find a Jordan curve. However, in many applications this guarantee does not
exist and one simply hopes that self-intersections will not occur.

1.3.3. Linear Programming

All the above discussed algorithms (except those minimizing ratio functionals) minimize a
linear objective function subject to linear constraints. The general class of such functions is
known as linear programming (e.g. [60]) and known to be solvable in polynomial time. It is
gaining increasing popularity in computer vision [97, 12]. As it will not be used in this thesis
it is mentioned here only briefly.

1.4. A Glimpse into the Continuous World

For most of the algorithms introduced above continuous analogs exist. Where the combina-
torial algorithms introduce systematic errors (metrication errors), these algorithms are free

197t is common to use the term “effectively” when one observes such a dependence for practical problem
instances. This implies that the best case must run in the specified time. The worst-case complexities are
usually higher.
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of bias (when refining the grid infinitely). Yet, there is usually a price to pay, like further
constraints on the problem formulation or the loss of polynomial time guarantees.

A selection of relevant methods is reviewed in this section. As these concepts are not used
for this thesis, the discussion is kept short.

Region-based Analogs

For the problem of region-based segmentation into two regions, the continuous analog is the
so-called T'V-segmentation. It is based on the relation

min  [£60 + [960 + vloR
R

RCQ
R\Q

= min /f(x) u(x) dx + /g(x) 1 —u(x)] dx + V/]Vu(x)] dx
Q Q Q

w:2—{0,1}

= u;QILli{I(l),l} /[f(X) —g(x)]u(x) dx + 1/Q/|Vu(x)|dx + const , (1.11)

where the function u serves as a binary indicator function of the region R. The key factor here
is that the length of the boundary can be rewritten as the integral of the gradient absolute
of u (where the gradient is meant in the weak sense). This expression is also called the Total
Variation (TV) of the signal u.

Functional (1.11) is a convex functional that is optimized over the non-convex set of binary-
valued functions. Chambolle [38] and independently Nikolova, Esedoglu and Chan [160]
show!! that the global solution of (1.11) can be obtained by relaxing the problem to an
entirely convex one: instead of optimizing over binary-valued functions u: — {0,1}, one
now optimizes over functions u:€ — [0, 1]:

uzg%,l]![f(x) —g(x)]u(x) dx + I/Q/|VU(X)|dX + const . (1.12)

A global solution to (1.11) is obtained by thresholding a global solution of (1.12). The latter
can be computed by gradient descent [160] or related methods [38, 131].

This scheme largely removes metrication errors on fixed grids and uses much less memory
than graph cut algorithms. Yet, it is not clear when to terminate the gradient descent process.

It should also be noted that the scheme requires the embedding of the problem in a Rie-
mannian space - in the discussion above this is R?, but it applies also to higher dimensional
spaces (e.g. R3 as used in 3D-reconstruction). For most computer vision problems such a
space is readily available. Yet, in Chapter 5 we will deal with a reasoning problem across
several spaces. Here graph cuts are valuable: one simply has to cast the problem as a binary
labeling problem. A comparison of graph cuts and TV-segmentation is presented in [129].

Building on this framework, for a certain class of multi-label problems a continuous version
of Ishikawa’s algorithm was recently proposed by Pock et al. [170]. This method removes the
metrication errors that are present in the discrete approach.

' Some of the key ideas already appear in the work of Strang [195].
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Path-based Analogs

In the previous section it was mentioned that Dijkstra’s method produces systematic errors
for path- and cycle-based problems. For the isotropic case, Tsitsiklis [200] and later Sethian
[188] described ways to remove these metrication errors while using only 4-connected grids.
These algorithms follow the same principle as Dijkstra’s method, but use a different rule to
update the distance label of a node, so that (when continuously refining the grid size) the
distance estimates converge to the solution of the continuous problem. The optimal trajectory
is obtained by traversing in the direction of the negative gradient of the distance function.

The extension to the anisotropic case is a little more involved [189, 147, 136], though in
special cases it can be simplified [172, 116]. While these methods converge to the optimal
distance map, in contrast to the isotropic case it is no longer clear how to obtain the optimal
trajectory — an attempt is given in [72].

Convex Optimization

While the discrete methods discussed above correspond to linear problems, their continuous
counterparts are non-linear. In particular, the TV-segmentation belongs to a field called
convez optimization [21] - the optimization of a convex function subject to convex constraints.
Convex optimization is also successfully used in multiview geometry [124, 121] and 3D-surface
tracking [179].

1.5. Outline of this Work

This work approaches several shape optimization problems by combinatorial techniques.
Starting from easy-to-understand optimization tasks, in the course of the thesis the addressed
problems become more complex until finally shape optimization is combined with correspon-
dence problems. The work is divided into two parts.

The first part addresses segmentation-type problems which directly aim at inferring the
shape of objects in the scene. These problems will be shown to be optimizable globally via
contour-based methods. They address image segmentation and are outlined as follows:

e Chapter 2 starts with the area of unsupervised image segmentation where apart from
the image no other user input is given. The presented approach minimizes the ratio
of an edge consistency term over a weighted sum of length and curvature regularity of
the region boundary. The global optimum is found via a contour-based method in a
product space spanned by image points and incoming directions. This is based on a
combinatorial algorithm to optimize over the cycles in a graph.

e In Chapter 3 we present a way to include shape knowledge into image segmentation.
Building on the previous chapter, again a product space is used: this time it is spanned
by the image and a prior contour. This method allows to use a more sophisticated shape
measure than most local methods proposed so far. The special problem structure allows
very efficient parallel implementations of the global optimization algorithm.

The framework is general enough to allow extensions: we will present a fast tracking
approach with real-time potential. In addition we will show how strong deformations can
be handled: parts of the template are then allowed to rotate locally. The decomposition
into parts is not fixed a priori — it is inferred by the algorithm.
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In the second part of the thesis shape optimization is combined with correspondence prob-

lems. This part is devoted to the area of motion analysis and focuses on ways to infer the
shape of scene objects by analyzing their motion. The arising optimization problems are
much harder than in the first part and are no longer solved globally. The respective chapters
are outlined as follows:

26

e Chapter 4 presents an approach to motion segmentation where objects are identified

by grouping coherently moving points. As neither the motions nor the segments are
known beforehand, they are estimated simultaneously by minimizing a single energy
functional. To this end, an alternating minimization scheme is employed. The focus
lies on real-time performance, which is largely due to exploiting a fast combinatorial
segmentation algorithm.

Finally, Chapter 5 covers the field of layer decomposition where the input video is
modeled as a superposition of moving planar images. Compared to the approaches in
the previous chapter, this framework allows to naturally model occlusions and impose
temporal consistency. Moreover, thanks to the generative model the algorithm outputs
a notion of the scene.

The contributions affect both the practical and the theoretical side: from a practical
viewpoint we show how to get sharp, fine-detailed layer images where previous methods
produced blurry ones. From a theoretical viewpoint we introduce regularization terms
on the layers themselves.

The optimization scheme contains a novel application of combinatorial algorithms: we
present a way to optimize the domains of the layers with the help of graph cuts. If
there are more than two layers, this involves an iterative method to deal with high
order, non-submodular terms in a binary labeling problem.



2. Curvature in Image Segmentation

This chapter, as well as the next one, covers the classical problem of image segmentation:
given an image, the task is to segment it into regions that “belong” together. Although at
this abstract level the task is easy to understand, it is actually very hard to formalize.

The difficulty here is that it is not at all clear how to formalize the notion of “belonging
together” in mathematical terms. Humans seem to have a clear intuition of this notion, but
it is hard to grasp and at least to some extent it relies on exemplar-based learning. The
integration of such prior knowledge is deferred to the next chapter.

The present chapter deals with the fully automated (or unsupervised) case where apart
from the image no other user input is given. We will start with an overview of the two
major approaches: the region-based and the edge-based approach. For the latter, the notion
of curvature will be of importance as it allows to deal with missing edges. This notion and
its appearance in computer vision is then reviewed separately before we turn to the major
contribution of this chapter: a contour-based approach which combines edge consistency and
curvature regularity into a ratio functional.

2.1. Introduction to Image Segmentation

Given an image I:€)2 — R, the task is to decompose it into a set of segments. There are two
major kinds of approaches: those based on edges and those based on regions. Both of them
will now be reviewed.

2.1.1. Region-based methods

The underlying assumption in region-based approaches is that the intensities inside a segment
vary only gradually or respect some region statistics.

gradual intensity changes. combination of abrupt
and gradual intensity changes.

Figure 2.1.: Tllustration of the piecewise-smooth functional of Mumford and Shah: the left
image is recognized as one segment, the right one as three.
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The Functionals of Mumford and Shah

Arguably the most prominent region-based energy functional is given in the work of Mumford
and Shah [158] where some of the key ideas can also be found in the work of Blake and
Zisserman [19]. Here it is assumed that the image I is a noisy version of some image u:{) — R.
Within segments u varies only gradually, i.e. the squared absolute |Vu|? of the gradient takes
on small positive numbers. In contrast, at segment boundaries u can vary abruptly and is
allowed to jump, i.e. it may be discontinuous in these places. This is illustrated in Figure 2.1
where the left image is recognized as one segment and the right one as three segments.

The arising optimization task involves both finding the image u and its discontinuity set!
C as the latter appears explicitly in the second term of the functional:

B(u,C) = /(I(x) —u(x))?dx + )\/|Vu(x)|2dx +v[C], 2.1)
0 o\c

with weighting parameters \,v > 0. This functional reflects a trade-off between the amount
of noise on u (first term), the degree of smoothness (second term) and the length of the
discontinuity set (third term). It can be shown that removing any one of these terms results
in trivial solutions [158].

In the limit case A — oo the function v approaches a piecewise constant form. It can then be
expressed in terms of a set of mean values {y;|j =1,...,L} and a labeling 1:Q — {1,..., L}
as u is now given by the relation

u(x) = Hi(x)

The optimization task can now be written as the functional

Bl Ans) = [ (16 = ) dx + vIC (2.2)
Q

which we already met in Chapter 1 and where C' now denotes the discontinuity set of the
labeling .

Minimizing the Piecewise Constant Functional

Studying approaches to minimize (2.1) and (2.2) is very useful as the employed concepts
are also used for other types of region-based problems. We will discuss only the piecewise
constant version as it suffices to illustrate the underlying principles of the most widespread
algorithms.

The minimization of (2.2) is an intricate problem which has not been solved globally so far.
In fact, when setting v to 0 and fixing the number of regions to L, a discretized version of
(2.2) gives an instance of the well-known L-means problem which is known to be NP-hard.

There exists a variety of ways to approach the minimization of the functional (2.2). All
of them alternate the estimation of the discontinuity set C with the estimation of the mean
values. However, they differ in the way the discontinuity set C' is estimated. Here two classes
of algorithms exist:

'In general discontinuity sets may include cusps and lonesome lines not meeting the image border. These
are excluded from the present discussion, i.e. the optimization is performed over discontinuity sets that
correspond to segmentations.
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input. result using global result using curve evolution.
segmentation steps. (red = initial curve
yellow = final curve3

Figure 2.2.: Working with labelings directly can solve cases where local curve evolution must
fail. The resulting segmentations are shown in yellow.

e The first class of approaches is based on curve evolution: starting from an initial set
of curves C, the curves are evolved locally in direction of the negative gradient of the
functional The mathematical details, based on the calculus of variations, are omitted
here.

Cremers et al. [56] give an implementation of the so-called diffusion snakes, a slightly
modified version of (2.1) which also allows to include shape knowledge. This is based
on explicitly representing curves in terms of splines. A curve can then be represented
in terms of a finite number of control points and the gradient descent is performed on
these points.

Chan and Vese [41] apply the level set method [164] where a contour is represented as
the zero-level set of some depth profile. This depth profile is then evolved, which allows
to handle topological changes very naturally (i.e. contours can split and merge).

e The second class contains approaches where the segmentation is addressed more directly
in terms of a labeling function [. Often these labeling functions are evolved, too. Yet,
evolving a labeling function generally does not correspond to curve evolution. This is
detailed in Figure 2.2: here a labeling-based method? is able to find the desired solution.
In contrast, a curve evolution method, initialized with the red curve, will never find the
hole in the interior.

In the discrete world such approaches appeared quite early, starting from simulated
annealing proposed by Geman and Geman [94] and the iterated conditional modes of
Besag [11]. Finally, after the introduction of graph cuts (cf. Chapter 1.3.1) to computer
vision by Greig et al. [99], the sub-problem of estimating the optimal segmentation
for given mean values could be solved globally for the two-label case. For the general
L-label case a robust approximate solution is given by the expansion moves of Boykov
et al. [27].

On the other hand, also the continuous world has made efforts to evolve labelings instead
of a set of contours, although the term labeling is seldomly used here. Ambrosio and
Tortorelli [2] discuss how to locally minimize an approximation of the piecewise smooth
functional (2.1) via alternating optimization. More recently, approaches based on TV-
segmentation (cf. Chapter 1.4) developed by Nikolova et al. [160] and independently

2the implementation uses graph cuts.
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2. Curvature in Image Segmentation
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input image. output of the edge detector
(2.3) with § = 30.

Figure 2.3.: An input image and its response to an edge detector. Note that the recorded
intensities of the rabbit have a high variance although its surface has a uniform
color.

by Chambolle [38] became available. When the mean values for the piecewise constant
version are fixed, these approaches compute globally optimal labeling functions.

As this thesis is very much concerned with global optimization, it should be mentioned
that Dou et al. [68] are able to globally minimize a functional with the same data term as
the piecewise constant Mumford-Shah (2.2): when constraining the maximal gradient of the
region boundary in a special volumetric setting, both mean values and segmentation can be
optimized simultaneously.

Refined Data Terms

Above we have met two region-based data terms, where the first assumed that the intensities
in a segment vary gradually and the second that they are all in the vicinity of some given
mean value. This latter term can be interpreted as the negative logarithm of a Gaussian
probability density with variance one.

It turns out that any other kind of probability density can be used [215]. Examples include
a Gaussian density where the variance is a free parameter, a mixture of Gaussians or a non-
parametric Parzen density [167]. These densities can also be formulated in higher dimensions,
which allows to include color images and texture information.

The specific forms (or parameters) of these densities are estimated in alternation with the
segmentation.

2.1.2. Edge-based methods

The above presented region-based methods assume that the intensities inside a segment can
be described in some uniform way. In practice these intensities can differ very much even if
the object of interest has uniform color and reflectance properties on its entire surface. Such
an object is the rabbit in Figure 2.3 (left). Yet, due to lighting effects the recorded intensities
vary from dark to light. One would need a sophisticated probability distribution to describe
these intensities, and this induces the problem of estimating its parameters.

There is an alternative way to characterize segments which naturally handles lighting ef-
fects: it is based on the observation that object boundaries usually coincide with significant
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2.1. Introduction to Image Segmentation

brightness changes, i.e. they are located in places of high image gradients, called edges. More
precisely, edges are oriented entities and perpendicular to the direction of steepest brightness
change.

Figure 2.3 (right) visualizes the location of edges for the input image on the left. More
precisely it displays the output of the edge detector function

0
90) = S VI 23)
where § is chosen as 30. Values near 0 appear in black, values near 1 in white. The figure
clearly shows that many parts of the silhouette of the rabbit correspond to black regions
indicating image edges. It also shows the two major challenges for the edge-based approach:
firstly, some parts of the silhouette correspond to places of low contrast, called gaps, where
no edges are detected. Secondly, not all places of high image gradients correspond to object
boundaries. A powerful segmentation method must hence be able to close gaps as well as
select the appropriate edges. As will be detailed below, suitable regularity terms for gap
closure include the curvature of the region boundary.
An experimental comparison of region-based and edge-based methods is deferred to Section
2.9.3 where the edge-based method proposed in this chapter is compared (among others) to
the piecewise constant functional of Mumford and Shah.

The Classical Approach: Line Integrals

The classical approach to edge-based image segmentation is based on line integrals. These
approaches assume that there is a single simply-connected foreground region, where the re-
spective region boundary is denoted C:S' — R?. The discussion here relies on the notation
introduced in Chapter 1.3.2.

A very popular approach was given by Caselles et al. [36] and Kichenassamy et al. [125]
who propose to minimize the integral of some positive edge detector function g:Q — R™T
along the region boundary:

E(C) = [g(C)ICut)ldt . (24)

Sl

The function g must assign low values to high image gradients and can e.g. be chosen as
(2.3). The problem with (2.4) is that its minimum is the empty set (or, if the empty set is
excluded, a curve that reduces to a point). The task becomes meaningful if a user provides
so-called seed points, i.e. a set of points which are definitely foreground and a set of points
which are definitely background. The arising problem, which is now a supervised one, can
then be solved globally [24].

A precursor method of (2.4) is the famous snakes model that was introduced by Kass et
al. [123] in 1988. They proposed to minimize the criterion

/|v1 |2dt+a/|Ct |2dt+ﬁ/|Ctt ()% dt, (2.5)

with weighting parameters «, > 0 and where no assumptions on the parameterization of
C are given. This functional is mot invariant to parameterization, which makes it hard to
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2. Curvature in Image Segmentation

understand and analyze. Kass et al. probably chose this form because it behaves favorably
when evolving explicit (i.e. control point-based) parameterizations of the curve. From today’s
perspective one would want a parameterization-invariant formulation which might read like
this:

/\w )P ICu(e)| de + VHCHJFA/\HC DEICDIdE . (26)

This criterion favors curves that are located at image edges. With length regularity alone
the global minimum would — depending on v — either not exist (curves would grow infinitely)
or be the empty set. When also the curvature prior is active the global minimum can be
meaningful when choosing suitable weights A\,» > 0. Later on in this chapter we present
a method that allows to identify — for each image individually — weights corresponding to
meaningful global optima as well as compute a corresponding minimum.

Minimizing Line Integrals

The above given edge-based criteria have traditionally been minimized locally using gradient
descent. Both explicit [123] and implicit [36] curve evolution methods have been used.

In this field also global minimization methods are known and in fact they appeared quite
early: in 1990 Amini et al. [5] showed how to optimize a modified snakes functional via
distance calculations in graphs. Yet, their method has very high run-time demands and was
therefore only applied to rather small search spaces. The method proposed in this chapter
uses an algorithm proposed by Lawler [141] that allows large search areas in practice and was
introduced to computer vision by Jermyn and Ishikawa [117]. The latter work is discussed in
the section on hybrid methods below. Details on the optimization algorithm are presented in
conjunction with the novelty later on in this chapter.

Refined Edge-based Methods

Many more edge-based methods have been proposed. One line of work is based on force fields,
where an early work is given by the generalized gradient vector flow of Xu and Prince [211].
Jalba et al. [115] mimic the notion of electrostatic forces, Xie and Mirmehdi [210] instead
use magnetostatic forces. The arising functionals are minimized via curve evolution and the
results are often comparable to those produced by region-based methods.

Another line of work addresses ratio functionals. Many of these works can also integrate
region terms and are discussed in the subsequent section. A purely edge-based approach is
given by the normalized cuts of Shi and Malik [191], which extends to an arbitrary number
of segments. The underlying optimization problem is NP-hard. Using relaxation-techniques
a solution is obtained that does not depend on initialization.

2.1.3. Hybrid Methods

A number of methods exist to combine region-based and edge-based methods. A popular
approach (e.g. [27, 175]) is to combine a region-based data term with a weighted length
regularity term. For example, the respective adaptation of the piecewise constant Mumford-
Shah functional (2.2) would be

B ) = [ (169 = o) " dx + u/g

Q
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2.1. Introduction to Image Segmentation

where g(-) could be the edge detector in (2.3).

A very different line of work combines edge-based terms with region integrals inside the
foreground region only. These methods are based on ratio functionals. Cox et al. [49] propose
a method which is limited to planar graphs and results in quadratic run-times.

A more general and efficient method was given by Jermyn and Ishikawa [117]. They address
the minimization of a class of functionals of the form

SJI’V(C('f)) -nc(t) |Cy(t)] dt

Sflg(C(lf)) Ce(t)]dt

(2.7)

with g(-) as before. Here v:IR? — R? is a vector field (e.g. the image gradient), nc(t) is the
unit curve normal® of C at the point C(¢) and “” denotes the scalar product.

Although (2.7) looks like a purely edge-based approach, it can easily include integrals over
the region Cj, enclosed by the contour. To this end, given a function f:R? — R one
constructs a vector field

\2: :R? — R?

vi(a,y) = % </Oxf(t,y) dt /Oyf(a:,t) dt>T . (2.8)

From the Gauss-Green theorem it then follows that the respective numerator term in (2.7) is
equal to the integral of f in the region Cj,:

[vs€) mett)Cuo)de = [ fx)ax.
Cin

Sl

For further details see e.g. [117] and section 2.5.
A very prominent member of the class (2.7) is the average outward flux, which will be
studied in detail in this chapter:

Sfl VI(C(t)) - nc(t) [Ce(t)| di

Ic (29)
The numerator of this functional is known as flux. It is typically employed when long and
thin structures are to be segmented [202, 132].

In the context of (2.9) it is important that the functional is optimized over oriented curves,
i.e. traversing the curve in clockwise direction is different from a counter-clockwise traversal:
when changing the direction of traversal, all normals change sign and so does the entire
numerator term. This implies a negative minimum and that minimization is equivalent to
maximizing the absolute of the ratio:

[ VI(C(t) - no(®) Cult) de

.S
min
C

1€l

Sfl VI(C(t)) - nc(t) |Co(t)| dt

= Inax

C IC

3Tt is obtained by rotating the normalized first derivative vector clock-wise by 90 degrees.
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2. Curvature in Image Segmentation

well handled by average flux not well handled by average flux
(background darker than foreground). (background partially lighter and
partially darker than foreground).

Figure 2.4.: The average outward flux (2.9) requires that the foreground is either consistently
darker or consistently lighter than the background. (The resulting globally opti-
mal contours are shown in yellow).

This optimization task therefore favors curves that coincide both with the location and the
orientation of image edges. Since the absolute is outside the integral it also requires that the
enclosed foreground area is consistently lighter or consistently darker than the background.
That is why the left image in Figure 2.4 is segmented correctly. In contrast, the right image is
not treated as one would desire: here the foreground is partially lighter and partially darker
than the background. The numerator terms will then cancel out and the result is near zero.

2.2. Curvature and Computer Vision Problems

The novelty of this chapter is to extend the class of functionals (2.7) to include curvature
regularity. Kanizsa [122] showed that curvature plays an important role in human scene
interpretation. Not surprisingly, it is regarded as a powerful prior in many areas of computer
vision. Its first appearance was in the context of shape completion through Euler’s elastica
energy fol |k (t)]? |Cy(t)| dt, see [201, 109, 157] and the more recent works [190, 127, 80, 44].
Relevant application areas include image segmentation [123, 5, 161, 75|, inpainting [8, 40,
151, 77, 78], image smoothing and denoising (see [199] and references in [35]) and image
analysis [166, 74].

Minimizing curvature-based functionals is an intricate problem which has traditionally been
addressed by local curve evolution. Apart from the heavy dependence on an initialization,
here one also has to deal with fourth-order derivatives in the gradient descent process. The
calculation of these derivatives is numerically unstable and prone to errors due to noise.

A recent line of work, started by Grzibovskis and Heintz [101] and continued by Esedoglu
et al. [76], manages to perform curve evolution by using only second-order derivatives. To
be precise, the correct gradient flow is approximated by combining second-order derivatives
with Gaussian convolutions.

In the context of inpainting Masnou and Morel [152, 151] are able to optimize absolute
curvature globally for completing level lines.

If also data terms are included in the functional, global solutions are available when mini-
mizing discrete versions of the functionals. The convergence of such processes was considered
by Bruckstein et al. [33]. The underlying discrete algorithms are based on product graphs,
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where each node in the graph represents an image pixel and an incoming direction. Details
will be given in conjunction with the contribution of this chapter. Amini et al. [5, 4] apply dis-
tance calculations in graphs to obtain global minima. Parent and Zucker [166] independently
exploit the same product space, but in a context that does not admit global solutions.

2.3. Contribution

The contribution of this chapter is the extension of the class (2.7) of globally optimizable
ratio functionals to include curvature regularity. The proposed method is very general as it
allows almost arbitrary functional dependences of the integrands on location, tangent angle
and curvature.

This is achieved by combining the graph-based ratio minimization algorithm used in [117]
with the product graph used for curvature. Ways to efficiently handle the rather large graphs
are presented.

It will be shown that the proposed method gives rise to substantially larger regions than
the average outward flux (2.9): curvature is an important prior to deal with gap closure. The
method also compares favorably to region-based methods.

Lastly, the proposed method can be used to find parameter sets where the parameterization-
invariant re-formulation (2.6) of the snakes functional has a meaningful global optimum. In
fact, such an optimum is output simultaneously.

This is joint work with Simon Masnou and Daniel Cremers. A short version was published
in [182], an extended version has been submitted to a journal.

