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Abstract—We propose a combinatorial solution to determine 1) Tracking Deformable ObjectsThe tracking of objects
the optimal elastic matching of a deformable template to an has traditionally been based on feature points [17], [22].

image. The central idea is to cast the optimal maiching of e  giaring from the KLT-tracker [42], subsequent featureesh
template point to a corresponding image pixel as a problem thod din 211, 130

of finding a minimum cost cyclic path in the three-dimension& methods appeared in [21], [30].

product space spanned by the template and the input image. More recently methods have become popular that treat the

We introduce a cost functional associated with each cycle object as an entity [11], [6], [20] rather than an indeperiden
which consists of three terms: a data fidelity term favoring rong  number of parts. Denzler and Niemann [11] consider a set
intensity gradients, a shape consistency term favoring siitarity of patches which are linked by a ray-model. Cremers [6]
of tangent angles of corresponding points and an elastic paity . .
for stretching or shrinking. The functional is normalized with models the_temporal_ evolution of shapes by "fl Qynamlcal,
respect to the total length to avoid a bias toward shorter cuves. autoregressive model in a level set framework. This is eladn

Optimization is performed by Lawlers Minimum Ratio Cycle by Gui et al. [20] to the case of competing priors.
algorithm parallelized on state-of-the-art graphics cards. The While many of these methods are based on minimizing a

algorithm provides the optimal segmentation and point core- g jiaple energy, none guarantees to find the global optimum.
spondence between template and segmented curve in compuitet To i f d id | | mini

times which are essentially linear in the number of pixels. @ the 0 Imprové periormance and avol . poor local minima, re'_
best of our knowledge this is the only existing globally opthal searchers have resorted to stochastic methods such ﬁq)artl

algorithm for real-time tracking of deformable shapes. filtering [2], [12] or Kalman filtering [10]. However, such
methods give neither a guarantee to find good (i.e. low energy
|. INTRODUCTION solutions nor a means to verify if a solution is optimal.
. . . To determine global optima in the presence of significantly
Image segmentation and the tracking of objects are W ming curves has remained an open challenge. Further-
of the most prc_)mlnent topics in computer vision. Numeroqﬁore’ real-world applications typically require fast aigtms
authors have tried to solve these problems based on low-leygy .an run in real-time. Exactly this challenge is solved i
information such as edges or region statistics [25], [33], [ this paper.
[42], [2_1]. However, their success he_ls bgen limited: in-real 2) Shape-based Image Segmentati@he task to partition
world images the low-level information is often corruptedy, jmage into meaningful regions has received considerable
e.g. by changing lighting conditions and low contrast b&we yention in the past. When the limits of low-level methods

object and background. As an example consider Figure(jg; ‘134 [3] became apparent, researchers have endegvor
where a car is tracked in rainy weather. to integrate prior knowledge into segmentation processes.
To cope with such challenges researchers have endeavolrﬁg amount of prior knowledge varies from a part-based

to integrate prior knowledge ir}to the respective segm'ﬂ_mrtat (deformable) object structure [15], [14], [35] over a cotien
processes. _In numerous studies [19], [4]3 [13], [7] this W& shapes [19], [4], [29], [43], [9], [37], [7], [8], [28] to a
shown to significantly improve the resulting segmenta’clongim:]'e shape [13]. We will focus on the latter two categories
However, most of these methods find local minima and hen ce they are closer to our work
require an initialization in the vicinity of the solution.h@ For a long time global approaches to the problem were not
one that does find globally optimal segmentations [13] hagjjaple, which inspired a number of local approachesdase
a qugdratlc memory c_ompIeX|ty. It is hence WeII—surFed fo%n contour evolution [19], [4], [9], in particular using thevel
tracking tasks but for_ pixel-accurate image segmentatign 0 set method [29], [43], [37], [7]. Such methods are bound to
rather coarse resolutions can be handled. _ find local optima of the energy they are optimizing and heavil
In this work we present the first glc_)bally_opumal Shaloedepend on the initial contour. In addition, they are based on
based segmentation method able to yield pixel-accurate SEgner simple shape similarity measures which do not attemp
mentations in effectively linear time. to establish correspondences of parts or points.
Recently Cremers et al. [8] dealt with the first point: stagti
A. Related Work from an implicit representation of shapes and segmenttion
Image segmentation and tracking are closely related prahey are able to find globally optimal segmentations while
lems, yet each with its own history. We therefore review thetaking into account shape similarity to a number of training
separately. shapes. The lack of point correspondences remains, however
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Fig. 1. Tracking a car in bad weather: Despite bad visibiligflections and camera shake, the proposed method alltiasleetracking over a hundreds of
frames.