2.4. Introducing Curvature into Ratio Optimization

Above we have met the average outward flux, which amounts to the optimization task

Sfl VI(C(t)) - nc(t) [Cy(t)| di

max
c IC]|
While this gives meaningful global optima — the optimum is neither a single point nor an
infinitely long curve — in practice the results do not correlate well with human perception.
The functional often favors small homogeneous regions that do not correspond to objects.
As a remedy, Jermyn and Ishikawa propose to integrate a balloon force, i.e. a term favoring
large areas enclosed by the curve. The resulting ratio functional is termed balloon ratio in
this work:
J VI(C(t) -nc(t) |Ci(t)|dt + [[dx
St Cin

max , (2.10)
C €l

where 3 > 0 is the area weight and + means to take the sign which gives the higher energy.
The novel term is included via the Gauss-Green theorem as explained above. While this
significantly improves the results, adjusting the area weight 3 seems a non-trivial issue. In
particular, when choosing ( too high one will get the entire image.

This chapter proposes another way to deal with the problem: the inclusion of curvature
into the average outward flux. Specifically, the problem of minimizing the elastic ratio
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..

input. length-based. curvature-based.
input. length-based. curvature-based.

Figure 2.5.: Effects of length-based and curvature-based regularization in image segmentation
on artificial images. Compared are the average outward flux (2.9) and the elastic
ratio without length regularity (v = 0,9 = 1). Note that curvature regularity
allows to find larger regions and establishes gap completion.

J VI(C(1) nc(t)[Clt)|dt

.S
min 2.11
c v|C] + Jl"lmc(t)quCt(t)ldt 211)
S

[ VI(C(t)) - nc(t) |Cy(t)| di

St
= max

¢ v[Cll + [lrc®)|?|Cht)| dt
St

is addressed, where the denominator is now a weighted combination (with weighting parameter
v > 0) of length and some power ¢ > 0 of absolute curvature. Figure 2.5 shows the effect of
curvature in this functional - it compares a result without length (i.e. v = 0) to the average
outward flux. Clearly curvature-regularity allows gap closure, whereas length-based regularity
does not. The reason is that curvature only penalizes direction changes. Hence, if the curve
contains a straight line, the curvature term will not contribute. At the same time, the data
terms will accumulate, so the ratio can grow. This is not possible using length regularity since
this induces cost for every part of the curve. For practical images it proves best to combine
length and curvature regularity.

In fact, the proposed method can handle a much wider class of functionals: it can optimize
the ratio of two line integrals where the integrands in numerator and denominator can have
almost arbitrary dependences on the position C(t), tangent angle ac(t) and curvature rc(t)
of the curve. The supported functionals are of the form
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2.5. The Problem with Region Terms

Figure 2.6.: The trouble with self-intersecting curves: the considered algorithm provides curve
normals n¢ (shown in blue) that are partially inner normals and partially outer
ones. With these normals, the left-hand side of (2.1.3) evaluates the region
integral as +2, whereas the right-hand side gives the correct value of 0.

' J h(C(1), ac(t), k(1)) [C(t)] di

S
c SJ; g(C(t)7aC(t)7HC(t)) ‘Ct(t)‘ dt’

(2.12)

with functions h,g : R? x [0,27] x R — R and where the only requirement is that the
denominator integral be strictly positive for all closed curves C. Before details on the method
are given, we briefly describe why the above class does not include region terms.

2.5. The Problem with Region Terms

The integration of region terms via the Gauss-Green theorem is not as straightforward as it
may seem. The method we will use optimizes over any kind of curve, including self-intersecting
ones. It also always estimates the curve normal as a clock-wise 90°-rotation of the normalized
first derivative vector Cy(t).

As visualized in Figure 2.6, for a self-intersecting curve a part of the curve normals point
inside the enclosed area, the other part point outside of it. Yet, to correctly apply the Gauss-
Green theorem, one needs consistent normals, e.g. all pointing inwards.

As a consequence, self-intersecting curves are not assigned the desired cost and in fact a
modified optimization problem is solved. One needs to make sure that all global optimizers
of this modified problem are non-self-intersecting curves. Otherwise the procedure becomes
meaningless.

For the balloon ratio (2.10) this property is indeed given. Still, in general it is a non-trivial
design problem to find suitable functionals. For this reason region terms will not be treated
in the remainder of this chapter.

2.6. Minimizing Curvature Ratios
Having detailed the problem statements, we will now turn to the question of how to minimize

the respective functionals. The problems (2.11) and (2.12) are continuous optimization prob-
lems where the minimization is carried out over the space of all continuous curves St — Q.
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For such a continuous problem, the question of whether there exists a minimizer arises.
More precisely, the question is whether the set {E(C)|C:S! — Q} has a minimum (i.e. a
member of the set which is less than or equal to all other members of the set), where E(C)
denotes the respective ratio of the curve C. For infinite sets this is generally not granted: for
example, the set

{r eR|z >0}

does not have a minimum — one can get arbitrarily close to 0, but no matter what element
one picks, there is always a smaller one.

For the elastic ratio (2.11), under certain conditions it can indeed be shown that a minimizer
exists. The proof as well as the conditions are given in Appendix A. Both are due to Simon
Masnou. This proof also extends to the snakes ratio considered later in this chapter. For the
general class (2.12) no results are known.

Once it is clear that a minimizer exists one faces the question of how to compute it. Only
few problems can be solved analytically and the elastic ratio is most likely not one of them.
Hence, we are aiming at computer-based optimization tools which will require to discretize
the problem in some form. This implies that the space of solutions will have to be restricted.

One such restriction would be to consider the space of spline-functions (cf. e.g. [87, Chapter
11.2]) with either a fixed or a variable number of control points (see also [56] for a region-based
task). This would still be a continuous optimization task. However, for this space we only
know of local optimization methods, whereas we are aiming at a global one.

Instead we will consider a discrete optimization task and restrict the set of valid curves to
those having a polygonal form. To this end the image is discretized into pixels. Then a set
of line segments connecting the pixel centers is set up. We take all line segments connecting
points no more than a certain distance apart.

The optimal curve can then be composed out of these line segments. The result is a discrete

energy function which assigns a curve consisting of the line segments 1y, ...,1p the energy
P
‘21 n(li,Liv1)
e
- , (2.13)
'21 d(l;,Lit1)
1=

where wrap-around is used, i.e. P+1 = 1. The precise form of n(-,-) and d(-,-) is deferred to
the subsequent sections where it will be shown that the problem can be optimized globally.
Note that both n(-,-) and d(-,-) depend on pairs of line segments: it is not possible to estimate
curvature from a single line segment.

This approach raises the question of how well the discretized problem reflects the continuous
one. Before we discuss this, however, the method is described in greater detail.

2.7. The Optimal Contour as a Cycle in a Graph

To optimize the discretized problem (2.13), it is mapped to the problem of finding an optimal
cycle in a graph. Such a cycle will be found via Lawler’s ratio cycle algorithm [141]. The
standard approach to setting up a graph would be to assign a node to each image pixel and
an edge to each possible line segment. Yet, Lawler’s algorithm can only handle functionals of
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the form
= n(e)
. ee
—_ 2.14
min S (2.14)
ecl’

where each e is an edge in the graph and I' is a cycle. Using the described graph, weights
depending on pairs of edges would be required. As observed by Amini et al. [5] a graph
where curvature-based weights correspond to single edges is easily constructed by reverting
to a product space: a node now represents a line segment, i.e. a pair of image pixels instead
of a single image pixel. That is, the node set is now of the form

V={(x1,%x2)|0 < |x1 — x| <R},

where R is a pre-specified limit on the length of the maximal line segment. Edges in the
graph connect line segments that may follow each other, i.e. that share a pixel:

&= { ((X17X2)7 (X27X3)) € VQ} :

Using these edges, the discrete objective function (2.13) is easily brought to the form (2.14).
We can now turn to the question of how the edge weights n(e) and d(e) are defined.

2.7.1. Estimating Curvature, Normals and Tangent Angles

The considered class of functionals allows dependences on tangent angles and curvature.
Hence, for each edge these quantities have to be estimated. The curve normals can either be
derived from the tangent angle or by normalizing the vector xo — x; and rotating it by 90°.

Tangent angles and normals are calculated for each line segment individually. Hence, as an
edge represents two line segments, it is assigned two angles and normals. The tangent angle
is given by the angle of the difference vector xo — x7. This angle can be computed by the
function atan(-) and a case distinction which may add an angle of 7. Since this calculation is
comprised in the standard C++-function atan2, the equation is omitted here.

To estimate the curvature, one needs to look at both line segments at once. To obtain
optimal convergence properties, we follow the result of Bruckstein et al. [33] and define the
absolute curvature of an edge as

B 12 — an3ls
|k|(x1,X2,%3) = 1

- ; (2.15)
D) min(|xa — X1, [x3 — X2|)

where a2 and a9 3 are the tangent angles of the respective line segments. The index S! on
the absolute indicates that the distance on the manifold S! is taken, i.e. the jump over 2r is
correctly accounted for.

2.7.2. Setting up the Edge Weights

For the elastic ratio (2.11) (and also the snakes ratio presented later on) we use tailor-suited
edge weights. For the numerator we discretize each line segment via the method of Bresenham
[28]. Then we evaluate the data term for each pixel using the above mentioned segment normal
and sum the obtained values.

For the denominator we evaluate length-based and curvature-based terms separately. For
the length term, each edge represents the length of the second line segment. For the curvature
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Minimum Ratio Cycle Algorithm

Input: A graph G = (V, ) with two edges weights n(e) and d(e) for each edge. A root node
rel.

Output: A cycle I' reachable from 7 which minimizes the ratio ) .. n(e)/ > o d(e) among
all such cycles.

1. Find an upper bound A on the optimal ratio Ayp;.
2. Compute edge weights w(e) = n(e) — Ad(e) for each edge e € £.

3. Call the Moore-Bellman-Ford algorithm (Fig. 2.8) for the graph G with root node r and
the edge weights w. If it returns a negative cycle, set A to its ratio and go to 2. Otherwise
output the last found cycle and stop.

Figure 2.7.: Ratio optimization after Lawler [141]. Shown is the linear search variant, also
known as Dinkelbach’s method [66].

term we evaluate the expression (2.15) and take the desired power of it. Finally, to get the
integral of this term, the length of the segment needs to be included in the weights. Here
again we follow the results of [33] and assign the edge the quantity

%min(\XQ —x1/,|x3 — x2|) - [|k](x1,%2,%x3)]? .
for the integral of curvature.

In the general case (2.12) things become more difficult: e.g. one has to handle terms like
Js1 I(C(t)) |k ()] |Ci(t)| dt where the integrand depends both on position and on curvature.
This makes it much harder to reflect the continuous functional in terms of discrete sums. Our
solution is presently to calculate the Bresenham lines, then calculate the values of h(,-, )
and ¢(-,,-) for each pixel, using the above given estimates for normals and curvature. These
values are then summed to form the edge weights.

2.7.3. Convergence of the Process

We now know the exact form of the discrete functional that is optimized globally. So far we
assumed a fixed pixel grid, say with pixels of size h x h and a given radius R defining the
maximal length of line segments. One can now consider what happens if the number of pixels
is increased, i.e. if h tends to zero (h — 0).

It turns out that in this case a sequence of discrete global optimizers does indeed converge
to a global optimizer of the continuous problem. In fact one can even decrease the radius R
to h R. A prove is given in Appendix B. It is due to Simon Masnou and also extends to the
snakes ratio considered later on.

2.8. Ratio Optimization over Cycles in a Graph

Having set up the graph and its edge weights, it remains to find a globally optimal cycle in
the graph. To this end we use a variant of the Minimum Ratio Cycle algorithm proposed
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by Lawler [141, 59]: instead of binary search we use linear search as proposed by Dinkelbach
[66], which is much faster in practice. This section also discusses efficient implementations on
sequential and parallel architectures.

Recall that the task is to minimize the function

2 n(e)

min el
Y d(e)
ecl’

over all cycles I" in the graph, where the sum over d(e) must be positive for all cycles. For the
practical implementation we also use quantized weights n(e) and d(e) and represent them as
integers. This point is crucial to get a polynomial time complexity. To obtain convergence to
the continuous problem, the level of quantization needs to be refined as well.

The basic algorithm is shown in Figure 2.7. It is based on iterated negative cycle detection
in a graph with single edge weights. To see why this works, let A be some ratio and define
edge weights

w(e) =n(e) — Ad(e) .

Now suppose the graph contains a negative cycle I' w.r.t. the edge weights w(e). By applying
equivalence transformations one sees that any such cycle must be of a better ratio than A and
vice versa:

Zw(e) <0

ecl’
& Z[n(e) —Ad(e)] <0
ecl’
VN Y onle) <A de)
ecl’ ecl’
ZeEF n(e)
© Seerd(e) <

Here the final transformation is only valid if all conceivable denominator sums are positive.
This is the reason for the previously introduced restriction on the denominator. In fact this
principle dates back at least to the mid-1950s [113] and can indeed be applied to a much
larger class of ratio optimization problems [43, 65, 150, 66, 154]*.

The above equivalence transformation shows that the graph contains a negative cycle w.r.t.
w(+) if and only if the optimal ratio is lower than A. Hence, if one is able to find negative
cycles efficiently, this immediately gives rise to the algorithm in Figure 2.7: starting from
some upper bound on the optimal ratio, negative cycle detection and ratio adjustments are
alternated. Every time a negative cycle is found, A is set to its ratio. The last found cycle
must be of optimal ratio.

Negative cycle detection is performed efficiently by the Moore-Bellman-Ford algorithm
[88, 156, 10] for distance calculations. The algorithm, depicted in Figure 2.8, is based on
dynamic programming: starting from an initial distance labeling the distance label of any
node is reduced whenever the labels of its predecessors allow such an improvement. If the
graph does not have negative cycles, the algorithm terminates with the correct distance

“Some of these references I found in [208].
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2. Curvature in Image Segmentation

Moore-Bellman-Ford Algorithm

Input: A directed graph G = (V, £) with (possibly negative) edge weights w(e) for each edge.
A root node r € V.

Output: A distance label d(v) and a predecessor node p(v) for every node v € V in the
graph. If the graph contains negative cycles such a cycle is returned.

1. Set d(r) := 0, d(v) := oo for v € V\ {r}. Mark p(v) as invalid for all v.

2. Set changes := false.
For all v € V: check all incoming edges e = (w, v).
If d(w) + w(e) < d(v)
Set d(v) := d(w) + w(e) and p(v) = w.
Set changes := true.
3. If changes = false stop.

Otherwise check the predecessor entries p for cycles. If a cycle is found, return the cycle.
Else go to 2.

Figure 2.8.: Distance calculation and negative cycle detection via the Moore-Bellman-Ford
algorithm [88, 156, 10].

labeling. Otherwise, from some point on the parent graph® will permanently contain cycles.
Hence, by regularly checking the parent graph one is able to detect if negative cycles are
present. It also allows to extract such a cycle, which is necessary to update the ratio.

While the basic algorithm in Figure 2.7 must be carried out sequentially, the negative cycle
detection in Figure 2.8 allows a lot of freedom for the implementation. We now discuss how
to efficiently implement negative cycle detection, both in a sequential and in a parallel way.
The key for efficiency lies in how to implement step 2 in Figure 2.8. Concerning the numerical
implementation we noticed that both double precision and integer optimization lead to the
global optimum. We use integer operations since they guarantee global optimality and double
precision became only recently available on graphic processing units (GPUs), which are used
as parallel platforms.

2.8.1. Sequential Negative Cycle Detection

Efficient sequential implementations make use of a queue for implementing the steps 2 and 3
in Figure 2.8. Every time the distance label of a node is changed, the node is added to the
end of a queue. As long as there are nodes in the queue, the front one is removed and its
neighbors are checked for possible distance improvements. This way, nodes whose distance
label cannot change in the present iteration (because none of their neighbors changed their
label in the last one) need not be processed. While the worst case complexity remains the
same, in practice this results in significant speed-ups.

To optimize the run-time an explicit representation of the entire graph is suitable. However,
this results in very high memory consumptions: in our implementation only images up to size
256 x 256 can be processed with 2 gigabyte of memory when setting R to 3.

°Le. the graph with node set V and where each node v is connected to its predecessor node p(v) via an edge.
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However, it turns out that edges need not be stored explicitly: although the weights are
assigned to edges, the algorithm only maintains distance labels for nodes. Hence, edges (and
their weights) can be computed on-the-fly. This solves the memory issues, but increases the
run-time significantly.

2.8.2. Parallel Negative Cycle Detection

State-of-the-art graphics hardware allows highly parallel implementations of a certain class
of algorithms. This class does not contain the queue-based implementation just described.
However, in the form given in Figure 2.8, step 2 can be implemented in parallel. To this end
one uses two buffers of distance labels, where the second is updated based on the first one.
The nodes can then be processed in parallel.

Distances and parent pointers are stored in matrices as opposed to list structures. The
cycle check is done on the CPU every 25 iterations, its computational cost (including memory
transfer between GPU and CPU) is negligible in practice.

2.8.3. Choosing the Root Node

For the Moore-Bellman-Ford algorithm for distance calculation (Fig. 2.8) a root node must be
fixed. Since the described graph is connected, the choice of this root node does not affect the
optimality property of the ratio optimization process. Yet, it can have significant influence
on the performance.

For the parallel implementation it is useful to add an extra root node and connect it to
every node by an edge weighted with 0. Equivalently, all distance labels can be initialized
with 0. After k iterations the distance label of any node contains the cost of the cheapest
path of length k passing through it. While in theory one can still have |V| iterations until
a negative cycle arises, in practice one can expect a number of iterations in the order of the
length of the most negative cycle in the graph.

This choice of the root node could be used for the sequential implementation as well.
However, this would imply a high memory consumption since initially every node in the
graph is added to the queue. One will also have to visit every node in the graph at least once,
which reduces the efficiency of the queue-based implementation in practice. As a consequence
we pick a node inside the graph as the root node. For the first negative cycle detection we
choose a node in the center of the image. In subsequent calls the root node is selected as one
of the nodes in the previously found cycle.

2.8.4. Complexity of the Method

The described graph to estimate curvature contains O(|P| R?) nodes. Since each node is con-
nected with O(R?) neighbors, there are O(|P| R*) edges. The Moore-Bellman-Ford algorithm
is known to terminate in time O(nm) on a graph with n nodes and m edges. This gives a
worst case complexity of O(|P|2R5) for a single check for negative cycles.

Additionally one must consider the number of times the Moore-Bellman-Ford algorithm
is called. Let € > 0 be the level of quantization (i.e. all weights are multiples of €), w, be
the maximum absolute numerator weight and w, the maximum absolute denominator weight,
both before quantization. One can show [117] that the number of calls is then O(m>3w?w,, /€3)
in the worst case, with m the number of edges. In practice the number of iterations is less
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| |iZ

segmentations obtained with the average outward flux.

| i

segmentations obtained with the elastic ratio.

Figure 2.9.: The elastic ratio gives rise to more meaningful segmentations than the average
outward flux. In particular, it is able to find objects in the presence of partially
low contrast.

than 50 for € = 1073 and a radius R = 3. This was checked on a wide variety of images
consisting of up to 640 x 480 pixels.

In total this results in the rather high run-time complexity of O(|P|° R*¥w?w, /e*). Note
that this is just an upper bound on the run-time. It may be possible to prove tighter bounds.
Also, for practicable problem instances a linear dependence on the number of image pixels is
observed. On the GPU, even images of size 640 x 480 are processed in less than half an hour,
again for a radius of R = 3.

2.9. Experiments for the Elastic Ratio

We will now present results for the elastic ratio (2.11) on practical segmentation tasks. In
particular, these results will demonstrate the following points:

e The elastic ratio with squared curvature allows object segmentation for a large variety
of domains. The length weight v was adjusted experimentally on a variety of images.
We found a value of 0.15 to give reliable results.

e The functional is in fact robust to the choice of the length weight: for a broad range of
parameters comparable results are obtained.

e The proposed fully unsupervised method is able to outperform region-based methods in
certain cases: it is less sensitive to shading effects, so it can find more precise boundaries.

e Our method is robust to noise, i.e. even for very noisy pictures it produces results
comparable to those on noise-free pictures. We emphasize that there is no need to
adjust any parameters.

2.9.1. Average Flux vs. Elastic Ratio

Figure 2.9 shows a comparison of ratio functionals on images containing objects in front of a
cluttered background. In two cases the average outward flux finds a meaningful object: here
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A

segmentations obtained with the elastic ratio.

Figure 2.10.: The results on the Berkeley database confirm: the elastic ratio is better suited
for object segmentation than the average outward flux.

the entire object boundary has a high contrast. On these images the elastic ratio produces
comparable results.

In the majority of cases, however, the average outward flux favors small homogeneous
regions. The figure shows that in many of these cases the elastic ratio is able to locate
meaningful objects. This trend is confirmed by Figure 2.10, where we show some results on
the Berkeley database.

To find larger regions, Jermyn and Ishikawa [117] revert to the balloon ratio (2.10) which
includes a suitably weighted balloon force. Figure 2.11% demonstrates that there are fairly
large parameter ranges which give rise to almost identical segmentations. The functional
therefore seems robust to the choice of the area weight. However, there is no parameter that
works well for all the shown images.

Nonetheless the balloon ratio produces meaningful objects in several cases and we consider
it somewhat complementary to the elastic ratio: each gives rise to segmentations that cannot
be produced with the respective other one. In general, whether one wants to favor objects
with a large area or with low curvature of the region boundary will depend on the application.

2.9.2. Efficiency on CPU and GPU

Due to the large search space an efficient procedure for minimizing the elastic ratio is desirable.
Consequently, the underlying combinatorial algorithm was implemented both on the CPU
and on the GPU as described in Section 2.8. This section presents an evaluation of how the
optimization process reacts to the different architectures. The ratio is initialized with 0 in
both cases.

The experiments were run on a Core2 Duo machine with 2.66 Ghz, where only a single
core was used. The machine is furthermore equipped with 4 gigabyte of main memory and a
GTX 8800 graphics card.

The resulting run-times for several images are given in Table 2.1. For the smallest image
the explicit graph uses roughly half the system memory. Here the explicit storage of edges

6 Many thanks to Greg Mori for sharing his data with us.
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§=141 5=19 3 =1.45 3 =1.56 3 =1.925
With a suitable area weight (+(3), the balloon ratio finds meaningful regions.

The elastic ratio can identify body parts.

Figure 2.11.: Where the elastic ratio identifies body parts, the average outward flux only
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2.9. Experiments for the Elastic Ratio

Image Run-time
Name Resolution | CPU-expl. | CPU-impl. | GPU
Seal 200 x 133 364s 812s 35s
Bunny 260 x 180 1567s 1593s 101s
Berkeley #3 | 321 x 481 N/A 8673s 1046s
Baseball #2 | 450 x 314 N/A 14810s 151s

Table 2.1.: Comparison of run-times for the different implementations. For the CPU run-
times with explicit storage of edges and with on-the-fly computation are shown.
Experiments were run on the same machine and using compiler optimization.

is about twice as fast as the implicit one — both on the CPU. For the second image the two
perform almost identically: here the entire system memory of 4 GB was needed for explicit
storage.

The speed-up of the GPU version over the CPU one with implicit storage varies from a
factor of 8 to a factor of 100. The huge deviations are due to’ the different natures of the
algorithms (queue-based vs. full parallel). In particular, these differences result in a different
sequence of intermediate ratios since the Moore-Bellman-Ford algorithm merely outputs some
negative cycle, not the most negative one.

All given run-times are quite high and often exceed half a minute. However, one should
bear in mind that it is a fully unsupervised algorithm which still allows to separate the objects
from the background.

2.9.3. Robustness and Comparison to Region-based Approaches

For a comparison to region-based approaches two variants of Mumford-Shah-like functionals
[158]% were implemented:

E(ui,u, {Qr})= Z /(MZHQi(X)—FA\VW(X)\Q) dx +v|0Q]| . (2.16)

=12 [ & 1

Here a piecewise smooth approximation by two functions w1, us:$2 — R and a partition of the
image plane € into two disjoint regions 2; and €25 is computed by alternating globally optimal
updates for u; and €2;. The data fidelity terms — normalized with respect to the intensity
variance O'% — are only imposed in the regions indicated by the characteristic functions 1q,
associated with region €2;, and |0€2;| denotes the Euclidean boundary length of ;. The update
with respect to u; (for fixed €2;) is obtained by solving the Euler-Lagrange equations

(I—ui)lg, + No? Au; =0, i=1,2, (2.17)

using Successive Over-Relaxation (SOR). The update of the regions 2; for fixed u; can be
computed in a globally optimal manner for a discrete approximation on a regular grid using

" Also, we are using generic classes on the CPU, but specific code on the GPU.
8Note that functional (2.16) is not identical with the original Mumford-Shah approach since the smoothness
terms in expression (2.16) are extended into the entire domain €.
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v=10"°6 v=10"° v=5-10"°

local minimizers (see text) of the local minimizers (see text) of the  global optimum of
piecewise constant Mumford-Shah. piecewise smooth approximation. the elastic ratio.

Figure 2.12.: The elastic ratio extracts the object almost perfectly. Moreover it is robust to
noise, without the need to change any parameters. In contrast, both the piece-
wise constant Mumford-Shah [158] and the piecewise smooth approximations
(a = 5-1077) fail to differentiate the object from the background and are more
sensitive to noise.
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v =10.01 v = 0.05 v =0.25 v=203 v=20.5 v=20.75

Figure 2.13.: Effect of the length weight on the elastic ratio: for a fairly large parameter range
a meaningful part of the image is found.

graph cuts [22]°. For A\ — oo one obtains piecewise constant approximations with scalar
constants u; given by the mean gray value in region €);.