In contrast, a number of discrete approaches do allow shap
priors based on point correspondences while guaranteein
global optimality: Coughlan et al. [5] are able to match
open contours to images, taking into account an elasticeshap
similarity measure [31], [32]. Being based on dynamic pro-
gramming, the method is in principle parallelizable. Hoerv
it is limited to open contours and hence does not provide
a segmentation. Although the method could be extended t(
closed contours by performing a complete search over thie sta
point, in practice this would be far too time/consuming.

The first globally optimal shape-based segmentation algo
rithm was proposed by Felzenszwalb [13]. It is based on
dynamic programming in chordal graphs. The algorithm is|=
easy to parallelize and invariant with respect to transhti )
rotation and scale changes. In practice, however, due to its——
guadratic memory complexity, pixel-accurate segmematio

can onlv be computed on rather coarse resolution. Fig. 2. Starting from a prior contour (top left) and an inpotaige (bottom
y P left), the proposed method simultaneously locates thes{plysdeformed)
contour in the image (top right) and computes a corresparaduanction

B. Contribution between the two curves (bottom right).

inputs outputs

In this paper we present an effectively linear-time aldonit

to match contours to images. For the firsttime, the globally 016r and fulfill some data-driven criteria. In this worle w
timal matching of closed contours to images becomes feasibl, . it to be located at image edges.

in a matter of seconds (on current graphics hardware). Wh”eFigure 2 gives an illustration of our approach: when input

the employed model bears resemblance to the one in [5], YWEontour and an image, the algorithm locates a deformed
address the computationally more challenging case of dlo !

¢ d reduce the bias t ds short b Sfersion of the contour in the image and computes an alignment
contours and reduce the bias towards short curves by negert, prior contour. Mathematically this alignment is an

to ratio functionals and minimum ratio cycle computation. orientation-preserving functiom : S' — S! which puts the

T_he proposed_ method sgpports d'ﬁefef‘t amounts of 'Bbints on both curves into correspondence. This allows & us
variances, m_cludlng trar?slat_lqnal and_ rotatlona_l ones ek correspondence-based shape similarity measures whiol wer
ploiting its high paralielizability real-ime tracking bemes shown to be important for reproducing human notions of shape

feasible. P
L . . . similarity [18], [26].
Preliminary versions of this paper appeared in [38] for In this paper the optimal pair of and C is characterized

'mage segmenta_tlon and [39] f_or_tracklng. The present PaR the global optimum of a ratio energy. We present a method
contains a more in-depth description of the system as well as

refined discretization of the underlying continuous fuoiaéil. which allows to find the global optima of a large variety of

. . cost functions.
In the experimental section we also rely on results of ouemec The kev idea and contribution of this paper is to cast
work [41] on finding global geodesics. y pap

the problem as an optimization problem over cycles in a

product space. While this was known for open curves [5], the

computationally much more challenging case of closed aurve
We are given a prior contous : S' — IR? (whereS' is has so far not been solved.

the unit circle) with a uniform parameterization. The task i The product space arises by combining the functiérend

to match this contour to a given imade: Q@ — IR, where y, into a single function

Q C IR? is the (typically rectangular) image domain. The

placed contourC : S' — € should be similar to the input r:st—Qxs!

Il. MATCHINGS ASCYCLES IN A PRODUCT SPACE
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Fig. 4. The three ingredients of the proposed method: (a)dge eetector
function assigning low values to high image gradients. @nputation of
tangent angles of the contou€s and S (shown forC, the tangent is drawn
in black). (c) computation of length distortion.

We allow self-intersecting contour€ since we have no
Fig. 3. Cyclic paths in @D graph (no edges are shown): For any poinf€ans to exclude them. We found them to arise only seldomly

on the prior contour there ar& copies of the image in the graph. Any &S long as the desired object is truly contained in the image.
assignment of pixels in the image to corresponding pointshentemplate
contour corresponds to a cyclic path in this graph.

B. Characterizing the Optimal Matching

which is called acycle The space in which these cycles live The optimal contour is characterized as the global minimum
is visualized in Figure 3. It has the form of a torus and aris&f a ratio energy. It combines three terms which are visedliz
by placing a copy of the image for each point on the (on& Figure 4 and now described in greater detail:

dimensional) pl’iOI‘ contour. When Spllttlng a closed contou 1) Data term. The proposed method Supports a Variety of
at some point, it can be viewed as an open one. The space (jfferent data terms. In [40] we used a patch compar-
W0u|d then be a SO|id bIOCk. When addltlona”y imposing that ison a|0ng the contour. Since the contribution of the
start and end point are identical, the respective end fates 0 present work lies in the integration of shape knowledge
the block have to meet and the torus is formed. into globally optimal image segmentation, we restrict

A curve (with winding numbei) in this space now allows ourselves to a simple data term here. It exploits the
to read off the desired information: the cur@eis obtained by know'edge that region boundaries typ|ca||y coincide

projectingI” to the first two dimensions. The correspondences  jth image edges and is based on the simple edge
of the points onC can be read off in the third dimension. detector
1

g(x) = TF VI 1)

IIl. ASSIGNING ACOST TO EACHCYCLE

We now present an exemplary energy functional for match-
ing shapes to images. The presented method applies to a much
larger class of functionals. For example, in [40] we used
a more sophisticated data term based on patch comparison.
Before we state the cost function, we briefly discuss how
curves are represented.

as shown in Figure 4a. Integrating such a positive func-
tion along the contou€C entails a strong bias towards
short curves. To alleviate the problem we normalize by
the contour length, which results in averaging the edge
detector functiory(-) along the contouc:

S{Q(C(S)) ICs(s)ll ds

JICs(s)] ds
st

A. Representing curves

There are infinitely many ways to parameterize a specific
curve. Naturally an optimization problem should not depend
on the chosen parameterization.

=<g>c (2

Shorter curves are still favored, but not as strongly as
The functional we consider in this paper is indeed invariant ~ before. The remaining bias is counteracted by the shape

with respect to re-parameterizations. For most of thisieect similarity measure.

we will therefore not assume any specific parameterization o 2) Similarity of Curve Attributes. This is the first of two

the contourC to be optimized. Yet, in a few places it will

be convenient to have a uniform parameterization, i.e. with

constant derivativg{C;(s)|| = ||C|| everywhere. In the given
setting the correspondence functien is dependent on the
contourC: m(s) will always denote the correspondence of the
point C(s). Hence, if the parameterization @ is changed,
the functionm changes as well.

In subsequent sections we prefer the combined function

I : ' — Q x S'. Since the objective function isot
invariant against re-parameterizations DBf (data term and
shape measure are not coupled), we state it in term€ of
andm.

terms constituting the shape similarity measure. It con-
sists of a comparison of local attributes of corresponding
points C(s) and S(m(s)). In this work — as shown in
Figure 4b — we choose the tangent angles of the curves
as attributes. This implies translational invariance sinc
translating a contour does not change its tangent angles.
The integration of rotational invariance requires extra
effort. This is deferred to Section VI-C.

The similarity of corresponding tangent angles is mea-
sured by their squared cyclic differendec(s) —
as(m(s))|2:, where the difference is taken on the man-
ifold S'. Again we divide by the contour length and get



4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

the average deformation cost 4 3
6 5 XX
2 X X X
J lac(s) — asm()]g [1C.(s)] ds 7 2

JIC.Glds £7%°0,s

2
- / ‘O‘C (5) —as (m(s))|§1 ds @) Fig. 5. A shape is represented as a sequence of pixels onratdiggid.
Sl

where the second line holds for a uniform parameteri- | . the two previous terms, the corresponding regular-

zation of C. _ o ity term takes on the form of a ratio:
3) Penalties for Stretching and Shrinking.
Aside from the monotonicity of the correspondence Ik (M) C(s)|| ds
function, another regularity assumption is made: the VGl 7/ <|S|| |ms|> ds
local stretching and shrinking of the contour are dis- J1ICs(s)|l ds N / ICs(s)]l
St S

favored. The functional hence favors curves which pre-
serve the scale of the prior contour. This counteracts the
shrinking bias of the data term. In practice we observe
a robustness with respect to gradual scale changes.