The performances of the elastic ratio and (2.16) are compared in Figure 2.12. Already
for the noise-free image we could not find a length parameter where the Mumford-Shah-
type implementation separates the object from the background. For the highly noisy images,
despite the adaptive smoothness terms numerous small regions arise. In contrast, the elastic
ratio identifies the object almost perfectly without needing to adjust any parameters.

Lastly we address the robustness of the elastic ratio with respect to the length weight v.
Figure 2.13 demonstrates that for a fairly large range of v the object is found. Up to a certain
point the contour becomes more complex with increasing v. From this point on the length
term becomes dominant and the functional approaches the average outward flux.

2.10. A Connection to the Snakes Model

The presented method allows to draw conclusions about the parameterization-invariant re-
formulation of the snakes model (2.6) which is restated here for convenience in a slight vari-
ation:

B(C) = ~ [IVICW)F ICBldt + vAIC 42 [Ike@l ICplar . (218)
St s1

Two things have changed here: firstly, we introduced parameters p,q > 0 for the powers of
absolute image gradient and curvature. Secondly, the parameters A and v are now multiplied
to form the weight of the length term.

The mentioned connection is based on a relation of ratio optimization to parameter se-
lection. This connection is discussed in this section, and the implications are demonstrated
experimentally.

9A related efficient algorithm for minimizing the piecewise smooth Mumford Shah functional by alternating
graph cuts and smooth approximations was independently developed by Grady and Alvino and evaluated
in greater detail in [98].
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2.10.1. Parameter Selection via Ratio Optimization

In Section 2.8 it was shown that Lawler’s algorithm minimizes a sequence of line integrals
where a weighted version of the denominator is subtracted from the numerator. For the final
line integral a global minimizer with energy 0 is found.

This implies that minimizing a ratio allows to find a parameter setting where the associated
line energy has a meaningful global optimum. Precisely this observation was made by Jermyn
and Ishikawa in [117].

With the extended class of functionals introduced in this chapter one can now shed a light
on the re-formulated snakes model (2.18). This is now explained in detail. To this end,
consider what is termed the snakes ratio in this work:

- [1vrcw)r cubld

— St
O = LeT+ e IGa: (219

where a parameter p for the influence of the image gradient was introduced. When applying
Lawler’s algorithm to this ratio with p = ¢ =2, one ends up computing a negative optimal
ratio A.,; < 0 and an optimal curve C,,; so that

= [ IV €@ IC:0]dt + ool + o] [ I, (F ICB] dt =0
St st

and no other curve has a smaller energy with respect to the same parameter |\,..|. Hence the
snakes ratio provides valuable insights into the modified snakes model (2.18): given a relative
weight v between length and curvature regularity, minimizing the snakes ratio provides an
absolute regularity weight |\,,| for which the parameterization-invariant snakes model (2.18)
has a meaningful optimum and also the associated optimal curve. This means that now a
model can be optimized globally for which previously only local solutions were available.

2.10.2. Experiments

Due to computational issues (i.e. to be able to use integer optimization without causing
overflows) we will state results for the snakes ratio with absolute image gradient (p = 1) only.
The results with squared absolutes are unlikely to be better as places with low contrast are
even more strongly disfavored than before.

Figure 2.14 presents results on a variety of images. When using the balancing weight
v = 0.15 for length against curvature — which works well for the elastic ratio — the results are
discouraging: in most cases the curve goes one way, turns around and takes almost exactly
the same way back. This will not happen when using flux-based functionals: for the shown
curves the numerator terms will cancel and the resulting near-zero energy will not be the
globally optimal one.

When reducing the influence of the length term (v — 0) larger regions are found. For
most images these regions are very close to convex and they usually do not correspond to
meaningful objects.

Since our algorithm always finds parameter sets where the global solution to the line energy
(2.18) (now with p = 1) has the energy 0, one cannot draw conclusions about the entire
functional. However, we consider it unlikely that other meaningful parameter sets lead to
significantly better results.
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the snakes ratio (p = 1) with v = 0.01.

Figure 2.14.: The snakes ratio reveals: the gradient absolute is a bit weak as a data term.

2.11. Discussion

This chapter has presented an edge-based approach for fully unsupervised image segmentation.
It combines a product graph for minimizing curvature-based functionals with a model that
guarantees meaningful global optima and an efficient algorithm to compute these optima. In
practice it is fast enough to work also on large images.

For moderately complex images the method is able to identify objects and due to its edge-
based nature it excels in cases where region-based methods get confused. In these cases one
even observes a strong robustness to the weight of length regularity in the objective function.

It should be clarified, however, that region-based methods are applicable to a larger class
of problems. In particular, they extend to an arbitrary number of segments, whereas the
presented method can only find one region. Hence, for more complex images we recommend
the use of region-based approaches.

Still, a significant advantage of the presented contour-based approach is that it readily
extends to the integration of shape knowledge while preserving global optimality — and with
it the independence of initialization. Precisely this is the topic of the next chapter.
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3. Shape Knowledge in Image Segmentation

In the previous chapter we have dealt with the task of fully unsupervised image segmentation.
We have presented a contour-based approach which integrates curvature regularity and hence
establishes gap closure.

In practice fully unsupervised methods are far from satisfactory: so far it has not been
possible to capture the notions of human scene interpretation in a mathematically precise
way. Moreover, humans heavily rely on prior knowledge: they actually interpret images
instead of grouping brightnesses.

Consequently, this chapter deals with the integration of shape knowledge into segmentation
processes. The program will be given the outline (or contour / silhouette) of an object. The
task is then to locate a — possibly deformed — equivalent of this contour in the image. This is
achieved with translation invariance, i.e. the method does not rely on an initialization.

Many methods require a set of training shapes to accurately model the deformation pro-
cesses. In this chapter it will be shown that actually a single shape suffices. It presents two
shape measures, the basic one allowing the contour to locally stretch and shrink and also to
rotate globally. The refined model then also incorporates strong deformations by allowing
parts of the shape to rotate locally.

The chapter starts with an overview of related work, then proceeds to the presentation of
the basic method. Subsequently, extensions to the tracking of objects and the handling of
highly deformable shape measures are presented.

3.1. Related Work

To study the related work, we will first cover the modeling aspects, then discuss the algorith-
mic side.

3.1.1. Prior Knowledge in Computer Vision

State-of-the-art methods in computer vision allow to incorporate various levels of prior knowl-
edge. High level methods introduce 3D-object models such as stick figures to model humans.
The associated problem is known as pose estimation and is not covered in this work.

In a simplified setting one does not care about the position of parts in 3D-space but only
about their location in the image. These models are known as pictorial structures and date
back to the work of Fischler and Elschlager [86]. They require a decomposition of the shape
into meaningful parts. Recent publications include [84, 174].

This chapter focuses on methods that do not require an object model. The addressed
methods are based on planar shapes which is abbreviated to “shapes” in the following. As
illustrated in Figure 3.1, a (planar) shape is a binary image where the black parts indicate
points that belong to the shape. There can be multiple disconnected regions and regions with
holes.
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LA

Figure 3.1.: Shapes are binary maps with black parts indicating points that belong to the
shape. Here some shapes of walking persons are shown. (Data courtesy of Chan-
Su Lee and Ahmed Elgammal).

This field is divided into methods that work with a single shape and those that require a
set of training shapes.

Methods requiring training shapes estimate the deformation characteristics of the shapes
from the training data. This field was started by the seminal work of Grenander et al. [100]
and refined by Cootes and Taylor [46]. Cremers et al. [56] model shapes via explicit contours
and model the deformations of the control points. More recent works are based on the level
set method, including works of Leventon et al. [144], Tsai et al. [198], Rousson and Paragios
[177] and Cremers et al. [52]. Recently Cremers et al. [53] proposed a solution based on
probability functions. Subsequently Lempitsky et al. [142] proposed a related method which
requires substantially more training data.

All of these methods rely on an area-based shape similarity measure which needs to pre-
estimate the deformation characteristics of the shape from the training shapes.

In contrast, a few methods exist which incorporate sophisticated shape measures based on
point correspondences and work with a single shape template. So far all methods are limited
to simply-connected shapes, i.e. shapes without holes.

Felzenszwalb [83] models the shape via its Delaunay triangulation and allows deformations
of the triangles. This allows to combine region-based deformation terms with edge-based data
terms. The method is globally optimal and hence translation-invariant. In practice it requires
to reduce the search space since otherwise the computational cost would be too high - see the
paragraph on minimizing shape-based energies below.

Coughlan et al. [48] locate an open contour (the outline of a shape) in an image and
establish translation-invariance. This method allows to incorporate a sophisticated elastic
shape similarity measure [148, 153] based on point correspondences and also allows to find
multiple instances of the shape. It differs from all the above mentioned ones in that it does
not perform segmentation — this is not possible with open contours. In [47] Coughlan and
Ferreira give an extension to contours with holes.

3.1.2. Minimizing Shape-based Energy Functionals

Traditionally shape-based energies have been minimized locally via contour evolution. This
holds for almost all above mentioned methods requiring training sets. The employed paradigms
are either explicit contour evolution [100, 46, 56] or level sets [144, 198, 177, 52]. These meth-
ods depend on initialization and require a careful adjustment of the numerical parameters
used in the evolution processes.

A very recent exception is the work of Cremers et al. [53] which allows to globally opti-
mize in the space of probability functions and hence establishes translation-invariance. This
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inputs. outputs.

Figure 3.2.: Starting from a prior contour and an input image, the proposed method simul-
taneously locates the (possibly deformed) contour in the image and computes a
correspondence function between the two curves. (Image data courtesy of Bodo
Rosenhahn.)

method combines the estimation of deformation parameters with a Lipschitz search over trans-
lations. Subsequently Lempitsky et al. [142] proposed a combination of branch-and-bound
and graph cuts for a model which does not involve deformation parameters.

Methods based on single templates are more advanced. They allow global, translation-
invariant solutions with sophisticated shape similarity measures. Felzenszwalb [83] uses dy-
namic programming in a special kind of graph (called chordal). Since the memory consump-
tion of this method is quadratic, at present one cannot handle reasonably large images without
previously reducing the search space.

The method of Coughlan et al. [48] for locating open contours is also based on dynamic
programming and allows global optima. It can be applied efficiently for very large images.
Moreover, it is most closely related to the method presented in this chapter.

The extension of Coughlan and Ferreira [47] loses the property of global optimality. With
the help of belief propagation, the authors give a solution that does not depend on user
initialization.

3.2. Contribution

The main contribution of this chapter is an efficient procedure to handle closed contours for
the problem of image segmentation with elastic shape priors. This problem is handled in a
globally optimal manner. The memory consumption of the method is linear in the number of
pixels and although the running time is a high order polynomial in the worst case, for practical
problem instances a linear dependence is observed. The combination of all these properties
allows the treatment of the entire image information during the optimization process. That
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is, there is no need to reduce the search space before optimization is started.

Compared to the work of Coughlan et al. [48] there are three contributions: firstly, the
proposed method addresses the computationally much harder case of closed contours, which
is solved in a computational time that is effectively linear in the number of pixels and also
linear in the number of template points. Secondly, the presented model is a ratio functional
and therefore exhibits a lower bias towards short curves. Thirdly, the extension to a highly
deformable shape model is presented.

This is joint work with Daniel Cremers. The contributions were published in [181, 183, 185].
An extended version has been submitted to a journal.

3.3. Outline of the Method

Figure 3.2 gives a rough overview of the presented algorithm: based on a single template only,
the method simultaneously locates a deformed version of a closed input contour in the image
and computes a matching between the two contours. It incorporates translation-invariance
and optionally allows rotational invariance.

The method is based on globally minimizing a ratio functional which incorporates a sophis-
ticated elastic shape similarity measure [148, 153]. To this end, the problem is first mapped
to optimizing over cycles in a product space spanned by the image and the template. By
discretizing this space into a graph, the problem is ultimately mapped to finding the glob-
ally optimal cycle in a product graph. Such a cycle is found via an efficient combinatorial
algorithm which gives an effectively linear dependence of the running times on the number of
input pixels.

3.4. Combining Elastic Shape Priors and Image Segmentation

Given is a prior contour, e.g. the outline of the pot in Figure 3.2, described by a curve
S:S! — R? with a uniform parameterization. The task is to locate a (possibly deformed)
equivalent of this contour in a given gray-scale image [ : @ — R — the extension to color
images is straightforward. To this end, a contour C:S' — € is determined which should be
similar to the input contour and fulfill some data-driven criteria. In this work the contour is
attracted by image edges.

To allow deformations of the contour, a correspondence function is estimated. This orien-
tation-preserving bijection is denoted m :S! — S'. It assigns each point on S a point on
C and vice versa. This allows to use correspondence-based shape similarity measures which
were shown to be important for reproducing human notions of shape similarity [93, 140]. The
functions C and m can be combined into a single function

r:st—-Qxs'.

This observation will be useful later when we discuss the optimization scheme. Before we
present the employed functional, first the invariance to parameterizations is discussed.

3.4.1. Invariance to Parameterization

For cost functions in computer vision invariance to the chosen parameterization is desirable.
The presented cost functional is indeed invariant with respect to re-parameterizations of C.
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Figure 3.3.: The three ingredients of the proposed method: (a) an edge detector function
assigning low values to high image gradients. (b) computation of tangent angles
of the contours C and S (shown for C, the tangent is drawn in black). (c)
computation of length distortion.

It is not invariant to re-parameterizations of I': the reason is that the function m is not a
stand-alone function — m(t) will always denote the correspondence of C(t). A change of the
parameterization of C will therefore also entail a change in the parameterization of m.

For this reason the functional is presented in terms of C and m rather than the combined
function I'. In later sections we will return to the I'notation.

3.4.2. Characterizing the Optimal Matching

The optimal pair of contour C and matching m is characterized as the global minimum of a
ratio energy. It combines three terms which are visualized in Figure 3.3 and now described
in greater detail:

1. Data term. The employed data term aims at attracting the curve C to edges in the
image. To this end, an edge detector function is used which assigns low cost to places
of high image gradients. We use the function

1

9(x) = T VIm)| (3.1)

as shown in Figure 3.3a. Note that a variety of other functions could be used. In
particular, the function is readily extended to handle color images.

Integrating such a positive function along the contour C entails a strong bias towards
short curves. To alleviate the problem the integral is normalized by the contour length,
which results in averaging the edge detector function g(-) along the contour C:

J 9(C0)[Ci(o)
[<]

=<g>c, (3.2)

where < - > denotes the average. Shorter curves are still favored, but not as rigorously
as before. The remaining bias is counteracted by the shape similarity measure.

2. Similarity of Curve Attributes. This is the first of two terms constituting the shape
similarity measure. It performs a comparison of local attributes of corresponding points
C(t) and S(m(t)). In this work — as shown in Figure 3.3b — the tangent angles of the
curves are chosen as attributes. This implies translational invariance since translating
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3.4. Combining Elastic Shape Priors and Image Segmentation

a contour does not change its tangent angles. The integration of rotational invariance
requires extra effort. This is deferred to Section 3.8.3.

The similarity of corresponding tangent angles is measured by their squared cyclic dif-
ference |ac(t) — as(m(t))|3:, where the difference is taken on the manifold S*. Again
we divide by the contour length and get the average deformation cost

Jlac() - as(m(t))|3; [Cu(t)] dt

IC

[ lac(t) - as(m(®) 3 dt . (33)
Sl

where the second line holds for a uniform parameterization of C.

3. Penalties for Stretching and Shrinking. Aside from the monotonicity of the corre-
spondence function, another regularity assumption is made: local stretching and shrink-
ing of the contour is disfavored. The functional hence favors curves which preserve the
scale of the prior contour. This counteracts the shrinking bias of the data term. In
practice one observes a robustness with respect to gradual scale changes.

The amount of stretching and shrinking is characterized as length distortion: consider
Figure 3.3c where a piece dS of S corresponds to a piece dC of C, say at the point
C(t). Then the length distortion is given by the quotient |dS|/|dC|. With a uniform
parameterization of S this quotient can be expressed as’

@( - IS ma(t)
|dC]| [Ce(t)]

Recall that m is orientation-preserving, so without loss of generality its derivative is
assumed to be positive. Numerous ways to penalize length distortion are conceivable.
Before we present the chosen one, a few properties we consider essential for a penalty
function are pointed out:

a) A ratio of 1 (no distortion) should be assigned the penalty 0.

b) As the ratio approaches co (i.e. |dC| — 0 for fixed |dS|), so should the correspond-
ing penalty. This point is crucial as the edge-based data term favors short curves
and the shape attribute comparison is independent of scale. Hence, the penalty
function must disfavor short curves.

c) Preferably the shape similarity measure should be symmetric, i.e. comparing C
to S should give the same cost as comparing S to C. This implies that the ratio
|dS|/|dC| should be given the same penalty as its inverse |[dC|/|dS]|.

The penalty function chosen in this work satisfies all three requirements:

r—1 HK>r>1

|dS| B ;
\If(r:—|dc| ={r1—1 1f%§r<1, (3.4)

00 otherwise

!This term is indeed invariant against re-parameterization of C: any such re-parameterization will also change
the correspondence function m and with it its derivative.
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3. Shape Knowledge in Image Segmentation

Figure 3.4.: The structure of the product space € x S!: for any point on the prior contour

the space contains a copy of the image. A cycle (with winding number 1) then
defines a contour as well as an assignment of any point on the contour to a point
on the prior contour.

Here K € NT is a predefined constant limiting the maximum length distortion. This
limit will be exploited in the optimization algorithm.

Like the two previous terms, the corresponding regularity term takes on the form of a
ratio:

[ w(IBlmv) (¢, 1)) at
S _ (o (lI8Im®)
S];’Ct(t)‘dt _S[\IJ< 1C(1)] > dt , (3.5)

where again equality holds for a uniform parameterization of C. This term is scale-
invariant in the sense that scaling both C and S by the same factor does not affect the
cost.

Using positive weighting factors A, v >0 these terms are glued together into a single functional
which is stated here for a uniform parameterization of C:

min /g ) dt + I//’Oéc —as(m ’Sl dt + A/Q/(%) dt  (3.6)

I'=(C,m)

The global minimization of a discrete version of this functional is now detailed. Note that
the same scheme can be used for a variety of other functionals.

3.5. Optimization in a Product Graph

The criterion (3.6) requires optimizing over functions of the form

o8
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Figure 3.5.: In the discrete problem, a shape is represented as a sequence of pixels on the
image grid.

Such functions are readily interpreted as cyclic paths (with winding number 1) in the three-
dimensional space Q x S!. This space is visualized in Figure 3.4: by multiplying a circle with
the image domain, a space in the form of a torus arises.

Hence, the problem can equivalently be stated as optimizing over cyclic paths in this torus
space. A computer-based solution will require restricting the set of paths by applying a
discretization. As in the previous chapter for curvature, we know of no method to globally
optimize in a continuous space, e.g. the space of spline-functions.

Instead, the space of admissible I'-functions is restricted to those having a polygonal form.
That is, the curve is now composed of line segments AT' = (AC, Am). These line segments
are easily interpreted as edges in a graph with same topology as the product space shown in
Figure 3.4. This way, the problem is reduced to finding the optimal cycle in a product graph,
which is solved efficiently by applying Lawler’s minimal ratio cycle algorithm (cf. Chapter
2.8).

3.5.1. Discretizing Contours and Correspondences

In addition to the cycle I' also the prior contour S is discretized: it is represented as an
ordered set of s, ...s|g| of points on a suitable pixel grid, where — for ease of notation —
so = s|g| is represented twice. To get a dense representation of the contour it is required that
s; be among the eight closest neighbors of s; 1. An example is shown in Figure 3.5.

The curve pieces AC are chosen as straight lines connecting a pixel with one of its eight
neighbors. The corresponding part Am of the correspondence function is also chosen as a
linear function along AC. It is hence induced by its values at the start and end of AC. These
values are indices in {0, ..., |S|}. By design, i.e. since m is orientation-preserving, the index
assigned to the end point of a line segment cannot be smaller than the one of its starting
point. Both indices can however be equal.

A First Attempt In the end the segments AT will be edges in a graph, so that again the
functional can be represented via sums of edge weights. The problem is then reduced to
finding the optimal cycle in the graph.

In a first attempt one could introduce a node for each pair of image pixel and shape point,
i.e. nodes of the form (x,7). The node set would then be

P xA{0,...,|S|},

where P is the set of image pixels. The problem with this approach is that very small cycles
would arise: since several image pixels can be assigned to the same shape point, the graph
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3. Shape Knowledge in Image Segmentation

contains e.g. the cycle (x,i7) — (y,i) — (x,i) where x and y are neighboring pixels. This —
completely meaningless — cycle may well be the optimal cycle in the graph. Hence, a little
more elaboration is needed.

A Refined Graph Structure To circumvent this problem extra nodes are introduced. Now
the first assignment of an image pixel to a shape point corresponds to a different state than
its second assignment and so forth. To avoid an explosion in size, at this point it is exploited
that the potential (3.4) limits the maximal amount of stretching and shrinking. In the dis-
cretization this is interpreted as a limit of K image pixels being associated to the same shape
point. Hence the number of nodes increases only by a factor of K. The result is a graph with
the node set
P x{0,....K-|S|},

where P is the set of image pixels. This set reflects that each shape point ¢ can be assigned up
to K image pixels. These K assignments are represented by the states i- K, ...,i- K+ (K —1).

The edges in the graph are divided into two classes: in the first case, called type I edge,
the start and end pixels of a line segment are assigned different shape points. These edges
are of the form

(typelI) (x,i-K+k)—(y,j-K) withi<j<i+4+ K,

where 0<4,j <|S| and 0 <k < K are integers and x and y are neighboring pixels in the image.
The set of all nodes with an index of 7 in the second component will be called the frame with
the index 7 in the following.

Edges of type II correspond to assigning both end points of the line segment to the same
shape point. In this case one needs to keep track of the number of pixels already assigned to
this shape point:

(typeIl) (x,j-K+k)—(y,j - K+k+1) withk+1<K .

In this form the described graph is acyclic. However, recall that the shape points sg and
s|s| are actually identical. By merging the two states a cyclic graph is obtained?.

3.5.2. Discretizing the Cost Function

With the described graph structure, the cost functional (3.6) (and a large variety of other
cost functionals) is easily brought to the discrete minimization problem

)] n(e)

. ec

min ———— 3.7

r Y de)’ (37)
eel’

where I' denotes a cycle in a graph. The reader may recall that this problem already occurred

in equation (2.14) in Chapter 2. Indeed the presented functionals are minimized using Lawler’s

ratio cycle algorithm in combination with some extra effort. Before we come to the details,

however, the edge weights n(e) and d(e) need to be set up.

2This graph structure implies that shape point 0 cannot be skipped. Refined graphs without this property
are conceivable, but require a more complex program structure.
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3.5. Optimization in a Product Graph

Since the denominator of (3.5) is merely the length of C, the denominator weights are given
by |x —y|. The numerator weights are more intricate and require a distinction between type
I and type II. It is however more convenient to state the contributions of each of the three
terms in the cost functional separately:

1. Data term. For both types of edges, the data term contributes
1
Sl =yl (9(x) +9(y)) -

2. Comparison of Tangent Angles. Let p(x,y) be the tangent angle of the line segment
connecting x and y. It can be computed via the function atan2 contained in most
standard programming languages. The contribution of this term is then

2
vIx =yl lp(xy) = @(si-1,8))|q1
again for edges of both types.

3. Length Distortion. A simple discretization of the length distortion penalty would be
to add a term A for type II edges and A(j — ¢ — 1) for type I edges. Both could further
be multiplied with the length |x — y| of the segment.

The problem with this discretization is that it assigns no cost when a diagonal line (of
length v/2) in the image is matched to a horizontal or vertical line (of length 1) in the
prior template. We therefore now present a refined discretization which is closer to the
continuous functional.

Type I Suppose the last aligned shape point was point i. For an edge of type I one
either moves to the direct successor point j=1i41 or skips up to K —1 shape points. In
both cases there can be length distortion. This distortion is computed as
5 | |
S;r — S
ds| g T
|dC]| x—yl

T =

It is straightforward to compute the penalty by evaluating the function (3.4) on this
term. In fact, for edges of type I one could use any other penalty function.

Type II This case is more intricate since it implies that several line segments are
matched to the same line s;_1s; of the prior template. Here we will exploit the specific
form of (3.4): once it is known that the length distortion ratio is below 1, the function
is linear in r~! — 1. Since all polygonal lines have a length of at least 1 and an edge of
type I must already have been aligned to s;_;s;, it is safe to exploit this for all type II
edges.

Let xox1,...,X;_1X; be all line segments of C aligned to s;_1s;. Then the inverse ratio
can be written as

k
> |xp — xpr 1
| _ Z |Xk/ — Xp1]|
|sj — sj-1l = lsi—sial

61



3. Shape Knowledge in Image Segmentation

An edge of type II corresponds to only one of these line segments, e.g. x1Xs, so the aim
is to write the penalty for this ratio as a sum over the line segments. If the ratio for the
segment Xgx is at least one, the type Il edge can be given the penalty term

\x= y|?
|sj — sj-1]

The present implementation simply assumes that the first ratio is at least one. The
only case where this assumption is violated is when x¢x; is a horizontal or vertical line
segment but s;_1s; is a diagonal one. If one wants to handle this case correctly, the
state space needs to be augmented. Type I edges with this property would then end
in a new state. Type II edges leaving this state would be assigned a different length
distortion cost.