)
where again equivalence holds for a uniform parameter-
ization of C. This term is scale-invariant in the sense

The amount of stretching and shrinking is characterized that scaling botfC ands by thesameamount does not

as length distortion: consider Figure 4c where a piece | affec_t_the CQSt' )
dS of S corresponds to a piecéC of C, say at the Using positive weighting factors, v > 0 these terms are glued

point C(s). Then the length distortion is given by thel@9ether into a single functional:

quotient|dS|/|dC|. With a uniform parameterization of
S this quotient can be expressed as /g(C(s)) ds + V/‘ac(s) B as(m(S))El ds
|dS]| (s) = S]] [ st s
ac” = e ()] +A/W@ﬂgﬁ)® (6)
Numerous ways to penalize length distortion are con- st Il

ceivable. Before we explain our choice we state a few

properties we consider essential for a penalty functioy/e Staté this for a uniform parameterization Gf. The

, i i , respective terms for arbitrary parameterizations arergive
a) A ratio of1 (no distortion) should be assigned th‘?he discussion above.

penalty0.

b) As the ratio approaches (i.e. |dC| — 0 for fixed
1dS|), so should the corresponding penalty. This V. DISCRETIZING COST AND PRODUCT SPACE
point is crucial as the edge-based data term favorsTo optimize over the cycleF : S — § x S, both the cost
short curves and the shape attribute comparisonfisnction and the product space are discretized. This sectio
independent of scale. deals with the discretization, the optimization algorittisn

c) Preferably the shape similarity measure should Bgitailed in the next one.
symmetric, i.e. comparin@ to S should give the  The key idea is to represef as a polygonal curve with
same cost as comparin§ to C. This implies (an a priori unknown number of) vertices on the pixel grid. In
that the ratio|dS|/|dC| should be given the sameaddition the correspondencee is assumed to be linear along

penalty as its inversglC|/|dS]|. each polygonal line segment. It is therefore uniquely define
The penalty function chosen in this work satisfies ally assigning point correspondences to the two end points
three requirements: of such a segment. Specifically we consider line segments
connecting neighboring pixels on the pixel grid, where we
r—1 ifK>r>1 choose an 8-neighborhood.
T (T - @) = rt-1 ifLt<r<1, (@ A cycleT' can now be composed out of a finite set of basic
|dC]| otrf;r;vise partsAT' = (AC, Am).

Here k' < N is a predefined constant limiting thea pjscretizing Prior Contour and Correspondence
maximum length distortion. This limit will be exploited

in the optimization algorithm. In addition to the cyclel', also the prior contousS is

discretized. As shown in Figure 5, we represent it in the same

P . o . o form as the contouC, i.e. as an ordered sap,...s|g of
This term is indeed invariant against re-parameterizatbC: any such

re-parameterization will also change the correspondemaetibnm and with points On_a suitable pixel g!’ld, where — for ease of nOtat'on__
it its derivative. so = s|g| Is represented twice. To get a dense representation
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of the contour we require tha be among the eight closestC. Setting up the Edge Weights

ne|ghbor_s ofs;_1. . . _ So far we have not considered how to represent the cost of
The discrete correspondence function assigns each 'm398ycler To this end each edgAT is assigned a numer-

pixel on C one of these[S| + 1 prior points. To ensure ,r \weightn and a denominator weight which represent

a monotone .matchmg we enforce that the _start pixel Oftﬁe respective integral of the cost function aloAd". The

segmentAC is assigned a shape point with index lower ogenqminator weight always corresponds to the length of the

equal to that of the endpoint. Closure of the matching Ifre segmentAC

obta;]ineld by rt]h‘;.fa‘:t thats) = SI'O. _ hard Setting up the numerator weights is more intricate. In this
The length distortion penalizer (4) gives two har COrboint we differ from the edge weights given in [38]: We give

stralnts_whlch I|m|t_ the minimal and _maX|_maI dlstortlor_nc_at a refined discretization of the length distortion penaltijak
In the discrete setting these are realized in terms of thieesd better approximates the continuous functional

of the two shape points assigned to a line segment. Th
upper limit corresponds to an index difference of at mist
Ensuring the lower limit is more intricate since here selver
line segmentAC may correspond to the same psgyts; of
S. We therefore allow the two indices to be equal. Howeveftype I) (p,i-K+k) — (q,j-K) withi<j<i+K
for any shape poind; there may be at mogt” partsATI’ where
both endpoints oAC' correspond ta;. where0 <i, j <|S| and0 <k < K are integers ang andq are

In practice this is realized by modifying the corresponaen®eighboring pixels in the image. Edges of type two correspon
functionm: in the discrete setting: maps to pairsi, k) where to assigning an entire line segment to the same shape point.
i gives the shape point arigd< K gives the number of image They are of the form

pixels already corresponding &. If m maps to the sameat ] ] )
the beginning and end of the contour segment, then the ind&¥Pe 1) (p,j-K+k) — (q,j-K+k+1) with k+1 < K

k must be one higher for the end node. This is formalized ifhe numerator weights for these edges are composed as
the following section.