3.6. Efficiently Minimizing the Discrete Problem

At first glance one might be tempted to solve the discrete problem by applying Lawler’s ratio
cycle algorithm as presented in Chapter 2.8. The problem is actually more intricate: by
construction every polygonal I' in the discretized search space corresponds to a cycle in the
described graph. There are however cycles that do not correspond to a valid I': such cycles
wrap around multiple times in the torus-graph®. Hence, optimization needs to be restricted
to the set of walid cycles that wrap around exactly once. This section first details how this
restricted problem is solved, then proceeds to describe an efficient implementation.

3.6.1. Solving the Restricted Ratio Cycle Problem

To solve the restricted problem, first Lawler’s ratio cycle algorithm is applied to all cycles in
the graph. In most cases the computed optimal cycle is valid, i.e. wraps around exactly once.
Yet, in about two percent of all cases an invalid cycle is found.

In this case a recursive sub-division scheme is started: the set of nodes with the index 0 (i.e.
all nodes of the form (x,0)) is split into two parts. Then for each part Lawler’s algorithm is
called for a graph where the respective other part has been removed — in practice the nodes
are not removed but rather their distance labels are fixed to co. The initial ratio is set to the
ratio of the last found valid cycle (or the original initial ratio if none was found).

It is possible that a recursive call again finds an invalid cycle. In this case the respective
part is again split into two parts and more recursive calls are made. To avoid useless calls
one makes sure that the respective nodes with the index 0 in the found invalid cycle are not
assigned to the same parts. In the end the best cycle among all parts forms an optimal cycle.

In practice it is sensible to use an iterative implementation instead of a recursive one: this
saves memory and allows to update the initial ratio during the process.

3.6.2. Efficient Memory Management

The above presentation relies on a graph. Yet, due to the large search space standard pointer-
based graph representations are not sensible: they would easily require terabytes of memory.
This section presents a number of ways to reduce both the memory consumption and the
running time.

3In continuous terms: their winding number is two or higher.

62



3.6. Efficiently Minimizing the Discrete Problem

- [0

Figure 3.6.: The graph is cut open at frame 0 (shown in red) and the frame is doubled. The
arising graph is acyclic. This is the key for efficient optimization.

Implicit storage

Recall from Section 2.8.1 that Lawler’s algorithm does not require an explicit storage of edges:
it only maintains the distance labels of nodes. To keep the memory consumption bearable,
the edges are therefore computed on-the-fly.

The distance labels of the nodes are conveniently stored in matrices. In addition one needs
to store predecessor entries for the best incoming edge for each node. These only need to
code the number of the edge. For K <5 this can be encoded in one byte, otherwise two bytes
are needed. Our current implementation uses four bytes.

Sweep-based distance calculation

To obtain further speed-ups we implement the distance calculation by a sequence of distance
calculations on an acyclic graph: recall that the indices 0 and K - |S| were merged to form a
cyclic graph. By reversing this process, an acyclic graph is obtained. That is, for all nodes
with the index 0 a copy with the index K -|S| is introduced. All edges previously ending in
frame 0 (i.e. the set of all nodes with the index 0) are connected to the respective nodes in
the new frame. This is visualized in Figure 3.6.

Now the distance calculation can be performed in sweeps. For the first sweep all distance
labels in frame 0 are initialized with 0. Then in each sweep the distance labels and predecessor
entries for the frames 1 to K - |S| are determined. Since the graph is acyclic and no edges
connect nodes in the same frame, this can be done by dynamic programming. After each
sweep the distance labels in frame 0 are compared to the respective ones in frame K - |S|. If
the latter label is below the label in frame 0, this label and the corresponding predecessor
entry are updated. In this case also the corresponding optimal path is extracted. If a (possibly
invalid) cycle is found it must be a negative one (since the distance is negative and the initial
distance 0) and the ratio is updated.

Otherwise the ratio is kept and possibly another sweep has to be performed: this is the
case if one of the distance labels in frame 0 was updated. In practice one seldom observes
more than three sweeps for one ratio.

Intermediate Storage

The final storage-based improvement is less obvious but very important in practice. Before
moving to the details it is useful to observe that at any time during a sweep one only needs to
maintain a limited number of distance labels: the dynamic programming algorithm processes
frames in the order of increasing indices. Since no edge skips more than K? frames, one only
needs to keep track of the distance matrices for the previous K? frames.

Less obvious, but quite important, is the observation that in fact only 2K instead of K2
distance matrices need to be stored. Recall that edges of type I are of the form (p,i-K+k) —
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(q,7 - K). The important point is that the corresponding edge weights do not depend on k.
In the distance calculation only the best of these K edges is needed. It corresponds to the
optimal start node. This node must be computed only once for each shape point ¢ and each
pixel. Since the decision is needed for the following K shape points, this precomputation not
only saves memory, but also yields considerable savings in run-time.

By combining all these improvements, images of size 376 x 284 are processed with less than
750 megabyte.

3.6.3. Parallel Implementation

In Chapter 2.8 it was stated that for general graphs Lawler’s algorithm is rather difficult to
parallelize: on parallel platforms one cannot exploit list structures as are used to accelerate
sequential implementations. For special kinds of graphs very efficient parallelizations do exist.

The graph presented in this section is such a special graph. Recall that in the previous
section an auxiliary acyclic graph was introduced. This graph has the nice property that edges
never link two nodes in the same frame. The distances for an entire frame can therefore be
determined in parallel. This was implemented on an NVidia GTX 280 graphics card with 240
parallel threads, using the CUDA framework®. The running-times are reduced by a factor’
of about 16.

3.6.4. Profiting from Smart Initializations

The final optimization aims at reducing the number of ratio adjustments in the ratio mini-
mization process. In practice this number depends on the quality of the initial upper bound.
If the prior contour fits entirely into the image, such a bound is easy to determine computa-
tionally: one can simply try several placements of the undeformed contour and calculate the
respective ratios.

Naturally, the number of placements needs to be balanced against the arising additional
run time. In our experiments, optimal performance was achieved by trying displacements of
up to 5 pixels in each direction around a central placement. Whenever possible this central
placement is the one indicated by the user.

3.7. Complexity of the Method

To analyze the worst-case running time of the method, let us first ignore the subdivision
scheme and analyze a single call of Lawler’s algorithm. Each call of the Moore-Bellman-Ford
algorithm has a complexity of O(|S|?|P|?). The employed linear search scheme invokes at
most O(|S|?|P3wiw,,/€®) calls of the Moore-Bellman-Ford algorithm, where w,, and wg are
the maximal numerator and denominator weights before quantization and € > 0 is the level of
quantization (compare also Chapter 2.8.4). Finally, the recursive subdivision scheme makes
O(|P|?) calls in the worst case. Together this results in a complexity of O(|S|?|P|w2wy, /€?).
As in the previous chapter, this is just an upper bound on the running time. It is possible
that tighter bounds exist: after all, the given analysis holds for any kind of graph with the
same number of edges and nodes and does not make assumptions on the cost function.

4yww.nvidia.com/cuda.

°In the conference paper [181] we erroneously reported a factor of 300. The confusion is probably due to an
inappropriate choice of data structures in the CPU code used for [181].
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3.8. Experiments for Image Segmentation

-

prior contour. low contrast matching after shape
in input data. 3D-rotation. deformation.

J: d\,\
after stronger shape matching to another scale
3D-rotation. deformation. image sequence. change.

Figure 3.7.: Translation-invariant matching of a contour to an image. The prior contour (red)
undergoes significant deformation, scale changes and translation.

In practice the method is highly efficient: the Moore-Bellman-Ford algorithm usually ter-
minates after less than 10 sweeps for all tested problem instances. During a call of Lawler’s
algorithm, normally less than 20 ratio adjustments are made. Moreover, there are usually
less than 6 recursive calls in the subdivision schemes. These numbers already refer to rare
cases, the algorithm is usually much faster.

3.8. Experiments for Image Segmentation

This section presents experiments on several data sets. It starts with translation-invariance,
then proceeds to include rotational invariance. Finally, the relevance of length normalization
is evaluated.

The treated data contain significant distortion. As a consequence up to K = 5 image pixels
are allowed to be matched to a single shape point and the length distortion weight is set to
the rather low value of A = 0.1. The comparison of tangent angles is given more weight with
v = 0.5 — this term really drives the process.

3.8.1. Translation-invariant Matching

In Figure 3.7 the contour of a rabbit (viewed from the side) is matched to images from
two different sequences. In the first the rabbit is shown from a different viewpoint than
used for the prior contour, but at the same scale. Despite low contrast between object and
background the algorithm relocates the object reliably. Notice that despite the similar scale
there is significant local length distortion. The second sequence demonstrates matching in
the presence of a global scale change.

Both cases are handled very well. For these sequences (where the images have 320 x 240
pixels), the method uses roughly 900 megabyte of memory and runs in 16 seconds on a Core2
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prior contour.  without length normalization. proposed method
(with length normalization).

prior contour.  without length normalization. proposed method
(with length normalization).
Figure 3.8.: The length normalization reduces the bias towards short curves. This only be-
comes apparent as soon as there are many places of low contrast.

Quad machine and using an NVidia GTX 280 graphics card. A more detailed runtime-analysis
is given in Section 3.9.4.

3.8.2. On the Effect of Length Normalization

When we introduced the length normalization in Section 3.4.2 it was argued that it reduces
the bias towards shorter curves.

As shown in our publication [186], this effect can be demonstrated. To do this, one needs to
design a method which globally minimizes the unnormalized functional. Obviously Lawler’s
method is then not applicable.

In a straightforward approach one would use dynamic programming as in the work of
Coughlan et al. [48] and combine it with an exhaustive search over the starting point. The
resulting quadratic run-time is however too high in practice. An efficient implementation
arises when introducing a branch-and-bound scheme. This is also a very good starting point
for readers willing to implement the methods described in this chapter. For details see [186].

The effect of length normalization is demonstrated in Figure 3.8 where the global optima
for the ratio functional and for the numerator integral alone are shown. Clearly the ratio
functional copes with low contrast in the input data, the unnormalized version does not. If
the desired object has high contrast everywhere, both methods are applicable.

3.8.3. Including Rotational Invariance

Aside from translational invariance, sometimes also rotational invariance is desired. This is
easily included into the described method: one simply samples the rotation angle in sufficiently
dense intervals. For each angle one then rotates the prior contour by the specified amount
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prior contour. no rotational invariance. with rotational invariance.

Figure 3.9.: Including rotational invariance can substantially improve the results.

and matches the arising contour to the image. When all angles have been processed, the
match with lowest energy is output.

The run-time of this process depends linearly on the number of sampled angles. However,
one can exploit a property of the optimization algorithm to get significant speed-ups: for the
subsequent comparisons one can initialize the ratio with the last determined one.

Figure 3.9 shows an application for a sequence’® containing a significant rotation of the
object. Here the rotation angle was sampled between —90° and +90° in steps of 2°. Where

translational invariance alone failed, the algorithm now finds the correct solution.

3.9. Shape-based Tracking in Real-time

The experiments presented so far concerned the problem of translation-invariant image seg-
mentation. It turns out that the underlying approach is readily modified to cover another
very relevant problem: the problem of tracking deformable objects over a video sequence.
The program is given the approximate location and form of a desired object in the first frame
of the sequence. The task is then to follow the object over time.

This section starts with an overview of related work on tracking, then proceeds to describe
how the above presented algorithm is adapted to the problem.

Lastly, it is demonstrated experimentally that the proposed method provides a very fast
and robust approach to tracking. Some sequences are already processed in real-time.

3.9.1. Related Work

Traditionally the tracking of objects has been based on feature points [90, 106] where an early
approach is given by the work of Shi and Tomasi [192], known as the KLT tracker. Subsequent
developments include the work of Hager and Belhumeur [103] and Lowe’s SIFT-tracker [145].
In these works features are tracked independently.

In a more recent trend the object is treated as an entity rather than a collection of inde-
pendent parts. Denzler and Niemann [62] consider a set of patches which are linked by a
ray-model. Cremers [51] models the temporal evolution of shapes by a dynamical, autore-
gressive model in a level set framework. This is extended by Gui et al. [102] to the case of
competing priors.

While many of these methods are based on minimizing a suitable energy, none guarantees to
find the global optimum. To improve performance and avoid poor local minima, researchers

5Image data courtesy of Bodo Rosenhahn.

67



3. Shape Knowledge in Image Segmentation

have resorted to stochastic methods: Blake and Isard propose to use particle filters [18] (see
also [69]). Other methods, e.g. [61], are based on Kalman filters. None of these methods
provides either a guarantee to find good (i.e. low energy) solutions or a means to verify if a
solution is optimal.

3.9.2. From Image Segmentation to Tracking

Tracking an object over a video can be viewed as subsequently segmenting the video frames
into object and background. The major difference to image segmentation lies in the exploita-
tion of temporal coherence, i.e. the knowledge that the position of the object in the next frame
will be close to its position in the previous frame. The above presented method for shape-
based image segmentation is hence readily extended to tracking: to this end, the translational
invariance is removed by adding a term which reflects temporal coherence.

The arising method again applies to simply-connected shapes. The initial shape is given as
a contour S : S — . This contour is located in the first frame, then the arising contour is lo-
cated in the next and so forth. This way large deformations are decomposed into a sequence
of smaller ones. To reflect the temporal coherence, the functional is modified as follows:

min )/g(C(t)) dt + 1//|ac(t) — ag(m(®) 2, dt

I'=(C,m
S St

S|l m
+AS[\11< e )dt +S[<1>(C(t),S(m(t)))dt (3.8)

Here @ is a penalty function for the movement of points on the contour C. The framework
makes no assumptions on this function - it can be non-convex, negative and need not be
differentiable. Experimentally, it proved best to simply limit the maximal motion and treat
all remaining motions equally:

P = -

() { oo else

The limiting distance Dyax is set between 10 and 20 pixels in practice. A value of 15 performs
well on real-world traffic sequences and gives real-time performance in some cases.

3.9.3. Adjusting the Graph

To minimize functional (3.8) two adjustments are made to the previously introduced graph:
firstly, the cutoff-structure of ® allows to remove a large fraction of the nodes. This way each
frame is reduced to a small window centered around the former position of the respective
shape point. Secondly, the edge weights have to be modified to include the potential ®. Since
these terms only depend on position, they can be viewed as a modified data term and are
easily integrated.

The improved performance demonstrated below is partially due to the reduced size of the
graph, but to a large extent also due to the smart ratio initialization described in Section
3.6.4: since the previous position of the object will be close to the next one, in practice this
initialization process finds such a good estimate that only one or two ratio adjustments are
left.
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frame 0. frame 60. frae 90.
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Figure 3.10.: Tracking a car in bad weather: with the proposed method this is possible over
a hundred frames and more - in real-time.

3.9.4. Experiments

The proposed tracking method is now evaluated on several challenging traffic sequences”: in
real-world tracking scenarios one has to deal with changing illumination conditions, caused
e.g. by shadows and clouds, and varying shutter times of the camera. In addition, one often
encounters poor signal conditions due to rain or sunlight falling directly into the camera. It
will be demonstrated that the proposed method handles such cases quite well, even in the
presence of deforming shapes.

All experiments were carried out on a Core2 Quad machine with 2.66 GHz, where only a
single core was used. The machine is equipped with an NVidia GTX 280 graphics card which
is accessed via the CUDA?® interface. Unless stated otherwise, the window size was chosen as
Dmax=15. As for tracking one usually deals with small deformations, the constant K is set
to 2 for all experiments, and the weighting factors are set to A=v=0.5.

Tracking Results Figure 3.10 shows a challenging sequence recorded in rainy weather from
a car moving on a rough surface. The proposed method not only follows this car over the
entire 100 frames, it even processes this sequence in real-time: the sequence was recorded at
25 frames per second (fps) and is processed at 27 fps on the mentioned graphics card.

Figure 3.11 shows the tracking of a passing car under significantly varying lighting condi-
tions. The silhouette of the car undergoes significant deformation and scale changes. Again,
the proposed method is able to track the object over the entire 110 frames of the sequence.
Due to the larger size of the object (and to a small extent also the stronger deformations)
this sequence does not yet run in real-time: it is processed at 3.5 fps.

A third sequence is given in Figure 3.12 where a transparent bottle is tracked over 250
frames. The sequence contains significant camera roll, which does not agree well with the
comparison of tangent angles. Nevertheless the bottle is tracked very reliably. Here the
maximally allowed displacement was set to Dmax = 25, which results in 2 fps. With the
standard displacements of up to 15 pixels the bottle is lost twice (the run-times are almost
identical). Without search windows (i.e. when not exploiting temporal coherence) the first
25 frames are handled almost perfectly, then the performance degrades gradually.

Comparison To demonstrate the excellent performance of the proposed method, we imple-
mented two region-based approaches based on contour-evolution. The first method, proposed
by Rousson and Cremers in [176], assumes that the object can be distinguished from the

"Image data courtesy of Daimler Research.
Shttp://www.nvidia.com/cuda.
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frame #60. frame #80. frame #100. frame #110.

Figure 3.11.: Stable tracking of deforming silhouettes. The changing lighting conditions
(caused by shadows and varying shutter times) do not distract the approach.

background via histogram-based region statistics. The second method aims at tracking the
object via patch comparisons. Both methods are based on the level set method.

As shown in Figure 3.13, neither of the two methods works reliably on the chosen challenging
data sets: since the object has a similar intensity characteristic to parts of the background, the
contour tends towards this background. After 15 frames both methods have lost the object.
In contrast, recall that the proposed method handles the entire 100 frames - in real-time.

Runtime-Analysis It was previously stated that although the worst case complexity of the
presented method is prohibitively large for computer vision purposes, its practical run-time
behavior is very favorable. This point is demonstrated in Figure 3.14 where different window
sizes are evaluated on the bottle sequence from Figure 3.12. Clearly the practical run-time
dependence is far from quadratic and very close to linear. This does not imply that all practical
problem instances will behave similarly. However, we never observed an image/shape-pair
where the run-time was unacceptably high - when refraining from rotational invariance, the
run-times are usually below one minute for the GPU-implementation.

CPU vs. GPU The graphs for solving the tracking problem are much smaller than for
translation-invariant image segmentation. This raises the question of whether the GPU or
the CPU should be used — for small problem sizes the CPU can easily outperform the GPU
since it has a higher clock rate and the data are likely to fit into the cache. Moreover, for
small windows there may not be enough threads to fully exploit the GPU.

Figure 3.15 provides a comparison of run-times on CPU and GPU, plotted against the
window size. As expected, for small window sizes the CPU indeed outperforms the GPU. For
larger windows the GPU is the definite winner.

In the future implementations on multi-core CPUs may well outperform their counterparts
on the GPU even for larger window sizes. First experiments using the OpenMP? environment
in combination with the g++-compiler!’ were rather discouraging: apparently the respective

“http://de.wikipedia.org/wiki/OpenMP.
%Version 4.2.1, http://gcc.gnu.org/.
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475,
'?:r‘ ’fj;l.

frame #150. frame #175. frame #200.

Figure 3.12.: Tracking a transparent bottle in the presence of camera rotation.
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Rousson, Cremers [176] on frames 1, 5 and 15:
the object is lost almost immediately.

=

Results with patch comparison (same frames):
here, too, the object is soon lost.

Fie

In contrast, tracking with the proposed
method is stable.

Figure 3.13.: Where both simple and sophisticated methods fail after a few frames, the pro-
posed method tracks the object over the entire one hundred frames - in real-time.
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Figure 3.14.: Dependence of the run-time on the size of the search space (resulting from choos-
ing Dmax € [20,45]): clearly the practical running times are sub-quadratic, both
on CPU and GPU. These run-times are for tracking the first 25 frames of the
bottle sequence in Figure 3.12.
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Figure 3.15.: Run-times for a sequential and a parallel platform for the sequence in Figure
3.10. The plot shows the dependence of running-times on the maximal displace-
ment Dmax. Note that the number of pixels in the search window increases
quadratically with Dmax.

software is not yet advanced enough to guarantee that a quad-core implementation is faster
than a single-core one.

Another very promising option is the implementation in hardware using so-called field
programmable gate arrays (FPGAs). Their major advantage is the low power consumption,
which would actually allow to use them in a moving vehicle. In addition, their performance
may well beat the graphics card.

3.10. A Highly Deformable Shape Model based on Local Rotation

So far all presented methods were based on finding cycles in a 3D-space. With this method-
ology it is possible to handle moderate amounts of stretching and shrinking as well as global
rotation. However, the methods break down for more complex deformations that do not agree
with comparing tangent angles. One such class of deformations is given by local rotations of
parts of the silhouette, e.g. when the fingers of a hand are moved independently.

This limitation is removed in this section by moving from a 3D-space to a 4D-space. The
additional dimension will allow to also estimate the local rotation angles for each part of the
curve. As before, the program is based on a single template only. In particular, it is not input
a part decomposition of the prior template. Rather it estimates this part decomposition on
its own and in a globally optimal manner.

Figure 3.16 summarizes the characteristics of our method. Unlike before, the input is now
a contour S located in an additionally input image J:{2 — R. For reasons that will become
clear below, the contour S is located inside the image J. The method then re-locates the
contour in another input image I :{) — R, so that the shapes are similar and the intensity
patterns inside the contours match (for details see below). Simultaneously the input shape
is decomposed into coherently moving parts and an alignment of both contours is generated.
As before the output is the global optimum of a discretized ratio functional.
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input shape S and image J.

{ % \ 17 7% W

re-located contour C. generated generated
alignment. part decomposition.

image I (for processing).

inputs outputs

Figure 3.16.: Starting from a prior contour located in an image J, the proposed method simul-
taneously locates a (possibly deformed) contour in another image I, decomposes
the input shape into coherently moving parts and computes a correspondence
function between the two curves.

3.10.1. A Functional Favoring Part Decompositions

To estimate local rotation simultaneously with the deformed contour C and the alignment m,
additionally a rotation function a:S! — S! is estimated. Here a(t) denotes the local rotation
of the curve at the point C(t). As before, all functions can be combined into a single function
I':S! — Q x S! x S which is now a cycle in a four-dimensional space.

To fully exploit the local rotation, the functional (3.6) is changed in several ways. Firstly,
the main shape similarity measure, i.e. the comparison of tangent angles, is adjusted. Recall
that comparing tangent angles is not invariant to rotations. To get a meaningful comparison
the local rotation angle a(t) is hence subtracted from the actually observed tangent angle
ac(t). The arising term is

v [lac(t) - as(m(®)) - a(t)f3 dt .
Sl

Secondly, the function a needs to be regularized - otherwise the shape similarity measure
would become meaningless as one could simply set a(t) = ac(t)—ag(m(t)) for each individual
line segment. For the chosen regularity term it is important to recall that we are aiming at
obtaining a part decomposition, which is nothing else than a piecewise constant function a.
To favor such functions the absolute derivative of a is penalized:

p [lautt)ldt
St

where p > 0 is a weighting factor. More precisely, this functional tolerates discontinuous
functions. In contrast, taking the squared derivative would favor smooth functions over
discontinuous ones.
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Figure 3.17.: For the patch comparison overlaying patches are used (shown only partially).
Each patch considers only the region inside the template. For better visibility
patches are shown alternatingly in red and blue.

S

input template in image J rotated version found patch comp. does patch comp. does
(a patch shown in red). in the second image I.  not respect rotation. respect rotation.

Figure 3.18.: Visualization of patch comparison. The patch comparison needs to respect the
local rotation to compare meaningful regions.

When incorporating these adjustments into functional (3.6), one obtains the functional

S| m (¢
/g(C(t)) dt + 1//]ac(t)—as(m(t))—a(t)]§1 di+ A/\P(%) dt + p/\at(t)\ dt . (3.9)
St St St

Sl

In practice, the global optima of this functional are meaningless: the shape measure allows
too much freedom to work well with a simple edge detector. In the end the contour is placed
in regions of high image gradients and often it self-intersects.

3.10.2. A Refined Data Term based on Patch Comparisons

To overcome these problems, a more selective data term is needed. This new data term is
based on the image J that contains the prior contour S: instead of placing a contour into
an image, from now on a contour is matched across images. This matching process takes
into account a part of the enclosed intensity information in the image J. This is done via
patch comparisons, where for each point S(m(t)) on the prior contour S a circular patch is
compared to a respective region of I around the point C(t). As visualized in Figure 3.17, the
resulting patches are overlapping. Moreover, each patch only considers the region enclosed
by the contour — after all one wants to re-locate the object, while being robust to changes in
the background.

When comparing patches in the presence of local rotation, care has to be taken. To see this,
consider Figure 3.18: when simply translating the patch to its new position, one compares to
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a part of the background. Moreover, the matched pixels will not correspond to one another.
To correctly handle this, the patch has to be rotated as well.

The arising patch comparison function, which additionally also incorporates the edge de-
tector g, is denoted as

hx,y.a) = 9(x) + B[1s, (v + D) wly. ) Sy +2) — [+ Rez)|dz, (3.10)
By

where B, is the ball (or filled circle) with radius r, R, denotes the rotation matrix for angle
a, and w(x,y) is a local weighting function. As in previous chapters, 1g, is the characteristic
function of the region enclosed by S.

In practice a weighting function which also depends on the curve normal of S is used:

1 ifz=0
max (0, -t~ z"ng(y)) else

? Tll]

U)(y, z,1ng (Y)) = {

This way, regions near the boundary are weighted less heavily than in the interior. The arising
minimization problem is now summarized as

min /h(C(t), S(m(t)),a(t)) dt + I//’Oéc(t) —ag(m(t)) — a(t)‘gl dt
Sl

I'=(C,m,a)
Sl
+ A/@(”SH )dt + ,o/|at(t)|dt. (3.11)
Sl

3.10.3. Searching Cycles in a 4D-space

The continuous optimization problem (3.11) is again minimized in the reduced search space of
polygonal functions I'. This function is now composed of line segments AT’ = (AC, Am, Aa).
As before these correspond to edges in a graph where the node set now is

P x{0,...,[S|} x A.

Here A denotes a discrete set of angles. For the sake of brevity the edges and their weights
will not be detailed here. Also, the employed global minimization algorithm is completely
analogous to the 3D case, so it will not be repeated here.

3.10.4. Reducing the Search Space

Since the node set of the 3D-graph is multiplied with a set of rotation angles, the arising 4D-
graphs are rather large. The problem is not so much that our GPU only offers 1 gigabyte of
memory - here we only need to store 2K distance matrices as well as a single traceback matrix
and a few auxiliary matrices. The major problem is the storage of the traceback matrices in
the main memory, which easily exceed the available 4 gigabyte. In addition, the arising run-
times are rather high. This is not primarily due to the larger search space. Rather, the patch
comparisons are computationally very expensive. In particular, they cannot be precomputed
as they depend on both location and rotation angle.
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reference shape + image (#23).

WS

for #26: contour comparison matched to frame #29. matched to frame #31.
+ decomposition into parts.

Figure 3.19.: The proposed algorithm provides a reliable segmentation and matching across
up to seven frames. The arms are not matched as in the prior image only a
small part of one arm forms a part of the silhouette. In some cases the right
foot is not matched due to a white sock becoming visible. (Image data courtesy
of Daimler Research).

7



3. Shape Knowledge in Image Segmentation

To alleviate the problem, two rather mild search space reductions are made: firstly, the
set A only contains angles between —75° and 75° in steps of 15°. Secondly, as in the case
of tracking the maximal motion of each point is limited. However, the employed windows
exhibit a rather mild constraint: Dmax is chosen between 50 and 100.

3.10.5. Experiments

The ability of the presented method to handle large deformations will now be demonstrated
on sequences containing running humans and walking animals. The reader should keep in
mind that the employed shape measure is not tailored towards the motion of living beings:
it assumes that the order of the parts remains the same. However, as one actually deals with
3D-deformations e.g. the order of the legs can change in the images.

Moreover, one should keep in mind that the approach is not input a part decomposition or
even an object model. Naturally, tailor-suited methods are likely to give better performance
on their respective tasks. However, they require manual interaction when switching the task.

In addition, from a scientific perspective it will always be interesting to study how much
prior knowledge is really necessary. So at the very least the experiments in this section show
that certain motions of living beings can be handled with very limited prior knowledge only.

Parameter Settings All experiments contained in this section were run with the same pa-
rameter setting. To allow significant deformations we set the maximal length distortion to
K =5. The patch weight (3 is set to 10/( [z w(0,2)dz), with a disc radius of r = 5. Length
distortion and deviation of tangent angles are penalized by A = v = 0.5. The change of local
rotation angles requires a higher weight — we set p = 5 — as it only enters once for each part
of the limb.

Matching Shapes Across Images Figure 3.19 shows a sequence of a running person, filmed
from a moving car. Here the method deals quite well with the contained strong local rotations,
even in combination with large displacements. Notice that the method generates a part
decomposition as well as a contour alignment based only on the input contour and a reference
frame.

At the same time, it can be seen that the method does not use a part-based object model:
as a consequence, the arm is lost quite soon as it rotates and stretches (i.e. the region which
is part of the object silhouette increases in size).

A sequence of a walking cow is shown in Figure 3.20. The matching works well here as long
as all parts remain visible. In the presence of occlusion errors will arise — occlusion is not
modeled in the functional. Notice how the contour overlay visualizes the gait characteristics
of the cow: two legs remain on the ground, the other two are moving.

Comparison To demonstrate how challenging the data sets are, we have compiled a compar-
ison to related work. This is provided in Figure 3.21. The first experiment demonstrates that
the encountered displacements (up to 40 pixels) are way too much for standard motion esti-
mation algorithms. Here we compare to the recent work of Papenberg et al. [165]. As will be
detailed in Chapter 4.1 state-of-the-art methods find local minima of respective functionals.
Moreover, they cannot handle patch-based data terms.
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reference shape 7 direct matching direct matching
+ image (#8). to frame #10. to frame #14.

"
MO WY
S/

deformation decomposition into frme #15: mismatch
for frame #14. parts (frame #14). of occluded leg.

Figure 3.20.: Matching of a walking cow: despite low contrast between legs and soil, as long as
all parts are visible they are found reliably (Image data recorded by D. Magee.
http://www.robots.ox.ac.uk/ vgg/research/moseg/index.html).

The figure also shows that the edge-based criterion (3.6) does not work well on this kind
of data: if the image contains tree regions, the contour is likely to be placed in these as they
contain high gradients almost everywhere.

When introducing a patch comparison into (3.6) (or, equivalently, removing the rotation
angles from (3.11)), parts that do not rotate are correctly found. If one also wants to handle
local rotation, indeed the full functional (3.11) is needed.

Tracking Deformable Shapes Finally we present results for tracking!! deformable objects.
The advantage here is that large deformations can be decomposed to a sequence of smaller
ones. Figure 3.22 shows indeed that when using the intermediate frames the right foot is much
better captured than in the single-frame matching in Figure 3.19. The object is followed up
to the point where the order of the legs changes. At this point it was expected to break down.

3.11. Discussion

This chapter has presented a method to include a variety of shape similarity measures incor-
porated as prior knowledge into globally optimal segmentation processes. Applications for
image segmentation and tracking were shown.

With the help of a combinatorial algorithm, the employed contour-based methods are able
to locate an object in the image in a translation-invariant manner. Optionally rotational
invariance can be included.

All this is based on minimizing a ratio functional which, compared to line integrals, ex-
hibits a reduced bias towards short curves. The underlying graph-theoretic algorithm runs
in effectively linear time and gives real-time performance when tracking small objects. The

HFor tracking the region indicator 1g,, in (3.10) is set to 1 everywhere: here no region-based segmentation
is available.
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reference shape + image. optic flow prediction [165]. minimum of (3.6)
(edge terms, no local rotation).

proposed method proposed method contour comparison +
without local rotation. with local rotation. decomposition into parts.

Figure 3.21.: Where optic flow and elastic shape measures fail, the proposed method provides
substantially better results. (Image data courtesy of Daimler research).

80



3.11. Discussion

frame #26. frame #27. frame #28.

Figure 3.22.: By matching the silhouette determined for the preceeding frame to the next one,
the running man is tracked over multiple frames.

special structure of the employed algorithm allows very efficient implementations with respect
to memory consumption and running times on sequential and parallel platforms.

Aside from demonstrating excellent performance an various data sets, it has also become
apparent that the employed shape measures are not applicable to any kind of data. These
issues have been known in the shape matching community for decades, see e.g. [9]. Yet,
one should keep in mind that most methods to integrate prior knowledge into segmentation
processes are based on much simpler shape similarity measures.

Once again it should be noted that the presented method is based on a single template
only and that especially the measure presented in Section 3.10 allows to model a very large
class of deformations without exemplar-based learning.

In summary, the presented methods are able to generate on their own much of what is input
into many kinds of higher level algorithms.
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In the previous two chapters we have presented excellent results for image segmentation and
tracking by employing contour-based methods.

A limitation of these methods is that they allow only very limited dependences on the region
interior. As a consequence they are not suitable for a large class of computer vision problems:
the class of correspondence problems. This class contains the very important problems of
motion analysis and surface reconstruction from stereo cameras.

The remainder of this thesis is devoted to one of these problems: the area of motion analysis
in video sequences. At the same time, the focus remains on shape optimization problems
where the aim is to identify objects in the scene by grouping coherently moving points. To
this end, the estimation of point correspondences is combined with region-based segmentation
algorithms.

This chapter starts with an introduction to motion analysis, then proceeds to discuss the
shape optimization problem of motion segmentation. Subsequently the novelty of this chapter
is presented: a real-time approach to motion segmentation.

4.1. Introduction to Motion Analysis

The task of motion estimation is much easier to grasp (or formalize) than image segmentation:
instead of grouping brightnesses one merely has to deal with brightness changes. Only few
real-world objects will change their reflectance properties over time, at least not abruptly (a
mirror might become blind over time, a cupboard be bleached by sun-light etc.).

Certainly this does not imply that the brightness of a moving point in a digital video
does not vary over time — one has to deal with varying shutter times of the employed camera,
shadows, clouds and bright spots caused by reflectance. In addition, reflecting surfaces usually
show the overlay of two differently moving signals.

Still, the assumption that the recorded brightnesses of a moving point undergo only small
variations is a much more intuitive one than the common assumption in region-based image
segmentation that points of similar brightness belong to the same object.

This section starts with a precise description of the problem of motion estimation, then
gives an overview of commonly used data terms. Afterwards it proceeds to describe popular
algorithms for motion estimation.

4.1.1. Motion Estimation

For the problem of motion estimation one is given an input video sequence I over a time
window [0, T, either in gray-scale (1:§2 x [0,7] — R) or in color (I:Q x [0,T] — R3). For
the discussed algorithms the only difference between color and gray-scale is a modified data
term. Since the employed optimization techniques remain the same, this discussion is limited
to gray-scale.
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To keep the discussion simple, the task of motion estimation is stated here for the case
where (instead of a continuous-time signal) two input frames I;: Q2 — R and I5:Q — R are
given. The first was recorded at time 0, the second at time At. The task is to identify for
each point x in the first frame its location y in the next frame. Instead of reporting the next
location, it is common to report the displacement! vector v(x) =y — x.

In practice the (infinite) set of points in the first image is identified with the pixels in the
given discrete image. However, these points are not matched to the discrete set of points of
the second image. Instead it is common to allow real-valued displacement vectors, so pixels
can move between pixels in the second image (so-called subpizel-accurate displacements). The
compound of all displacement vectors is described by a vector field

v:Q—R2.

The task of motion estimation is therefore the estimation of such a vector field. A similar task,
discussed only briefly in this thesis, exists for input sequences consisting of several frames:
here a space-time displacement field v:Q x {1,...,T} — R? is sought.

4.1.2. Basic Data Terms and the Aperture Problem

In motion estimation one deals with brightness changes rather than brightness itself. A very
common assumption is that the brightness of a point varies only fractionally, i.e. the observed
changes are due to camera noise. A widespread data term for motion estimation penalizes
exactly this amount of noise: under the assumption of Gaussian (spatially homogeneous)
noise, this amounts to minimizing

mvin/ (%) — I(x + v(x)))? dx . (4.1)
Q

A unique solution to (4.1) generally does not exist since intensities will occur repeatedly in
the image functions. This is known as the aperture problem which states that from brightness
constancy alone one cannot infer displacements unambiguously. An illustration is given in
Figure 4.1: in the images in the top row, the moving red line is partially occluded by some
black region. Humans usually tend to conclude that the line is moving straight upwards. In
the bottom line, where the occluding region is removed, a human would most likely identify
this assumption as wrong. Hence, to infer motion one cannot treat the points in the image
separately. Instead, one needs to take their context into account.

This is exactly what machine vision algorithms do. There are two major kinds of methods
around: in methods with local support one assumes that some part of the image, say in a
region R C 2, is moving coherently. In the simplest form this motion is described by a
translation vector vp € R?. The arising minimization problem, first proposed by Lucas and
Kanade in 1981 [146], is formalized as

r{gn/ (I1(x) — Ip(x +vg))? dx . (4.2)
R

!This vector is often also called wvelocity. Strictly speaking velocities are only defined for continuous-time
sequences, where they denote the first derivative of the point trajectory. When dividing the displace-
ment vector by At, a discrete approximation of the velocity is obtained. For clarity I will use the term
displacement in this text.
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.
[ ] displacement?

frame 1 frame 2 most likely displacement?
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Figure 4.1.: The aperture problem: locally one can only estimate motion orthogonal to level
lines. When taking the context into account ambiguities can be resolved.

The second kind of approach is based on global support. These methods allow each point to
maintain its own displacement. To overcome the aperture problem they introduce a smooth-
ness term for the displacement field. A basic functional is given by

mvin/ (Il(x) — L(x+v(x)) )2 dx + a/ (]Vu(x)\2 + ]Vv(x)]z) dx (4.3)
Q Q

where v(x) = (u(x) v(x))". A slightly simpler version of this functional was proposed by
Horn and Schunck in 1981 [110].

Both kinds of approaches are employed in this thesis. They are reviewed more closely below.
For a recent evaluation of state-of-the-art methods see the Middlebury optic flow benchmark
http://vision.middlebury.edu/flow/data/.

4.1.3. Solving for the Optimal Displacements

In the functionals (4.2) and (4.3) the displacement (field) v occurs inside the image function
I>. Since images are typically not convex functions, one obtains a non-convex optimization
problem. Global minimization algorithms are so far not known for this problem.

Instead, many methods rely on repeatedly linearizing the functionals, which is detailed here
for the case (4.2) of local support: given some current displacement vy, the image function
I, is approximated by a first-order Taylor expansion:

L(x + vy + Av) = I(x + vg) + VIo(x +vo) TAv . (4.4)

When inserting this expression into (4.2) one obtains a function quadratic in Av. Setting
the derivative to 0 then amounts to solving a linear equation system. The optimal Av can
hence be computed efficiently. However, care has to be taken: there is no guarantee that the
obtained displacement vg + Av reduces the energy. If not, additional effort is needed. A very
successful method to resolve this issue is the method of Levenberg and Marquardt [143, 149]
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which is often chosen in combination with parametric motion models. In methods based on
global support the issue is commonly ignored.

To obtain optimal performance in the presence of large displacements, these algorithms are
combined with so-called multi-scale schemes: initially, the image is downsampled to a very
small scale and motion is estimated at this scale. Then the scale is gradually refined and
at each intermediate scale an update is added. This proves to be much more robust than
working at a single scale since at coarse scales only significant structures are preserved.

Finally, virtually all existing approaches are much robustified by pre-smoothing the images
where commonly a Gaussian kernel with o € [1,3] is used.

4.1.4. Small Displacements

For some applications it is acceptable to assume that only small displacements occur. In these
cases the non-convex data-term (4.1) can be simplified to a convex one. One way of deriving
this term is to set v to 0 in (4.4). When inserting this into (4.2) and simplifying by v = Av
one obtains terms of the form

(I2(x) — I1(x) + VIQ(X)TV)2 .

This can be interpreted as a discretized form of what is known as the brightness constancy
constraint (for small displacements):

(I;(x) + VI(x)"v)? . (4.5)

For continuous-time sequences, this formula can be derived from the assumption that the
intensities along the trajectory of a point x remain constant over time. This can be stated as

I(x + tv) = const

& %I(X+tv) =0,
where v is now a velocity (not a displacement). At time ¢ = 0 one obtains the derivative
I;(x) + VI(x)"v. Equation (4.5) is then obtained by postulating that the derivative be close
to zero.

This equation also gives a continuous form of the aperture problem: since the velocity is
multiplied by the image gradient, only its component in direction of this gradient enters in
the functional. In the orthogonal direction any value could be taken. Hence, from brightness
constancy alone one cannot uniquely determine velocities.

4.1.5. Methods based on Local Support Regions

Methods based on local support assume that parts of the image are moving coherently, i.e.
their motion is well described by a common, low dimensional displacement model. Notice
that this model need not be translatory: e.g. Shi and Tomasi [192] consider affine models.
We will return to this approach in Section 4.2.

In the original work of Lucas and Kanade [146] only the motion of a single patch was
estimated. Nowadays the method is mostly used in engineering. Here people usually use
overlapping patches: for each pixel a patch is formed, then the motion of the pixel is estimated
from this patch.
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The framework has been extended in several ways. One development is the integration of
robust data terms (instead of squared differences) as proposed by Black and Anandan [16, 17].
Many other refinements exist, e.g. [13, 81], but will not be discussed here.

4.1.6. Methods based on Global Support

Methods with global support consider the entire image at once. They allow each point its
own displacement and introduce a smoothness penalty for the displacement field. The original
work of Horn and Schunck [110] considered only small displacements, i.e. it used the data
term in (4.5). Nowadays usually the version (4.3) is considered. It is minimized by repeatedly
applying Taylor expansions to the functional. Minimizing the arising quadratic (and convex)
functionals then amounts to solving linear equation systems.

Functional (4.3) introduces a rather strict smoothness prior since the squared gradient
absolutes of the functionals are penalized. A more recent line of work instead uses the
gradient absolutes themselves. In addition, also the squares in the data term are replaced by
absolutes:

Hgn/ |1 (x) — Ir(x + v(x)) | dx + a/ﬂ(\Vu(x)\ + |Vou(x)]) dx . (4.6)
9)

This kind of functional first appeared in the work of Memin and Perez [155]. It was subse-
quently picked up by Brox et al. [31] (refined by Papenberg et al. [165]) and Zach et al. [213].
The latter method was recently improved by Wedel et al. [205].

When linearizing functional (4.6), a convex but non-differentiable functional arises. To
solve this, the absolute is often approximated by the differentiable and convex function

|z| ~ Va2 +e.

for a small positive e. One then obtains a non-linear equation system. This can be solved via
solving a sequence of linear equation systems - the interested reader is referred to [30, 34].
More recently, methods which handle the exact absolutes became popular - for details see
[213, 169].

Recently priors based on the second derivatives of the flow field were proposed by Trobin
et al. [197].

4.1.7. Visualizing Flow Fields

Visualizing a flow field is not as straightforward as visualizing the outputs of image segmen-
tation or stereo disparity estimation: one has to display two values per image point. This
work adopts the recent trend of using color images to display the desired information.

Here it proves convenient to use an HSV-representation of the color space. The direction
(or angle) of a flow vector is identified with the hue-component (H), its absolute with the
saturation (S). The value (V) is kept at its maximal value of 1. The resulting code is visualized
in Figure 4.2 on the left. To further ease the interpretation of flow fields, the color code has
been integrated into the rim of all presented flow visualizations. For details on the color codes
and also on evaluation measures see [7].
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employé-c-lﬂcolor code. visualization of a flow field. flow field with color code in the rim.

Figure 4.2.: For the visualization of flow fields a color code is used. In this work results are
visualized as in the rightmost image: here the code used for the flow directions is
encoded in the rim of the images. (The color code was generated using the code
provided on the Middlebury benchmark page).

4.2. Related Work on Motion Segmentation

So far we have discussed approaches to motion estimation, i.e. the task to find a correspon-
dence in the second image for each point in the first image. This task is a very low level
one since it does not include reasoning about objects in the scene. For a human observer the
identification of objects is usually more important than a highly accurate displacement field.

The remainder of this chapter is devoted to one such approach: the area of motion seg-
mentation. This problem can be seen either as a very precise model for motion estimation or
as a segmentation problem which exploits the motion of objects. Different authors have put
different emphasis on the respective points.

To employ motion segmentation as a means for very precise displacement estimation it is
combined with the non-parametric methods based on global support that were introduced
in Section 4.1.6. The reader may recall that these methods introduce certain smoothness
assumptions on the displacement fields. At object boundaries these are usually violated.
In combination with motion segmentation the boundaries are modeled explicitly and the
smoothness term is dropped in the respective places. Approaches of this kind include the
work of Memin and Perez [155], Amiaz and Kiryati [3] and Brox et al. [32].

In contrast, there are works which primarily aim at identifying objects. These works are
based on motion estimation methods with local support as introduced in Section 4.1.5. The
major difference here is that now the support region is an entire segment, so it may well
be the major part of the image. The employed motion models are usually low dimensional
parametric models.

The challenge here is to identify the segments as well as their motion simultaneously.
Though easier to handle than the non-parametric approaches given above, this remains a
very challenging optimization problem. It is often called a chicken-and-egg problem since it
is relatively easy to solve for the one quantity when given the respective other. Solving for
both at once is however quite intricate.

This line of work has received much attention. Ayer and Sawhney [6] obtain segmentations
by thresholding soft decisions. Odobez and Bouthemy [163] evolve the segmentation by
flipping pixels. Subsequent methods were able to consistently treat the minimization of a
single energy.

Birchfield and Tomasi [15] alternate graph cut segmentation and motion estimation, the
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latter via warping schemes. Cremers [50] and later Cremers and Soatto [55] present approaches
based on level set segmentation. Cremers and Yuille [57] build on this level set framework,
but propose the use of a probabilistic data term as given by Simoncelli [193].

Space-time motion segmentation (of sequences containing more than two frames) based on
minimizing a single energy was first proposed by Cremers and Soatto [54] who use level sets.
A graph cut-based approach was proposed by Dupont et al. [71].

For the respective segmentation techniques see also Chapter 2.1 on image segmentation.

4.3. Contribution

The main contribution of this chapter is to perform motion segmentation in real-time. To
this end, a fast combinatorial segmentation algorithm is alternated with motion estimation
for the case of small displacements.

To obtain optimal performance, a probabilistic data term modeling errors in the displace-
ments is used. While this was used for motion segmentation before [57], this work is the first
to optimize the noise levels.

This is joint work with Daniel Cremers which was published in the conference paper [180].

4.4. Piecewise Parametric Motion Segmentation

Before we formalize the task of piecewise parametric motion segmentation, a discussion of
the employed data term is given. This term differs from the ones presented in Section 4.1.2
in that it assumes erroneous displacements instead of corrupted image data.

4.4.1. A Data Term based on Erroneous Displacements

Recall from Section 4.1.2 that a common data term in motion estimation is of the form
(I (x) — L(x+v(x)))* . (4.7)

Since this chapter focuses on the identification of objects based on their motion, obtaining
highly precise displacements is not the foremost issue. Instead this precision is traded against
speed and optimization aspects. As a consequence, a data term for small displacements is
used. The reader is reassured that in practice this handles displacements of up to 5 pixels
very well.

In Section 4.1.4 such a data term was introduced as the linearized version of (4.7):

(Ii(x) + VI(x)Tv(x))? . (4.8)

Both (4.7) and (4.8) assume that the desired displacement field will induce zero data terms in
the presence of brightness constancy. The only disturbance they account for is the presence of
camera noise, and the displacement field that minimizes the amount of this noise is considered
the optimal one.

In practice one also has to account for the fact that the model induces systematic errors
on the displacements, either via the smoothness term in non-parametric approaches or via
the imprecise fits induced by parametric models. To sum up, one has to account for the fact
that the displacements are erroneous (or noisy) as well. This aspect was first addressed by
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Simoncelli [193] whose approach is now outlined. For the extension to larger displacements
see the work of Cremers and Yuille [57].
It is now no longer assumed that the optimal displacement estimate v(x) fulfills the relation

Ii(x) + VI(x) v(x) ~ 0.

Instead it is explicitly modeled that the displacement is erroneous. That is, a slightly corrected
displacement v(x) + Av(x) should fulfill the above relation:

I(x) + VI(X)T(V(X) + Av(x)) = 0.
When postulating exact equality this can be equivalently written as
Li(x) + VI(x) ' v(x) = —VI(x)  Av(x) . (4.9)

Under the assumption that the displacement error is isotropic Gaussian distributed, i.e.

AV(X)NN<0,<%2 002 )) )

it follows that — when writing Av(x) = (u(x) v(x))" — one has two independent random
variables distributed as

u(x) ~ N(0,0%) ,
v(x) ~ N(0,07%) .

Now, it is a well-known fact? that when adding two differently but Gaussian-distributed
random variables, the result is again Gaussian-distributed. In the present case this implies

VI(x)"Av(x) ~ N(0,[VI(x)]*0?) ,
and from (4.9) it follows that
Ii(x) + VI(x)"v(x) ~ N(0,|VI(x)]*0?) .

From this relation one directly obtains a new data term corresponding to the negative log-
likelihood:

—log (p(]t(x) + VI(X)TV(X)))

2
It<x>+VI<X>TV<X>> + const . (4.10)

= log(o) + < STV I)]

A more concise derivation would also include image noise. However, if one also wants to opti-
mize for the noise levels — as done in this work — this induces a rather intractable optimization
task. Hence, for computational simplicity this chapter sticks to the term (4.10). This term
is undefined for places with no image gradient (in such places the camera noise is the only
source for errors). To circumvent this problem, the norm of the image gradient is set to at
least 1 everywhere.

2see e.g. http://mathworld.wolfram.com/NormalSumDistribution.html.
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4.4.2. Two-phase Motion Segmentation

This chapter proposes an approach for the estimation of piecewise parametric displacement
fields. To this end, a segmentation into two regions is pursued, where the displacements in
each region are described by a parametric motion model with up to 6 parameters. Extensions
to more than two regions are possible, but not discussed here since the respective optimization
techniques are too time-consuming to agree with the ultimate goal of real-time performance.

Since parametric models only give rough fits to the actual displacements, the above pre-
sented data term (4.10) which accounts for erroneous displacements is used. In contrast to
the work of Cremers and Yuille [57] where a common noise level for all regions was used,
in this work each region =1, 2 is allowed its own noise level ¢;. To induce some notion of
spatial smoothness, the length of the region boundary is penalized.

For the case of translatory displacements, this amounts to the optimization task

2 To )\
. I(x) + VI(x) ' vy)
min E log(o;) + dx + v|C|, 4.11
(R} {vi} (o} ilR/ g(oi) < 0| VI(x)] € (4.11)

where R{ U Ry = Q,Ri N Ry = () and C is the region boundary. In practice translatory
displacements are often too restrictive. As a consequence, in this work also affine models are
used. Commonly affine models are written as v;(x) = A;x + b; with parameters A; € R2*2
and b; € R%.  Yet, in this form solving for the optimal parameters requires substantial
thought. The problem can be circumvented by reverting to the equivalent expression

vi(x) = S(x)9; ,

€T 1 0 0 O
s<x>:< / )

000z y 1

where the parameters are now contained in a vector 9; € RS. Inserting this model into (4.11)
amounts to the optimization task

2 T 2
] Ii(x) + VI(x)'S(x)9;)
min log(o;) + dx + v|C| . 4.12
8 oy 3 [ (e (o o e

Functionals using more intricate parametric models (e.g. quadratic models or homographies)
are conceivable. We have experimented with such extensions but found the affine model to
give the best trade-off between accuracy of the model on the one side and robustness and
quality of the resulting segmentations on the other side.

4.5. Alternating Optimization

The functional (4.11) is minimized via an alternating minimization scheme. Starting from an
initialization, one alternatingly solves for the displacements, the variances and the segments
while keeping the respective other quantities fixed. These steps are iterated until convergence.

Each of the arising sub-problems is solved in a globally optimal manner. This leads to fast
convergence since at each step the maximal possible energy decrease is taken. The respective
steps are now detailed.
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4.5.1. Initialization

The proposed optimization scheme finds a local minimum of (4.12) and is hence dependent on
initialization. Yet, finding a good initialization is outside the scope of this thesis. Moreover,
one of the aims of this chapter is to show how much can be done with a generic initialization.
This way one can better judge how powerful the optimization scheme is.

Since all quantities are estimated by globally optimizing the respective sub-problems, only
two out of three quantities need to be initialized. In fact, since the update of the displacements
does not depend on the variances, it suffices to initialize the regions. To this end the first
frame is simply split into two equally sized vertical bars (see also Figure 4.3). One can then
proceed to estimate initial velocities and finally the variances. For better robustness the
velocities are initialized with a pure translation even if an affine model is used.

As is common in motion estimation, the input images are additionally pre-smoothed. To
save running time, instead of a Gaussian convolution a binomial filter is applied to the images
three times.

4.5.2. Solving for the Displacements

Solving for the displacements is detailed only for the case of the affine model (4.12). However,
from these equations the expressions for the translatory model are easily derived: to this end
one simply identifies v; with a parameter vector 9; € R? and sets S(x) € R?*2 to the identity.

Functional (4.12) is convex and quadratic in ¥, so setting its derivative to zero allows
to solve for the globally optimal displacements. To illustrate this process, the part of the
functional depending on 1; is re-written by applying the binomial formula:

VIx)"
/ <1§(x) + 2Jt(x)ﬁ3(x)m + 97 S(x)

R;

VIx)VI(x)"
TWS@)&) dx .

This is nothing else than a typical quadratic functional
9] M;9; + 2b]9; + ¢

with

X X T
M; :I! <S(X)T%S(X)> dx,

) Vi)
b, _R/ (It(x)mS(x)> dx.

and a constant ¢ € R. Setting its derivative to zero amounts to solving the linear equation
system

Since ¥; is only a six-dimensional vector, this system is easily solved via explicit matrix
inversion. In some cases the matrix is not invertible, however, implying that no unique

solution exists. In such a case an eigenvalue decomposition is done and the O-values are
substituted by a small positive e. The arising matrix is now invertible.
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4.5.3. Solving for the Variances

Solving for the optimal standard deviation o; of a region ¢ can again be solved by setting the
derivative to 0. Standard calculus shows that the optimal variances are given by

1 / (VI(x)"S(x)89; + I;(x))? I
i
R;

2 _
o; =

R VI

4.5.4. Solving for the Segmentation

Solving for the optimal regions is a standard segmentation problem and not much different
from region-based image segmentation, cf. the chapters 1.3.1 and 2.1.1. To obtain optimal
performance on sequential architectures, the graph cut framework is employed as in (1.5),
where an 8-connectivity is chosen. The arising min-cut optimization problem is solved via
the algorithm of Boykov and Kolmogorov [25]. As this algorithm was optimized for two-
dimensional optimization problems occurring in computer vision, it is a logical choice for our
problem.

4.6. Experiments for Two-frame Motion Segmentation

Before we come to the real-time aspect, first some results of the above presented scheme are
shown. The smoothness weight v was set to a value of 6 on a resolution of 320 x 240 pixels.
This weight grows with the square-root of the number of pixels to keep the balance between
region integrals and smoothness term, i.e. to ensure that the continuous problem is correctly
reflected.

Figure 4.3 shows results on three different sequences. In all of them the entire scene is
in motion, i.e. a simple background subtraction would not work. All sequences are well
segmented with a translatory model. When using the affine model, the flow fields improve
substantially and the segmentations slightly. The algorithm needed between 10 and 19 itera-
tions to converge from a generic initialization to the shown meaningful solutions.

Finally, Figure 4.4 compares the proposed data term to the standard term (4.8) for the
affine model. It shows that the proposed term substantially improves the performance on the
Flower Garden Sequence, while being only marginally worse on the Coast Guard Sequence. As
these results depend on the chosen smoothness parameter we checked several such parameters
in a broad range, but found that the results did not differ much.

4.7. Obtaining Real-time Performance

From the presented scheme one can readily devise a real-time capable algorithm. The fun-
damental observation here is that the motion models will not vary substantially throughout
a video sequence. As a consequence, after initialization on the first two frames of a sequence
by optimizing until convergence (which does not run in real-time), for the remaining frames
only one or two iterations are executed. On a sufficiently small resolution this gives real-time
performance.

In summary, the following improvements are made to speed up the algorithm:

e For each frame pair the optimization process is initialized with the previously determined
displacement models and variances.
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initialization on a segmeﬁtation for the flow field for the flow field for the
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Figure 4.3.: Starting from a  generic initialization, the  frames are  seg-
mented by grouping coherent motions. Results are shown for

the  Flower  Garden  Sequence  http://www.cs.brown.edu/ black/,
the Coast Guard Sequence and the Basketball Sequence
http://www.ces.clemson.edu/"stb/research/stereo_multiwaycut/.
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with the standard data term (4.8). with the proposed data term.

Figure 4.4.: For some sequences, the proposed data term substantially improves performance.
The results were generated using affine models.

e The number of iterations is limited to 1 or 2.

e To improve graph cut performance (the major bottleneck of the algorithm) the graph
structure as well as the previous flow values® are kept throughout the sequence. This
allows to use so-called flow recycling. As the smoothness term v|C| does not depend
on the input images (i.e. it is not a weighted length), the simple scheme of Boykov
and Jolly [23] is used. The more complicated case of weighted length was addressed by
Kohli and Torr [130].

4.8. Experiments for Real-time Motion Segmentation

Figure 4.5 shows the result of the real-time phase (again for a smoothness weight of v = 6)
where each frame pair is initialized with the results of the previous frame pair. On the full
resolution of 350 x 240 pixels this is not quite real-time with 17.9 fps for the translatory
motion model. With the affine model performance degrades to 12.6 fps with only a slight
improvement of the segmentations.

Real-time performance can be obtained by downsampling the images to half-resolution
(note that v is then set to 3): the translatory model then produces a remarkable 65 fps, the
affine still 48 fps. And the resulting objects are again identified quite reliably.

All run-times refer to the pure algorithm, i.e. they exclude the time needed for reading
images as well as visualization times. Image smoothing and downsampling are however in-
cluded. The experiments were run on a Core2 Quad processor with 2.66 GHz, where only a

3Recall from Chapter 1.3.1 that the minimal cut of a graph is computed by computing the maximal flow
through the graph.
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"On the half resltlon 65 fps are achieved - real-time.

Figure 4.5.: Results for translatory motion models (shown are frames 7,15,23). On the half
resolution the algorithm is real-time capable.

single core was used. The program was generated by the g++-compiler in version 4.2.1 using
compiler optimization.

Figure 4.6 shows how the run-times arise: for the translatory model the min-cut algorithm
is the major bottleneck. For the affine model, the situation changes: here solving for the
optimal affine models takes nearly as much time as the min-cut algorithm. Simultaneously,
the min-cut algorithm becomes faster as the data terms are now more distinctive.

4.9. Extensions

The focus of this chapter is on real-time motion segmentation, i.e. the task to identify objects
based on their motion at a speed that is applicable for industrial applications.
Nevertheless, it should be mentioned that the presented framework can be extended in

[ Preprocessing [ Preprocessing

Il Calcul. of W Calcul. of
Edge Cost Edge Cost

[ Min-cut I Min-cut

[l Update of Ve- [l Update of Ve-
locities locities

Il Update of Il Update of
Variances Variances

translatory models affine models

Figure 4.6.: Distribution of the running times for a translatory motion model (on full resolu-
tion). For affine models the update of displacements takes only slightly less than
the min-cut.
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several ways at the cost of losing real-time performance. One of these extensions is the
treatment of larger displacements via warping schemes. This is essentially what Birchfield
and Tomasi proposed in [15]. They used the Levenberg-Marquardt algorithm to make sure
that the energy does not increase. We have found this to yield superior performance compared
to a simple line search.

Concerning the data term, one can also consider absolute differences instead of squared
ones. In our experience this does however not lead to better quality segmentations.

Another extension is space-time motion segmentation, i.e. the simultaneous segmentation
of 3 or more frames at once. The length-based smoothness term is then also extended in
temporal direction. A solution based on curve evolution was presented by Cremers and
Soatto in [54]. It is readily extended to employ graph cut segmentation. In this form —i.e. a
single parametric model to describe the motion of all frames — motion segmentation achieves
the most robust performance. At the same time the run-times become quite high: they can
easily exceed half a minute for a 10-frame sequence.

Finally one need not restrict oneself to two regions. Solutions with any number of regions
have been proposed and are handled either via level sets [55] or iterated graph cuts [15, 71].

4.10. Discussion

This chapter has presented a real-time capable algorithm for motion segmentation. By com-
bining a distinctive data term with a fast combinatorial algorithm, objects in the scene can be
identified at a speed that is acceptable for industrial applications. The underlying criterion is
purely based on the motion of objects. Therefore, one can even distinguish objects that have
nearly the same brightness as the background.
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In the previous chapter we have presented a real-time approach to motion segmentation. By
combinedly estimating displacements and segments the algorithm was able to identify the
shape of coherently moving objects in the images.

Still, motion segmentation does not account for the fact that the video is generated by a
single, deforming scene: one cannot obtain a reconstruction of the scene from the algorithm.
In addition, it is assumed that all points remain visible in the next frame. In practice this
assumption is usually violated: objects will occlude each other.

In this chapter we address a topic that resolves both these issues: the task of layer de-
composition. Here the video is modeled as a superposition of a set of moving images, called
layers. These layers represent the scene. In addition occlusion can be handled very naturally
as one deals with a generative model of the video: an occlusion order disambiguates cases
where several layers would be visible in the same position. Before we enter the details, a
survey of the two most closely related lines of works is given.

5.1. Related Work

Two lines of work exist which aim at combining occlusion reasoning with motion-based seg-
mentation processes. Both are now reviewed.

Layered Motion Segmentation

Approaches for layered motion segmentation augment the framework of motion segmentation
(see previous chapter) by occlusion reasoning. Dupont et al. [70] introduce a sophisticated
occlusion model into traditional motion segmentation and minimize it using graph cuts and
expansion moves. The method includes a penalty for occluded points.

Xiao and Shah [209] compare each frame in the sequence to a reference frame. They
introduce an occlusion order constraint which holds approximately for short sequences and
— after a sophisticated initialization stage — minimize using graph cuts on three-state pixel
graphs.

While these methods advance motion segmentation, the two concepts are too closely related
to solve the aforementioned problems. The underlying concept is still the comparison of
intensities across frames. In addition, the employed occlusion models hold only approximately
or make use of heuristic costs.

Layer Decomposition

In layer decomposition the video sequence is decomposed into a superposition of moving
images — the layers. In contrast to motion segmentation, this involves to determine the
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appearance of the objects in addition to their shape. The video frames are now compared to
layer intensities, which allows to model occlusions accurately.

Wang and Adelson [204] set out with the aim to decompose a sequence into a set of images.
Yet, instead of treating a single model (or energy functional), they perform a multi-step
optimization involving the clustering of non-parametric velocity fields.

Subsequent methods were able to treat a single energy functional: Jojic and Frey [119] in-
troduce a multi-layer decomposition method with an accurate occlusion model. They model
the video as a real-valued superposition of layer images and solve this via generalized expec-
tation maximization. Despite convincing results, a limitation of this method is that it neither
includes spatial smoothness nor favors hard decisions to determine which video pixel belongs
to which layer - two important issues to get a true decomposition. These limitations also
apply to the subsequent works of Frey et al. [92] and Williams and Titsias [207] which use
robust penalizers.

Kumar et al. [139] propose a seven-step approach to minimize a model including motion
blur and changes in lighting. This involves a combination of graph cuts and belief propagation.
While from a theoretical point of view this method is rather hard to analyze, it leads to good
results for articulated motion.

5.2. Contribution

This chapter presents an energy minimization approach to layer decomposition. It contains
contributions both to the modeling side (what is being optimized) and the algorithmic side
(how is it optimized).

The presented coding cost model contains the following novelties: (1) It includes a refined
model of the image formation process, known as super-resolution. This accounts for camera
blur and area averaging and allows to extract sharp, high resolution layers from the video
sequence. (2) It introduces regularity terms for all sought entities: the shapes of the layers,
their intensity profiles and their motion. These terms are shown to be crucial to get a
meaningful optimization task.

The algorithmic framework is based on an alternating minimization scheme and includes
the following innovations: (1) Instead of optimizing a video labeling, the proposed method
optimizes over the layer domains directly. This is the key to ensure that occlusions are treated
correctly and allows to regularize the shapes of the layers. (2) An efficient, parallel algorithm
for extracting super-resolved layers is presented.

This is joint work with Thomas Pock and Daniel Cremers. A short version was published
in [184], an extended one has been submitted to a journal.

5.3. From Layers to Video and Back

Given is a video sequence consisting of T" frames with X x Y pixels each. This sequence is
denoted
I:X—-R,

where X = {1,..., X} x {1,...,Y} x {1,...,T} denotes the set of spatio-temporal pixels.
As illustrated in Figure 5.1, layer decomposition approaches introduce a generative model for
this sequence: according to this model, the sequence is formed by a superposition of layers
moving in front of the camera. Layers are planar images which can move non-rigidly over
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Figure 5.1.: The proposed method decomposes the input video into a set of moving layer
images.

time. They can have arbitrary shapes, i.e. need not be rectangular images. The task is to
infer the images together with their shapes and their motion.

5.3.1. Discrete vs. Continuous

An important aspect of this work is a physically consistent model of the image formation
process. It is based on the fact that real-world cameras produce pixel images. For this reason
the input sequence is treated as a discrete set of pixels. The quantities that are sought are
all real-world entities and therefore modeled continuously.

5.3.2. The Basic Setup

The aim is to represent the input sequence I as a superposition of N layer images

IZ‘:QZ‘—>R, iil,...,N,
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video frame ¢

layer 1 layer 2

Figure 5.2.: Illustration of layer order (here for N = 2 layers), motion functions and labelings.
White regions are not in the support of the layer. The following equations hold:
(x.t) = hu(§,1) = ha(2,1) and § = by (ha(2,1),1).

where N is given by the user. The domains €2; C R? are themselves unknown - they define
the shapes of the layers. In the illustrative example in Figure 5.2 they correspond to the
shaded areas.

The layers are moving in front of the camera and their motion is described by functions

h; : Q; x [0,T) — R* .

These functions describe where a layer position appears in the video at a certain time. Ideally
they should be families of diffeomorphisms. That is, when fixing a time ¢ the arising function
should be invertible and differentiable. This condition is imposed for most of the chapter,
but relaxed in Section 5.5.1. Slightly abusing notation, the inverse mapping (from the video
to the layer) for each time ¢ will be denoted h; '(-,¢).

In addition, it is enforced! that h;(x,0) = x for all 7, i.e. at time 0 the layer i maps directly
to the video, without distortion. Without this condition all entities (motion functions, layer
domains and layer images) could only be determined up to a translation.

An important part of layer approaches is an occlusion model. The model used in this
work assumes that the layers are ordered and that layer ¢ occludes layer j only if i < j. An
important aspect of this work follows from this condition: which layer is visible at a video
pixel (x,t) is now uniquely determined by the shapes €2; and the motion h; of the layers.

!For better robustness of the optimization process, in practice the sequence is first mapped to the time interval
[=T/2,T/2].
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These quantities therefore induce a video labeling defining the visible layer for each image
pixel:

[:X—={1,...,N}
I(x,t) = min{i | hy*(x,t) € Q;} . (5.1)

For this expression to make sense one has to impose the constraint that the above set be
non-empty:

V(x,t) € X: {i | hit(x,t) € %} #£0. (5.2)

In case of a violation the moving layers would not generate the video. One of the novelties of
this chapter is to impose this constraint algorithmically.

5.4. A Coding Cost Formulation

In this work it is proposed to measure the quality of a layer decomposition by the cost
for encoding the video via this decomposition. To this end, two coding cost functionals,
corresponding to different models of the image formation process, are given.

When imposing a layer order as in (5.1) a video is uniquely encoded by coding the layer
domains §2;, the intensities I; inside the layer domains and the motion functions h;. To get
back the original input video one finally needs to code some remaining reconstruction noise,
i.e. the differences between the observed and the reconstructed video. This principle is the
basis of both cost functions.

5.4.1. A Basic Coding Cost Formulation

The first model assumes that the input images are captured by a pin-hole camera, i.e. a perfect
perspective projection free of camera blur. Furthermore, the intensity of a pixel reflects a
single point in the scene - in our case the respective point on the visible layer.

Under this model the intensity of a video pixel (x,t) is predicted by the intensity of the
respective position in the visible layer [(x,¢). To get back the original input images the
remaining differences

I(X, t) — Il(x,t) (h;&w (X, t))

need to be coded. It is assumed that a Gaussian model — with fixed variance — gives suitable
code lengths to code these differences.

To code the layer domains it suffices to encode their boundaries 9€2;. It is reasonable to
assume that the code length increases linearly with the boundary length [0€);].

The cost of encoding the layer intensities inside the layer domains depend on the compress-
ibility of the intensity profiles - a constant image would result in a very short code. The
compressibility is well reflected by the total variation of the signal®

/ IV I,(%)| d% . (5.3)
Q;

2To improve readability variables in the layer domains are equipped with a hat in the entire text. Variables
concerning the video domain are denoted without hat.
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| { | \ g

input sequence (5 out of 30 frames).

close-up of input frame. obtained layer with obtained layer with
pin-hole camera model. super-resolution.

Figure 5.3.: Under the assumption of the pin-hole camera the extracted layers are more blurry
than the input frames. In contrast, with super-resolution one obtains fine details
that cannot be seen in any of the input frames. The complete layers are shown
in Figure 5.7.

It remains to encode the motion functions h;. In this work both parametric and non-
parametric ways to encode a motion model are considered. In the parametric case the number
of parameters is fixed to 8 and the corresponding code length overhead is neglected. This
is different for the non-parametric case — the details are deferred to Section 5.5.2. For the
moment the cost for encoding h; is simply denoted as R(h;). Now the arising coding cost is

Motion Layer Decomposition

E({%,I;,h;}) Z(I (5, £) = Ty (B (%, t)))2

(x,t)

+ZR ) + yme

+)\Z/|VIZ-(>”<)|d§< (5.4)
subject to (5.2)

with weighting factors v, A > 0.

5.4.2. A Refined Coding Cost Formulation

The previous section has presented a coding cost functional based on the assumption of a
pin-hole camera. Minimizing the cost usually results in blurry layer images as demonstrated
in Figure 5.3. To a large extent this is due to the inaccurate camera model: real-world
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5.4. A Coding Cost Formulation

cameras induce lens-blur and pixels collect the intensity inside a certain area on the sensor
chip. Models which account for these effects are common in the areas of image deblurring (e.g.
[212, 42]) and super-resolution (e.g. [111, 112, 20, 216, 82]), where the latter field reduces a
video sequence to a single image. In this chapter we extend this idea to a superposition of
layer images.

Mathematically the lens-blur is expressed as a convolution with a Gaussian kernel b. Its
variance is set by the user. If the scene is generated by a single layer, the recorded intensities
can be predicted as

Lyn(x,1) = / b(x) = T (b (X, 1)) dx' (5.5)
Alx)

where A(x) is the pixel area on the sensor element. To model the input sequence as a
superposition of N layers an auxiliary function is introduced. This function expresses whether
a layer is visible at a given video pixel or not:

1 ifi=min {j | hi'(x,t) € Q;
Xi(thHQj}a{hj}):{o IR € ]}- (5.6)

else

The image formation process for the case of N layers is now given as
Isyn(x’ t) = /b(xl) * lz Xi (X/, 13 | {Qj}’ {hj})IZ(h;l(X/a t)) dx’
i

[ S0 (S ) [ < T ()] (57)
Ax) *
where for computational simplicity camera blur across motion boundaries in the camera image

is neglected.
For the coding cost the new model simply requires that different difference images be coded:

Super-resolution Motion Layer Decomposition

E({Qi, ;b)) = D |I(x,t) — Iyn(x, )]

(x,t)
+ 2 R(h) + I/Z|3Q|
+)\Z/|VI |dx (5.8)

subJect to (5.2)

This time the Laplacian distribution is taken to code the difference images. The reason is
discussed in the following section. Minimizing the cost functional (5.8) results in the desired
sharp, fine-detailed images, as shown in Figure 5.3.

5.4.3. Discussion of the Cost Functions

The layer decomposition functionals (5.4) and (5.8) were motivated in terms of coding cost.
From a computer vision perspective, where the aim is to infer the scene structure and not
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glll oima a when c oosing

input sequence. inappropriate regularity terms.

Figure 5.4.: When choosing the wrong regularity terms, layer decomposition provides mean-
ingless solutions: the global optimum is then a single layer obtained by unrolling
the sequence.

to code the video sequence, there are two important points to note here. These are now
discussed.

Choosing the Data Term The first point concerns the data term: the basic functional
assumes a Gaussian distribution, resulting in squared differences. In contrast, the super-
resolved version uses the absolute differences of the Laplacian distribution. The reason for
this is a trade-off between the modeling side and optimization aspects: to get a good (but
slightly imperfect) notion of the layers from a poor initialization, the squared differences are
better suited — the optimization algorithm is less likely to produce poor results. However,
the refined cost will be initialized with the result of minimizing the basic cost. And to get
fine-detailed, super-resolved layer images from a good initialization, the absolute differences
are much better suited.

As a general rule for problems in computer vision, I recommend to use absolutes whenever
the functional can be optimized globally or a good initialization is available — absolutes are
usually the better model. Otherwise I recommend using squares since the obtained local
minima are usually more meaningful.

In the experimental section it is shown that absolute differences handle difficulties such
as specular reflections and imprecise motion models much better than squared differences.
The robustness of absolute differences to outliers is often discussed in the literature. Yet, its
usefulness is usually demonstrated on synthetic data. In the experimental section 5.7 it will
be shown that the effects are actually relevant also for real-world data.

Choosing the Regularity Terms The second point concerns the regularity terms in the layer
space. To the best of our knowledge this work is the first to propose such terms for layer
decomposition. This is surprising since — as shown below — regularity terms are needed and
should affect the quantities one optimizes over - in this case motion, appearance and shape
of each layer.

Indeed for stand-alone super-resolution [216] it is common to regularize the sought intensity
image, where the total variation (5.3) is a good choice [82]: it provides an effective means
to reduce artifacts and tolerates discontinuities in the layer image. Moreover, in cases where
there are more unknowns than input pixels they help to choose among the arising multiple
solutions.
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So far layer decomposition approaches? either did not regularize at all [119, 207] or penalized
the length of the segmentation boundary in the video [139]. Both approaches lead to a trivial
global minimum with zero energy. It is given by a single layer obtained by unrolling the
sequence - see Figure 5.4. A proof is given in Appendix C.

For suitably large parameters A and v the proposed energy does not allow such trivial global
minima. Though useful to remove small, speckled regions, the boundary length regularization
does not guarantee to remove the trivial minima. The major term to ensure this is the total
variation term — or rather the fact that the integrals are carried out over the layer domains
only. Due to its large area an unrolled layer would be assigned a very high cost. Hence, when
choosing A large enough the trivial minimum is likely to be removed for most input sequences
(i.e. provided that the video really shows a single scene).

5.5. Optimizing the Coding Cost

To optimize either of the coding cost (5.4) or (5.8), the algorithm must solve for the shapes
(or domains) €; of the layers, their appearance I; and their motion h;. In some cases one also
wants to optimize the occlusion order. The number of layers is assumed to be given.

Before the optimization algorithm is outlined it is discussed how the quantities to be opti-
mized are represented.

5.5.1. Choosing Suitable Representations

For the optimization scheme it is important to choose convenient representations of each
object. The layer domains €2; are well represented in terms of their characteristic functions:

1, ifxe)

. R2 (R =
L R2 - {0,1}, zz(x)_{o’ e (5.9)

This implicit representation allows to directly read off which points are inside the domain and
which are not. It eases the calculation of region integrals like the total variation term.

The layer intensities I; are represented as images I; : R?> — R. In practice one can only
represent a bounded subset of R? in the computer. The relevant region is computed from the
motion models and updated in conjunction with them.

Finally the motion models need to be specified. For the basic cost a simple parametric
motion model is used. It is affine in space and quadratic in time:

h;(%,t) =X+ S(x,t) ¥, , (5.10)
with
S&.1) = (%t %t é t(? 5?1& got (2 7502>
where % = (2 §)" and ¥9; € R® is a parameter vector. This motion model satisfies the

requirement of invertibility for each time ¢, i.e. it is a family of diffeomorphisms. Yet, for
real-world motion it is often too simple an approximation.

3Note that layered motion segmentation is not affected by this discussion since such approaches do not model
layer shapes or intensities explicitly.
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5. High Resolution Motion Layer Decomposition

To get better motion models, it is optionally allowed to add non-parametric velocity fields
to the parametric motion. It is then no longer possible to guarantee that the models are
invertible. As a consequence only the direction from video frames to layers is modeled:

hil(x,t) = h;l(x, 1) + vi(x) , (5.11)

t

where vi(x) : Q© — R? are non-parametric velocity fields.

5.5.2. Motion Regularity

Having defined the motion models, we will now discuss the cost R(h;) for coding them. In
the parametric case the cost can be neglected. This is different for the non-parametric model,
where a suitable regularity term is given by (where vi(x) = (ul(x) v}(x)))

Rhi' ) =a ) |Vul(x)] + [Voi(x)] .
(x,t)eX

This is a common regularity term found (when written as integrals) in many state-of-the-art
approaches for motion estimation (cf. Chapter 4.1.6). It can be justified in a similar way as
the total variation term for the layer intensities.

5.5.3. Initialization

The optimization scheme used in this work relies on an alternating minimization algorithm
which minimizes first the coding cost (5.4), then later (5.8) where the result of the former is
used to initialize the latter. The algorithm finds a local minimum of each cost functional and
is dependent on initialization. Yet, finding a good initialization is outside the scope of this
work. Indeed one of the aims of this chapter is to show that with the proposed method very
nice results are obtained even with standard initializations.

As a consequence, a very simple initialization scheme is employed which first chops the
input video into N horizontal stripes. Then the motion models are initialized using the
method of Lucas and Kanade [146] in each segment. This is carried out for the frames 1 and
2, assuming a translatory motion.

With the motion models set up the visibility is recomputed so that it respects the layer
order. Afterwards the layer domains and also their intensity profiles can be set up.

5.5.4. QOutline of the Algorithm

To minimize the functionals (5.4) and (5.8) we choose an alternating minimization framework:
iteratively the motion models, the layer domains and the layer appearances are updated. The
process is continued until no further energy decrease is possible, i.e. a local minimum is found.

For the layer domains and intensities globally optimal solutions can be derived efficiently
when fixing the other quantities. For the motion model iterative refinements are computed
via Taylor expansions. Details for each step are provided in the following sections.

The most critical part of the optimization scheme is to find suitable motion models. To
alleviate the problem a multi-scale scheme is used: initially all input images are downsampled
to a coarse scale (92 pixels in x-direction). The previously described initialization process is
performed at this scale. The scale is then successively enlarged (a factor of 1.025 is taken)
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and all quantities are refined. When the original scale is reached the optimization process is
continued until convergence.

This process affects the basic coding cost (5.4). Optimizing the cost (5.8) is an even harder
task, so the result for the basic functional is used as initialization. Furthermore, the motion
parameters 1; are fixed in this second phase and only the non-parametric velocity fields are
updated.

5.6. Alternating Minimization for the Coding Cost

This section gives an in-depth description of how each quantity is updated in the alternating
minimization scheme.
5.6.1. Update of the Motion Models

Above two kinds of motion models were introduced - a parametric one and a non-parametric
one. When minimizing the basic cost functional (5.4) only the parametric one is used. In
the subsequent minimization of the refined cost (5.8) the parametric part is kept fixed. If the
user additionally desires the non-parametric part the velocity fields v are then estimated.
Otherwise no refinement takes place.

Updating the Parametric Models

The update of the motion parameters is based on the relation

S [ (1668) = Dy (i (.1 )
t ke

dh;
%

— Z/Xi(hi(fc,t),t) C(I(hi(&,1),t) — (%)) dx (5.12)
Zt]R2

which switches from the video space to the layer space. For the employed discrete sensor
model this holds only approximately but gives good enough results in practice. One can now
apply the Gauss-Newton method: given a parameter vector 19? one approximates the image
intensity I(h;(%,t),t) corresponding to the parameter vector 99 + Ad; as

(% +S(%,t) (99 + AY;), 1) ~I(%+S(%,1)9%,t) + VI(X +S(%,1)9),1) A9, .

That is, for the image function a first-order Taylor expansion is introduced. When inserting
this into (5.12) one obtains a functional that is quadratic in A1};. However, when setting its
derivative to zero there is no guarantee that the solution will improve the energy of (5.12).
To circumvent this, following Levenberg and Marquardt [143, 149] a term

pllAY;|?

is added. It can be shown that for sufficiently large p the energy cannot increase. Yet, the
larger p, the more steps are needed. Levenberg and Marquardt solve this by multiplying p
by 10 whenever the update increases the energy, otherwise dividing it by 10. Updates that
result in an energy increase are discarded, updates that improve the energy are added to the
previous parameter vector.
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The updates are obtained by setting the derivative of the arising quadratic functional to
zero. They are given by

A9 =M (P xalhi(%.0).) - (5(3) — 1(hi(%,1), 1) S(%. 1) VI(hi(%.0).1))
with

M; = pIl+> [Xi(hi(fc,t),t)- S(fc,t)TVI(hZ-(fc,t),t)VI(hZ-(&,t),t)TS(ic,t)} :

X,t

and where I is the identity matrix.

Updating the Non-parametric Models

The non-parametric model is used only in combination with super-resolution. Updating
motion models when using super-resolution is a difficult problem and to our knowledge so
far nobody managed to give gradient-based solutions. The only solution we know of is an
exhaustive search over some putative motion models [105]. This breaks down if — as in the
present work — the motion models are high dimensional.

As a consequence, a heuristic solution is employed which does not guarantee to find better
velocity fields whenever an energy decrease is possible. It computes a proposal update of each
velocity field, then checks if it decreases the energy. If not, the update is discarded.

To compute the proposal, for every input frame the respective layer is warped according to
the current motion model. The warped layer is then registered against the input frame via
the method of Papenberg et al. [165]. The obtained velocity field is added to the previous
one (in case the energy decreases).

5.6.2. Update of the Layer Intensities

For optimizing the layer intensities, again the two functionals must be treated differently.
However, they share some very important properties: firstly, both functionals are convex
with respect to the layer intensities, so gradient descent leads to the globally optimal layer
appearance. Secondly, both functionals allow to estimate the intensities for each layer sepa-
rately.

Layer Intensities for the Basic Functional

Minimizing the basic functional (5.4) w.r.t. the layer intensities is a special case of the
so-called ROF-model [178] - a point-wise quadratic data term in combination with a total
variation regularity term. Numerous methods exist to minimize such functionals, including
duality-based approaches [39, 37, 214] which make use of Gauss-Seidel solvers or gradient
descent.

In the special case where the total variation term is turned off (A = 0) or replaced by e.g.
area, the intensities are given as the average of the intensities along the trajectory of each
point. Since functional (5.4) is used only to initialize (5.8), this simpler approach is taken
here.
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Layer Intensities for Super-resolution

In combination with super-resolution, the layers are estimated in a higher resolution than
the input frames. In this work, a factor of 3 in each dimension is chosen. The number of
intensity variables then increases by a factor of 9. The arising huge number of variables makes
regularization terms like the total variation (5.3) essential: as long as there are 8 or less input
frames, there are more variables to estimate than input data, so additional terms are needed
to choose between the arising multiple solutions.

The arising sub-problem of (5.8) is still convex in I;, but it now has a more complicated
structure. Where previously Gauss-Seidel schemes were applicable, now gradient descent is
used to obtain the global minimum. The functional derivative in the direction of 7:R? — R

is defined as
oFE

al;

A detailed calculation leads to the gradient descent (where existent)

~ fim (Bl +en) — B(L)] -

n e—0 €

oI, )

E(Y) = _8_Il-(y)
= 3 b )] (1(x,0) - /b(x') « (b (< ) dx )|
ot Ax)
. . dh;(y,¢
XA (hi(§,t)) * b(h; (1)) \%’
. ( VIi(y) )
+Adiv (7A , 5.13
VLG 1)
where X 4(x) is the indicator function for the area of pixel x and
x
U(z) =-—
(x) 2]

For the simpler case of squared data terms, a derivation is given in Appendix D.

For absolute data terms in practice one needs the gradient to be defined everywhere. How-
ever, absolutes are not differentiable at zero. This problem also occurs in the regularization
term.

Two approaches exist to deal with this problem: the first is to approximate the absolute

by the strictly convex function
|z| ~ Va2 +e,

which is differentiable everywhere and — for a small positive € — a very good approximation.
The second possibility is to handle the exact absolutes via so-called dual schemes, see e.g.
[39, 37, 169]. In this work the approximation is used for the data term and the dual scheme
for the regularity term.

The evolution equation (5.13) can be interpreted as follows: the first term drives the layer
intensities (after blurring) towards the observed intensities, whereas the second leads to a non-
linear, discontinuity-preserving diffusion. The practical implementation is a slight variation
of the method described in [216]. One step in the gradient descent is obtained as follows:

e For each input frame one calculates a separate gradient, then all the gradients are added.
The gradient of a frame is obtained as follows:
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— Firstly, the layer is warped according to the motion model to get a high resolution
layer aligned to the input frame. Experimentally, we found it important to exploit
the subpixel-accuracy of the motion models, i.e. to use bilinear interpolation when
extracting layer intensities.

— The obtained high resolution (HR) frame is blurred by the kernel b.

— The resulting blurred HR frame is now downsampled to a low resolution (LR)
frame. Here an area averaging is done rather than the point-wise sample that is
often found in the literature: this is closer to the physical process.

— Now the difference between the obtained LR frame and the input frame is com-
puted. At this point the derivatives of the absolute difference are needed. As
detailed above, the absolutes are replaced by vx2 + €, where € is chosen as 0.01.
The derivative of this term is then given by ﬁ The arising gradient image is
a new LR frame.

— The obtained LR image is upsampled. To get the correct gradient the intensities
in the obtained HR frame must be divided by the squared super-resolution factor
(3 x 3 = 9 in this work): the upsample operator must be the transpose of the
downsample operator.

— The obtained HR frame is blurred by the adjoint (or flipped) blurring kernel. For
isotropic blurs such as b this results in the same kernel.

— The resulting HR frame is now warped backwards onto the HR layer. Again it is
important to exploit the subpixel-accuracy of the motion models. The resulting
intensities are now also multiplied with the Jacobi determinants.

e Finally, to the above obtained gradient of the data term the gradient of the total vari-
ation term is added. For details on this latter gradient see e.g. [169].

In practice gradient descent is not the best choice to solve for the layer intensities. Instead
we implemented a primal-dual algorithm presented in [214]. This algorithm simultaneously
performs a gradient descent on the original (primal) functional and a gradient ascent on its
dual formulation. The latter affects only the total variation term. This algorithm results in
a speed-up of at least an order of magnitude.

To deal with the large number of intensity variables a GPU-based implementation is em-
ployed and the primal-dual algorithm is terminated after 250 iterations. Each of the layers in
Figure 5.1 is now estimated in 25 seconds on a GTX 280 graphics card. The sequence consists
of 30 input frames of size 350 x 240. Layers are estimated in triple super-resolution.

Estimating Intensities Outside the Layer Domains

The procedure discussed so far (whether for the basic cost or the refined one) gives layer
images only inside the domains €2;. Outside these domains neither the data term nor the
TV-regularity term contribute, so one cannot estimate intensities for these places.

For the update of layer domains discussed later on it will however be necessary to define
layer intensities also outside the current estimates of the layer domains. Only then one has a
sensible competition between different hypotheses.

To obtain good hypotheses, the layer intensities outside the current domains should explain
the given input video as good as possible while respecting the motion model of the layer. To
this end, we introduce two modifications into the functional.
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Firstly, the visibility term (5.6) is relaxed so that each layer is partially visible in each video
position. To this end, the else-case in (5.6) is modified from 0 to a small positive e:

if i =min {j | h;'(x,t) € Q;}
Xi(%,t [ {Q;}, {h;}) = :
e else

We use ¢ = 0.01 in practice. This value is small enough not to influence the intensities inside
the current layer domains.

The second modification lies in extending the TV-term outside the current layer domains.
To this end an additional term is added to the functional:

evy /|VIi(§<)|d>“<
i R2\Q;

With these modifications, minimizing the arising functional gives reasonable layer intensities
in all places that might be visible in the video.

5.6.3. Update of the Layer Domains

It remains to solve for the layer domains €2;. This procedure is virtually the same for both
energies (5.4) and (5.8), so we exemplarily detail it for the basic cost (5.4).

The chosen implicit representation (5.9) of the layer domains allows to cast solving for the
layer domains as a binary labeling problem. Solving this is intricate as the layer domains affect
four terms in the functional:

e the data term, since the layer domains determine which layer is visible at each video
position. This is actually a complex dependence: all N layers have to be considered to
determine the visibility at a given video pixel.

e the boundary length, which obviously depends on the layer domains.

e the total variation term since the domain of each integral is the respective layer
domain. This is one of the key factors to remove the mentioned trivial global optima.

e lastly, there is also the constraint (5.2) to be considered: it has to be ensured that for
each video pixel there is some associated layer position.

This last point — to ensure the constraint — is resolved by minimizing the un-constrained
objective function

B({Q Ih) + 7Y (1Y xilx)) - (5.14)

with respect to {€2;}. The additional term is 0 exactly if the constraints are fulfilled. In all
other cases it is at least 7. Hence, when setting « high enough (e.g. to the last determined
energy), the constraint can be ensured.

The novel term, together with the data term, causes a major difficulty since both of them
introduce a term of order N for each video pixel: visibility depends on all NV layers at once.
For the case of 2 layers we present a globally optimal solution, based on graph cuts. For the
case of N > 2 layers such a solution generally does not exist: for a function (containing terms
of any order) to be globally solvable with graph cuts it has to be submodular [104, 14, 135].
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Yet, for N = 3 layers the (ternary) combination of data term and constraint for a single pixel
is not submodular. Neither is any term obtained by flipping the roles of 0 and 1 for any
number of variables?.

Graph Cut-based Optimization

The arising labeling problem is formulated on the layer domains. This is one of the key dif-
ferences to previous graph cut-based layer decomposition methods as these methods perform
a segmentation of the video space.

To form the discrete labeling problem, each layer 7 is discretized into a set D; of spatial
positions. The task is now to determine a binary variable [(X) for each X € D; and each layer
7. With the mentioned representation it is easy to include the notions of length and region
integrals into the graph. The length of each layer boundary is approximated as in [24] — each
layer pixel %X is connected to a set of neighbors (the set Ng(X) of the 8 closest neighbors is
taken) via an edge with a suitable edge weight:

0] ~ > > = —0(Li(%),Li(3))) -

xeD; geNz(X) ‘X y’

The region integrals are approximated by a sum of unary terms (at the expense of a slight
imprecision along the region boundary):

/|VI Zz ) VLX) .

Both the region terms and the length terms are submodular and hence easy to minimize. A
key factor in the following will be that these terms remain submodular when the roles of 0
and 1 are flipped for an entire labeling function /; (here the formulation of the region term
needs to be adapted, i.e. [;(X) must be replaced by (1 —[;(X)) ).

The remaining terms — the data terms (including visibility reasoning) and the constraint
— are sums over video pixels, not layer positions. For the implementation they are grouped
together, resulting in one N-ary term per video pixel (x,t). This term depends on one variable
in each layer. The corresponding spatial position in layer ¢ is denoted X; :hi_l(x, t) for given
(x,t). Here we round to the nearest pixel position to get the corresponding layer variable,
but use bilinear (subpixel) interpolation to determine the layer intensity. The terms are then
written as

>l t{) (had) ((x,8) = L))

x,t i

(1= il t [ {23 ()] (5.15)

where the dependence of the visibility x;(-,-) on the layer domains has been explicitly indi-
cated: this dependence makes optimization difficult. For optimization, the implementation
differentiates between the two-layer case and the multi-layer case.

4This implies that for a video consisting of a single pixel the arising function cannot be optimized with graph
cuts. It is unlikely that for larger videos the functional is submodular when it contains terms that are not.
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5.6. Alternating Minimization for the Coding Cost

The Two-layer Case

For two layers each term in (5.15) can be written as a binary submodular term depending
on the variables l1(X;) and ly(%X2) for the respective (x,t). The constraint term serves to
prevent that both variables are labeled as 0, which would leave the visibility undefined. This
constellation is consequently penalized with . For the remaining three constellations the layer
order implies to take the intensity difference to I1(%y) if [(X1) =1, otherwise the difference to
[2 (5\(2):

EX1%2(0,0) ~

Ex%2(0,1) | [I(x,t) — I2(%2)]’
EX%2(1,0) | [I(x,t) — I(%1)]°
ExX(11) | [I(x,t) — I (%))

In this form the term is not submodular: since v was chosen sufficiently large it holds that
EX0%2(0,0) + EX%2(1,1) > EX1%2(0,1) + B*%2(1,0) .

This is exactly the opposite of the definition of submodular. At this point it is useful to exploit
the property that the roles of 0 and 1 can be exchanged for an entire labeling function. When
inverting the labeling lo(-) one obtains the submodular term

B%(0,0) [ [1061) — B[
EX1%2(0, 1) i

Exl,fm(l’o) [I(x, t) — [1(321)]2
E:’&l,fcg(l’ 1) [I(x,t) — 11(321)]2

The function (5.14) is now written as a sum of submodular, binary terms and can hence be
optimized globally via graph cuts [104, 135].

The Multi-layer Case

In the case of N > 2 layers, the function (5.14) becomes a non-submodular function of binary
variables which contains terms of order N. To my knowledge, little work has been done on
such functions.

The key idea of the presented solution is to exploit the related multi-label problem given
by the labeling (5.1). Multi-label problems are often addressed by expansion moves [27]. We
adopt this approach to our binary labeling problem and design one move for each layer 1.
Each move is a binary submodular labeling problem containing unary and binary terms.

In the move for layer 7 all positions X € D; in layer ¢ are allowed to join the layer, i.e. {;(X)
may either be set to 1 or kept at its previous value. Simultaneously all positions § € D; for
all layers j # i are allowed to leave the support of layer j. That is, [;(§) may either be set to
0 or kept at its previous value. It is important to consider all layers at once: otherwise, once
a layer j becomes visible at a video position during optimization, it could never be replaced
by a layer 7 > j.

For each video position (x,t) there are two possibilities in the move for layer i: either
layer 7 becomes visible or the previously visible layer, say j, remains visible. This decision

is reflected by an additional variable I(x,¢). That is, for each video pixel there is now an
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5. High Resolution Motion Layer Decomposition

Expansion Move for Layer ¢

1. Introduce variables [(%, j) for each layer j = 1,..., N and position X € D;.

2. Introduce variables I(x,t) for each video pixel (x,1).

3. Data terms
For each video pixel (x,t) determine the previously visible layer j.

if j =i then .
add a term EX'(I(x,t)) = [y 0].
else

add a term E*!(I(x,1)) = [(I(x,t) — [;(]))? (I(x,t) — Li(x:))?].

4. Region terms
For each point % in layer i add a term EX(1(%,4)) = [0 |V IL;(X)]].
For each point % in layers j # i add a term EXI(I(%, 7)) = [|VI;(%)| 0].

5. Boundary length
For each point X in each layer i and each point § € N(X) add a term

EX9(1((%,4), (5,1) = [0 v/[x—§] v/|x—F] 0].

6. Consistency (1)
For each position X in layer ¢ previously in the support of layer i add a term
E5'(U(%,1)) = [y 0].
For each position X in layer j # previously not in the support of layer j add a term

EXI(i(%,5)) = [y 0].

7. Consistency (2)
For each video pixel (x,t) determine the previously visible layer j.

if j#1
Determine for each layer k the associated layer position X, = h;l(x, t).
ifi<y
add a term EX0%t(1(%;,1),1(x,1)) =[0 v v 0].
add a term EX9%4(1(%;,4),1(x,t)) = [0 0 v 0]

else
add a term EX0%!(1(%;,1),
add a term EXi3%!(1(R;, ),
For all k£ with j < k <4
add a term EX0FXH([(%,, k), 1(x,t)) =[0 v 0 0].

8. Minimize using graph cuts.

Figure 5.5.: Construction of the energy function associated to the generalized expansion
move for layer i¢. Unary terms are listed as [E(0) E(1)], binary ones as
[E£(0,0) E(0,1) E(1,0) E(1,1)]. The presented form assumes inverted labelings
for layers j # 1.
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5.6. Alternating Minimization for the Coding Cost

additional variable. These variables allow to represent the data terms as unary terms: a
value of 1 means that ¢ becomes visible, a value of 0 that j remains visible.

It remains to ensure that the variables [(x,t) reflect the visibility as induced by the layer
labelings Iy, ...,I{n. This means that three constraints have to be ensured:

1. If i becomes visible (I(x,t)=1), then the respective layer point X; must be in the support
of layer i, i.e. [;(%X;) must be 1.

2. If j remains visible (I(x,¢) = 0) and 7 < j, then %; may not be in the support of i, i.e.
l;(%;) must be 0. Otherwise the occlusion order would be violated.

3. If i becomes visible (I(x,t) = 1) and ¢ > j, then for all j < k < i the variable [;(Xy)
must be set to 0, again to respect the occlusion order.

All of these constraints can be written as (sums of) binary terms combining a video variable
with a layer variable. In all cases there is one constellation with cost 0, all the others have cost
~. However, the latter two are not submodular. To make them submodular one inverts all
labelings for layers j # i. The precise construction of the energy function for each expansion
move is summarized in Figure 5.5.

Quality Guarantees and Related Work

The above section has presented a move scheme for the multi-layer case, where each move
combinedly solves a video labeling and a layer labeling. It should be noted that the scheme
must be initialized with a consistent configuration, i.e. the constraint (5.2) may not be
violated. Then consistency is preserved throughout the scheme.

Although these moves are close to the expansion moves [27], they do not share the factor-
guarantee of these moves: the binary labeling problem (5.14) associated with the multi-layer
case is not of metric form. The energy of the result can therefore be arbitrarily far from the
one of the optimal configuration.

Lastly it should be mentioned that Kolmogorov and Zabih [134] gave a related algorithm
for the quite different task of non-parametric displacement estimation. Their algorithm shares
with ours that it is based on graph cuts and that a notion of consistency is enforced.

5.6.4. Optimizing the Layer Order

The presented occlusion model depends heavily on which layer is deemed to have the number
1, 2 and so forth. In practice it is sensible to optimize this order rather than fix it beforehand.
Yet, we know of no better solution than a brute-force search over all N! permutations. For
two layers this search is indeed performed: the multi-scale scheme is run for both orders up
to half the original scale. Then the order with lower energy is chosen. Alternatively, it was
tried to optimize the order at each individual level. However, this leads to wrong decisions
early on which are never corrected in later stages.

For more than 2 layers performing the brute-force search becomes computationally too
expensive since the optimization scheme for any fixed order already involves the iteration of
graph cuts. Instead it is assumed that faster moving layers correspond to lower occlusion
orders. This assumption includes, but is not limited to, all cases with a static scene and a
moving camera.
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5. High Resolution Motion Layer Decomposition

5.7. Experiments

In this chapter we have presented a number of contributions and improvements. These will
now be evaluated on three real-world sequences containing up to 30 frames each.

The stated coding cost include three parameters: A, v and the width of the blurring kernel.
Values of A = 2757 and v = 0.337 were found to give consistently good results’, where T'
is the number of input frames. Yet, in the end the choice is heuristic. We have therefore
indicated the one case which differs from these parameters.

The width of the blurring kernel was adjusted manually for each sequence. For off-the-shelf
usage we recommend a width of o = 0.5 L, where L is the super-resolution factor in each
dimension.

5.7.1. Super-resolved Layer Decompositions

First we will give results for the refined coding cost functional. This was tested on three
different sequences, each with its own difficulty: for the Pickup Sequence® in Figure 5.7, (we
use v = 5007) one deals with specularities on the can. In the Avengers Sequence shown in
Figure 5.6 the background is moving faster than the foreground. In both cases the algorithm
determines the correct layer order.

The last sequence is the Flower Garden Sequence, where the input images and the result-
ing layers are shown in Figure 5.1 and the induced tight region boundaries in Figure 5.8.
Here some layers contain objects with mixed depths, which requires a non-parametric mo-
tion model. The sequence also demonstrates that more than two layers can be handled: the
process was initialized with 4 layers, then one of them vanished during optimization.

Both the Pickup Sequence and the Flower Garden Sequence are long sequences with 31 and
30 frames respectively. Still it is possible to decompose them into just 2 or 3 layer images.
Moreover, in all cases very precise motion boundaries were found. This is due to the physically
consistent occlusion model. In addition, thanks to the physically consistent camera model
the obtained layer images reveal fine details that were not visible in any of the input images.

5.7.2. Basic Cost, Refined Cost and Robust Data Terms

In this chapter two different cost functionals were proposed. As Figure 5.9 shows, the basic
cost suffices to get tight region boundaries with consistent occlusion reasoning.

Yet, if one also wants a precise reconstruction of the scene, the refined cost becomes crucial:
by modeling physical effects of the image formation process, one can infer very small details
that are not visible in any of the input frames.

When introducing the refined cost, it was argued that the absolute differences in the data
term robustify the layer estimation process. Indeed, it is well known throughout the literature
that absolute differences are robust to outliers, whereas for squared ones already a single
outlier can lead to arbitrarily bad results. Yet, such effects are usually demonstrated on
synthetic data, e.g. by adding salt-and-pepper noise.

5These parameters apply to the basic coding cost. For the refined cost they are divided by 50 to account for
the switch from squared to absolute differences in the data term.

STmage data courtesy of Michael J. Black, http://www.cs.brown.edu/ black/ . We use frames 90 — 120. The
Flower Garden Sequence is obtained from the same source.
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5.7. Experiments

close-up of input frame. close-up of SR-layer.

Figure 5.6.: Input frames and obtained super-resolved layers for the Avengers Sequence. The
algorithm correctly determines that the background is moving faster than the
foreground. In addition, it substantially improves the resolution of the input
data.
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5. High Resolution Motion Layer Decomposition

Figure 5.7.: Layers for the Pickup Sequence. The input frames are shown in Figure 5.3.

Figure 5.8.: Thanks to a physically consistent occlusion model, the proposed layer decompo-
sition induces very tight region boundaries.

basic cost. refined cost.

Figure 5.9.: The basic cost provides tight region boundaries, the refined cost adds precise
layer images.
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5.7. Experiments

squared differences: absolute differences:
artifacts caused by reflections. no artifacts.

Figure 5.10.: Effect of robust and non-robust data terms, demonstrated on real-world data:
robust terms improve the results in the presence of lighting changes.

TRl 1o e T e
squared differences, incorrect
velocities cause severe artifacts. against erroneous velocities.

Figure 5.11.: In combination with non-parametric motion models, the robust data term proves
crucial to get acceptable layer images.
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5. High Resolution Motion Layer Decomposition

close-up of input frame. ~ with parameic motio: with no—paramtric motion:
blurry where objects stand out. sharp everywhere.

Figure 5.12.: Non-parametric motion models are needed when there are objects with different
depths in the same layer.

In this section the robust terms are justified on real-world data. Figure 5.10 shows two
reconstructions for the Pickup Sequence. Since in one frame a specularity on the metal can is
visible, the squared differences produce artifacts. In this case they might still be acceptable.

This is different when using the non-parametric motion models: as shown in Figure 5.11 the
squared data terms produce severe artifacts when the velocity estimates are imperfect. Once
present, these effects cannot be compensated by iterating the processes. To be consistent
with the model, for the squared differences the method of Horn and Schunck was used to
compute proposal velocity fields (this also changes the terms R(h;) which now takes the
squared gradient absolute). It was checked that the same proposals do not cause artifacts
when using absolute differences.

5.7.3. Parametric vs. Non-parametric Motion

Above it was already shown that the use of non-parametric velocities results in fine-detailed
layer images for the Flower Garden Sequence. Figure 5.12 demonstrates the influence of these
motion models: with the parametric part alone, many parts remain blurry. The reason is
that the layer contains objects of different depths. E.g. the trees actually stand in front of
the houses. With the non-parametric model it is still possible to obtain a single, sharp layer
image.

5.7.4. Comparison to Alternative Approaches

Finally, the proposed method is compared to other approaches in motion analysis: Figure 5.13
shows results for the layer decomposition approach of Kumar et al. [139] and two approaches
to motion segmentation: the space-time motion segmentation of Cremers and Soatto [55] and
an unpublished graph cut version. The latter includes image warping.

These results demonstrate that motion segmentation does not provide tight region bound-
aries where the regions become occluded. In particular, none of the two methods identifies
the region between the fingers.

This is different for layer decomposition. While the proposed method can handle the entire
31 frames, the method of Kumar et al. suffers from significant drift [138] when run on more
than 10 frames. Moreover, it splits the thumb into two parts and separates the hand from
the can, although their motion is identical. For fairness it must be noticed that this method
was designed for articulated motion.
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5.8. Discussion

Cremers, Soatto [55] with transl. Space-time affine motion
motion on frames 90 and 91. segmentation via graph cuts.

Kumar et al. [139] Region boundaries induced by
run on frames 90-99. the proposed layer partitioning.
Figure 5.13.: Comparison on the Pickup Sequence: with the proposed method, the tightest
boundaries are obtained.

5.8. Discussion

In this chapter we have presented an energy minimization approach for motion layer decom-
position. The novelties concern both the modeling aspects and the algorithmic side.

From the modeling side we have introduced an energy functional where precisely the en-
tities that are sought are regularized. This particularly includes spatial smoothness on the
layer domains. From the algorithmic side a combinatorial algorithm was introduced to find
the optimal layer domains. It is combined with continuous optimization techniques into an
alternating minimization process.

Experimentally it was shown that the proposed method produces highly accurate repre-
sentations of the scene: it induces very tight region boundaries as well as sharp, fine-detailed
layer images. These reveal details that were not visible in any of the input frames.
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6. Conclusion

In this thesis I have presented and discussed a number of shape optimization problems as
well as a variety of optimization methods to solve them. In the first part (chapters 2 and
3) seemingly intricate problems involving curvature and shape knowledge were shown to be
globally optimizable. From this part, and all the methods discussed in the introduction, I
want to draw two conclusions:

1. Computer vision is not the worst case. Many of the discussed algorithms, including
all those that are employed in this thesis, have at least a quadratic worst case bound for
the running time. The algorithm of Boykov and Kolmogorov [25] does not even have a
polynomial time complexity (at least none was proven so far).

If these worst case bounds were achieved in practice, the respective algorithms would
only rarely be used in computer vision, and in combination with pruning strategies: due
to the large amount of input data per problem instance, only sub-quadratic running-
times are of practical use. Yet, were one to consider only provably sub-quadratic meth-
ods, one would essentially end up with local optimization approaches.

The interesting thing is that this worst case is generally not observed in computer vision
- I do not know of any case where this ever happened. The reader who has discovered
an interesting optimization algorithm with an inacceptable worst case bound should
therefore not refrain from testing its usability for computer vision problems.

2. Linear and convex approaches can be used to treat difficult problems. All
employed global optimization techniques in this thesis are based on minimizing (se-
quences of) linear or convex energy functionals. At first sight this seems to be a huge
restriction - when one considers a model for a real-world problem, at first glance it is
usually neither linear nor convex.

Yet, amazingly many of them can be rewritten in a way that makes these methods
applicable, a process that is known as reduction in computer science. Common tricks are
increasing the problem dimension [5, 114, 170], introducing auxiliary variables [14, 135]
or relaxing a hard problem to an easy one [38, 160].

The problems of motion analysis considered in the second part of this thesis (chapters 4
and 5) are not so easy to treat: here no global optimization schemes are known.

At the same time, this thesis demonstrates that for the respective tasks quite powerful
optimization schemes are available and that they lead to impressive results. In particular,
one can substantially improve the resolution of a given video and reveal details that were not
visible before.

The remainder of this chapter first reflects what was achieved in this thesis, then presents
some directions for future work.
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6.1. Achievements of this Thesis

6.1. Achievements of this Thesis

This section briefly recalls what has been solved in this thesis. Future work is then discussed
in the next section.

e Chapter 2 presents an edge-based approach to image segmentation. It was shown that
the considered optimization task possesses meaningful global optima and for moderately
complex images these often correspond to objects in the scene.

In this edge-based setting global optimization techniques often substantially outperform
local ones. At the same time, curvature-based functionals prove to be a useful means to
establish gap closure. Lastly, for practical usefulness the method must run in effectively
linear (or at least sub-quadratic) time.

All this is addressed by the proposed method: we presented a fully unsupervised method
which integrates curvature regularity and determines globally optimal solutions effi-
ciently.

e The main contribution of Chapter 3 is an efficient (effectively linear-time) method to
handle closed contours when imposing elastic shape priors in image segmentation. Al-
though the known worst-case bounds on the running time are high order polynomials,
in practice the run-times are so low that reasonably large images (e.g. 360 x 240 pixels)
can be treated.

Previously, pixel-accurate methods with similarly favorable running times were only
available for open contours — which does not give rise to segmentations.

The chapter also shows how challenging tracking tasks can be solved in less than a
second. For some sequences this already runs in real-time. In contrast to existing works
on real-time tracking, the proposed method is of a combinatorial nature: it determines
the best solution within an exponentially large space of conceivable ones.

As a final point, an extended model to handle large deformations was presented. This
model allows parts to rotate locally and can hence be applied to data containing artic-
ulated motion.

e Chapter 4 focuses on the real-time aspects of motion segmentation. Motion segmenta-
tion is a very relevant problem as identifying objects by grouping motions is a much
more natural approach than grouping brightnesses. At the same time, many practical
applications require real-time performance. The presented method achieves this via a
fast combinatorial segmentation algorithm.

Moreover, when treating motion segmentation as an inference problem, both the motions
and the segments are to be estimated simultaneously. The proposed method achieves
exactly this and even establishes real-time performance.

e In Chapter 5 the problem of motion layer decomposition is addressed. One of the main
contributions of this chapter is a functional which unifies the areas of layer decomposi-
tion and super-resolution. In particular, this functional introduces spatial smoothness
on the layer domains while simultaneously guaranteeing temporal consistency (i.e. treat-
ing occlusions consistently). Moreover, it integrates a physically consistent model of the
image formation process.
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6. Conclusion

Using this model, the input sequence is decomposed into a set of sharp, fine-detailed
layer images, where previously only blurry ones were available.

6.2. Future Work: Unsolved Problems

Apart from the problems solved in this thesis, there are also some directions for future work:
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e Removal of metrication errors. For the global methods based on curvature regu-

larity (Chapter 2) or shape knowledge (Chapter 3), in this thesis combinatorial shortest
path methods have been used. As a consequence, the approximations of the respective
continuous optimization problems contain a bias towards the principal directions of the
chosen coordinate system.

It would be nice to investigate how these biases can be removed by reverting to con-
tinuous shortest path methods, e.g. [200]. This is actually a challenging task since the
arising shortest path problems are anisotropic ones. And recall from Chapter 1.4 that
methods to minimize the respective energies exist, but it is not clear how to extract the
corresponding minimizing paths.

Also it would be nice to see how the problem with shape knowledge can be extended
beyond the eight-connectivity. The main problem here is that the prior contour is
given as an eight-connected curve. Solving this problem may require to simultaneously
consider different representations of the prior contour.

Improving the parallelizations. Both for the problems with curvature regularity
and with shape knowledge, modern graphics cards (GPUs) allow significant speed-ups
thanks to their parallel nature. Nevertheless, it is a very promising direction to further
pursue the parallelization of these methods. In particular, it would be interesting to
investigate how other parallel platforms can be exploited.

One of these platforms has only recently arisen: multi-core CPUs. This is an inter-
esting platform as usually CPU-code is available anyway, so one would only have to
adapt the existing implementations. Another very promising platform are so-called
field-programmable gate arrays (FPGAs). Their major advantage is their low power
consumption which would actually allow to use the respective methods in autonomous
vehicles.

Marginalizing over motions. It has been argued in this thesis that motion seg-
mentation requires the simultaneous estimation of motion and segments (as opposed to
pre-estimating motions). However, if one is only interested in identifying objects, one
could also consider marginalizing over the motions. For the problem of stereo such an
approach is given in [133]. For the problem of motion segmentation it seems however
unlikely that a marginalization will induce an easier optimization problem.

Continuous segmentation algorithms for motion analysis. For the region-based
problems in the chapters 4 and 5, in this thesis combinatorial algorithms have been
used. As discussed in Chapter 1.4, there are also quite powerful continuous methods.

A promising direction would be to investigate how these methods can be used for the
problems considered in this thesis. For motion segmentation this is straightforward



6.2. Future Work: Unsolved Problems

to integrate. While it seems likely that on the GPU these methods would reduce the
running times, on the CPU this seems currently unlikely.

For the layer decomposition task it is not so straightforward to change the methodology:
here one deals with a reasoning problem across several spaces (the layer domains). Since
the continuous TV-segmentation is heavily based on the embedding in a Riemannian
space, it has to be rethought for this problem.

e Partial transparency in layer decomposition. The layer decomposition approach
presented in Chapter 5 decomposes a video sequence into a superposition of layers.
At the same time, it assumes that at each position in the video only a single layer is
visible. However, in real-world data near object boundaries usually two or more layers
are visible. The scene could even contain transparent objects like bottles or reflecting
surfaces like cars.

It would therefore be nice to investigate how the method presented in this thesis can
be combined with methods like [119, 92] which do consider partial visibility (without
imposing spatial smoothness, however). Here a critical issue is how one can impose the
knowledge that in the interior of layers full visibility is more likely.

Aside from this list of topics, I hope that this thesis will inspire the reader to discover more
directions for future work.

125



A. Existence of Minimizers for the Elastic
Ratio

This chapter is devoted to the proof of existence of a minimizer for the elastic ratio (2.11)
considered in Chapter 2. The presented proof is due to Simon Masnou. It requires the
following assumptions:

e Optimization affects curves in a Sobolev space W4([0,1],Q), ¢ > 1 [79]. Moreover,
there is an upper bound A > 0 on the length of each curve.

e The image I is continuously differentiable in the interior € of €.

e There is a curve where the numerator of the elastic ratio is non-zero (otherwise the
problem is trivial).

For simplicity this section uses a different parameterization of the curves: instead of the

notation C:S! — R? the uniform parameterization C:[0,1] — R? is used. To get a closed

curve it is additionally enforced that C(0) = C(1). This condition is not repeated in the

following. Furthermore, to avoid trouble with indexing, the first derivative of a curve is

written C’ instead of C;. The same holds for the second derivative (C” instead of Cy).
Recall that the optimization problem for the elastic ratio is

[ V1€ nev|c )] d
Sl

max G . (A1)
v|Cll + / ()| [C'(2)] dt
0

Using a uniform parameterization on [0, 1], it can be rewritten as

/01 VI(C(t)) - C'(t)*t dt’

max

: : (A.2)
vl + el [ ic ) d
0

where C’(t)1 denotes the vector C’(t) rotated by Z. Let A > 0 be the upper bound on the
length and define
W3([0,1],9) = {C € W29([0,1],9), [[C|| < A} .

Take a maximizing sequence (C,,)nen of simple closed curves in Wi’q([(), 1], Q) with uniform
parameterization on [0,1]. Without loss of generality, we can assume that there exists an
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aj > 0 so that, for every n € N

1

JALCADRCACR

0

>ap .

1
v|Cll + IICHl’zq/IC'ri(t)lth
0

Due to the regularity of the image I, there also exists an as so that

/VI ). (1" dt‘gQQHCnHSQQA,
thus
1 A
A1CAll+ 1G> [ (G e < 22 (A3)
al
0

and therefore there exists a constant ag so that for every n € N
1
/|c',;(t)|th <az.
0

Observing that €2 is bounded and |C),(t)| = ||C,|| < A for every t € [0,1] and every n € N,
due to the assumption of uniform parameterization, we conclude that the sequence (C;,)nen
is uniformly bounded in W24([0,1],€). Therefore (see for instance [79]), there exists a sub-
sequence, still denoted as (Cy,)nen, that converges weakly in W24([0,1],Q) and strongly in
C1([0,1],Q) to a limit curve C. In addition, ||Cy|| — ||C|| - in particular C € W%%([0,1], )
—and

1 1
/ C" (1)} dt < lim in / ()| dt (A.4)
0 0

Remark that C is not necessarily simple since tangential auto-contacts may occur in the limit.
Let us now check that the limit curve C has strictly positive length. From (A.3), we deduce
that
[Cnll
CL2A

[ e ()itds = €, 2q/|c" Jirdr < 2=
ay
0

Extending Fenchel’s Theorem [67][Theorem 5.7.3] to W24 curves by approximation, we know
[Call
that for every neN, / |k, (s)|ds > 27, From the Holder inequality it follows that
0

I1Cnl
ICal" [ I, (s)17ds > (2m)1
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A. Existence of Minimizers for the Elastic Ratio

thus ||C, ||~ > mﬁ—z)q. Passing to the limit, we conclude that ||C|| > 0. Therefore we can
deduce from (A.4) that

1 1
/IC”(t)Iq dt /|C;;(t)|q dt

v||Cll+ &———— <liminf | v|Cp| + L-n—5——
H || HC”qul N 00 H nH HCnH2q71

In addition, the continuity of VI and the pointwise convergence of C,(t) to C(t) and C/,(t)
to C/(t) for every ¢ € [0,1] imply that

1 1
/VI(Cn(t)) LCL () dt — /VI(C(t)) C(t)-dt
0 0

and we finally conclude that

1

JALCAORCACR
0

/ VI(C(t) - C'(t)" dt
0

> limsup
neN

1 1
vicl+ el [ e d vICal+ €2 [ ICh o) dt
0 0
Since the sequence (C,,) is maximizing, we conclude that C is a curve — limit of simple curves

— that maximizes (A.1l) in Wi’q([o, 1],92). Remark that the same proof could be used to
establish the existence of minimizers among all W29 curves, simple or non-simple.
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B. Convergence of the Discrete Minimizers of
the Elastic Ratio

This chapter gives a proof of convergence of the discrete ratio cycle minimization to the elastic
ratio (2.11). The presented proof is due to Simon Masnou.

More precisely, it is proven that the limit of a converging sequence of discrete simple
minimizers is a minimizer of (2.11) in the continuous domain. Let us first recall that the usual
way to study relations between discrete and continuous minimizers involves a particular notion
of convergence for functionals, the I'-convergence [58]. It has a particularly useful property:
if a sequence of energy functionals F), I'-converges to a functional F' and a sequence (x,) of
minimizers of F,, converges to x, then x is a minimizer of F. In this framework the results
of Bruckstein et al. in [33] are directly related to our problem. Bruckstein et al. consider
the space of rectifiable curves with finite total absolute curvature endowed with the metric d
defined by

d(C1, Cy) W:[Off]li[&u Sup |C1(t) — Cao(¥(1))] ,

with C;, Cq parameterized on [0, 1] and ¥ in the class of all homeomorphisms from [0, 1] to
[0,1]. Then they prove, using the discrete definition of curvature (2.15) and using d as con-
vergence metric for sequences of curves, that the discrete counterpart of [ [kc(t)|?|Cy(t)|dt
computed on polygons with n edges I'-converges to [ |kc(t)|? |Cy(t)| dt as n tends to oo and
the maximal length of polygon edges tends to zero. Now remark that the existence (in the
continuous domain) of a curve maximizing (2.11) is equivalent — if (2.11) is not trivially zero
— to the existence of a curve minimizing

vICl+ [ kel 1Cut)| di
Sl

(B.1)

[ v1©) - ne|cio)d
Sl

in the class of W24 curves with length uniformly greater than a suitable constant. If % denotes
the pixel size, let us define F}, as the functional that associates any polygon P, defined on
the grid with

Fo(Py) = Z d(e) ,

€€Pn

where d(e) is computed as in the previous section and P, is assumed to have a maximal edge
length smaller than % where R is a constant independent of P, and n. According to the
result by Bruckstein et al., F}, I'-converges to the functional

F(C) = v||C]| +/|m(t)|q|ct<t)|dt.
Sl
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B. Convergence of the Discrete Minimizers of the Elastic Ratio

Moreover, the smoothness of I implies that its discrete gradient computed with finite dif-
ferences uniformly converges to the continuous gradient VI. Take any sequence of simple
polygons (P,,) with uniformly bounded length that converges for the metric d to a limit curve
C. Let int(F,) and int(C) denote the sets enclosed by P, and C, respectively, and 1;,(p,),
Li.(c) the associated characteristic functions. By the theory of functions of bounded vari-
ation [1] and possibly taking a subsequence, the derivatives D1,,.(p,) weakly-x converge to
D1, c) as n — oo. It follows from the Gauss-Green Theorem for BV functions [1] that

ec Py

> nte) = [ VIC(®) ne®)Ci(0)]dt
St

d
and we deduce that the ratio ‘266137”((6))’ [-converges to (B.1) as n tends to oo. Therefore,
nie

taking a sequence of simple disceree}?cne minimizers of this ratio, there exists a subsequence
that converges to a minimizer of (B.1) in the continuous domain. Since such a minimizer
is non-degenerate due to the assumption that the length is uniformly bounded from below,
Zeel"n n(e)
Dcer,, 4

subsequence that converges to a minimizer of (2.11) as n — oo. This achieves the proof of

we conclude that for any sequence of simple discrete minimizers of , there exists a

convergence.
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C. Trivial Minima for Layer Decomposition

This chapter details that trivial global minima arise when considering layer decomposition
functionals with regularity terms in the video space. Given is a video sequence I consisting of
T frames each defined on the domain 2 = [0, X — 1] x [0,Y —1]. We consider the task of layer
decomposition, where a video labeling 1:Q x {1,..., T} — {1,..., N} is optimized directly.
This implies that at each video pixel a single layer is visible - transparency is treated at the
end of this section. The number N of layers need not be specified beforehand.

To encourage temporal consistency a term Eyep,p (L, {h;}) is allowed for linking pixels across
frames.

Theorem 1 Let Etenp(l, {h;}) be non-negative and so that uniform labelings have cost zero.
Consider the cost functional

BUALY B = [ 30 (608) = I (bl (1))l
Q t=1

T
Y-S IOR| + Eremp(l, {hi}) (C.1)
t=11i=1

_l’_

(NI

where v >0, Rl = {x € Q|l(x,t) = i} denotes the region i with boundary OR! and the
associated term corresponds to the length of the segmentation boundary. The global minimum
of this energy is given by a single layer moving according to

A tX X
hl(X7t): ( 0 >+Xa

and a labeling [(X,t)=1 everywhere. The layer is given by
t X - -
I1(< 0 ) +x)=1(x,1) .

Proof: Under the mentioned assumptions energy (C.1) is non-negative. The energy of the
given configuration is zero as both the data term and the regularization terms are zero. Hence
the configuration is a global minimum. O

It should be noted that this construction is not possible when the sum over the time frames
is replaced by an integral over time. Yet, any practical implementation will need to discretize
this integral, and for each possible discretization the construction is valid.

A similar theorem!' can be formulated for the works [119, 207] where a video pixel is
modeled as a real-valued superposition of the layer images. As these works do not include
regularization terms a trivial global minimum can be constructed in the same way as above.

!To be precise both works use wrap-around for the transformations. There is no physical justification for
this. The statement applies to the case when the wrap-around is removed.
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C. Trivial Minima for Layer Decomposition

The trivial minima could be avoided by imposing limits on the maximal motion. Still, 1
believe that the cost functional presented in this work is more intuitive, in particular as it is
hard to find the correct limit on the motion. Obviously this limit depends on the input data.

132



D. Functional Derivatives for Super-resolution

This chapter details how the functional derivative of the coding cost (5.8) is derived. For
simplicity only the case of squared data terms is discussed. To further simplify the discussion,
it is limited to the case of a single layer image I1. This section first calculates the derivative
for the case where A\ = 0, i.e. the total variation term is not active. It also abbreviates

my(x) = hl_l(x,t) .

To calculate the derivative one must first calculate the (one-dimensional) derivative in
direction of an image function 7 : R? — R. This derivative is calculated as follows:

oF

ol |,

2

—Z(xt /b ) I (my(x ))d;d)]

A(x)

lim ~ [0(62) — 2> [ (I(X,t) — /b(x’) * I (my(x)) dx’)

x,t A(x)

: ( JREIREECES) dx’ﬂ ] ,

A(x)

where the last equation follows from the binomial formula, i.e.

(a—b—c)*=(a—0b)?+c*—2(a—b)e

and where the first term cancels. With the help of the region indicator x4(x) for the pixel
area of pixel x, the directional derivative can now be written as

_22< X, 1) /b ) * 11 (my(x )dx) /XAx) /bx—x)n(mt( ")) dx" dx’

= —22( X, 1) /b ) * 11 (my(x dx) //XA(x b(x" — x") dx'n(my(x")) dx"

R? R?

- —22< (x,1) /b ) * Iy (my (x dX’> /XA b(x") n(my(x")) dx"
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D. Functional Derivatives for Super-resolution

where in the last line we have made use of the fact that b is a symmetric kernel. To rewrite
this as a scalar product in terms of the function 7, we substitute § = m;(x”) and obtain

= <1(x, ) — / b(x) *Il(mt(x’))dx'>
ot A()

m; (¥
[ X () bl () |t—(y) n() dy

y
R2

_ (B
- 81—1777 .

If additionally the total variation term is active (i.e. A > 0), the gradient is augmented by

a summand of —_—
—\div (&) .
VI (3)
This can be shown using the standard Euler-Lagrange approach.

Notice that the derivation given above is valid only for the parametric motion model since
the nonparametric model is generally not invertible.
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