8n the graph we have two types of edges, called type | and
type Il. Type | edges correspond to the assignment of a new
ape pixel. They are of the form

follows:
1) Data term. For both types of edges, the data term
B. From Product Space to Product Graph contributes
With the described partdT it is straightforward to dis- 1
cretize the product spage x S' into a graph. The pieceAT’ 2 Ip—all (g(p) + g(a))-

serve as edges i_n this product graph: a part is the connectio% Comparison of Tangent AnglesWe denote bys(x, y)
of two image pixels with assigned point correspondences the tangent angle of the line segment connécﬁng

for each pixel. Combinations of an image pixel and a point and y. It can be computed via the functicat an2

correspondence can be represented in the state space contained in most standard programming languages. The
V=Px{0,...,K -S|} contribution of this term is then

where P is the set of image pixels. In this setting, consider vip—al e(p,a) — o(s;,8-1)]z.
a partAT' = (AC, Am) where AC connects the pixelp
andq with p corresponding tdi, k) andq corresponding to
(7', k). This part can be seen as a directed edge

again for edges of both types.
3) Length Distortion A simple discretization of the length
distortion penalty would be to add a terinfor type Il

(p,i-K+Fk)— (q,i - K+Fk) edges and\(j — i — 1) for type | edges. Both could be
further multiplied with the distancép — ql|. We used
By construction we have, = sg|, so the indiced) and S| this discretization in previous publications.
are merged into a single state. The result is a torus-likphgra The problem with this discretization is that it assigns no
(of the same form as the product space depicted in Figure 3), cost when a diagonal line (lengtif2) in the image is
where each point on the prior contour is assighéeffames of matched to a horizontal or vertical line (lengthin the
nodes, each containing one node for every pixel in the image. prior template. We therefore now present a refined dis-
For a set of parts (or edgedI" to represent a continuous cretization which is closer to the continuous functional.

cycleT', two properties must be fulfilled: (1) for each edge Type | Suppose the last aligned shape point was point
ending in a node, there must be an edge starting in the node . For an edge of type | one either moves to the direct
and (2) for each(i, k) there may be at most one edge whose  predecessor point=:i-+1 or skips up toK —1 shape
start node hasi, k) as second index. points. In both cases there can be length distortion. This
Property (1) is the usual characterization of a cycle in distortion is computed as
a graph, whereas property (2) states that a cycle may not )
wrap around multiple times in the torus-graph. Computirey th i:
optimal " therefore corresponds to finding the optimal cycle C|dS|  y=ina
in a certain subset of all cycles of the torus graph. !

lIsjr — sjr—1]]

- ldc| Ip—dl
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It is straightforward to compute the penalty by evaluafA. Ratio-Optimization over all Cycles

ing the function (4) on this term. In fact, for edges of Gjyen arbitrary numerator weights(e) and non-negative
type | one could use any other penalty function. genominator weightsi(e) where no cycle is assigned a de-
Type Il This case is more intricate as now several linfominator ofo, Lawler's algorithm finds the cycle of optimal
segments are matched to the same kne;s; of the yatig (7) in the graph.

prior template and the single evaluation of (4) has to be The hasic principle is negative cycle detectionzidte some
distributed over several edge weights. Here we explgiftio and define edge weights

that once it is known that the length distortion ratio is

below 1, the function (4) is linear in—! — 1. Since all w(e) = n(e) — 7de)

polygonal lines have length at leastand an edge of rg fo)10wing equivalence transformations show thatis

type | must already have been alignedsto 1s;, it IS gpqye the optimal ratio if and only if there is a negative eycl
safe to exploit this for all type Il edges.

! ) T w.r.t. w(e):
Letpopi,- - -, Pr—1Pk beall line segments o€ aligned
to s;_1s;. Then the inverse ratio can be written as er(e) <0
ec
k < Yon(e) —7d(e)] <O
> Pk —pr—ill & Ipw — i cer
1 k=1 I -1
r = = T <~ nle <T- d(e
sl 2= s sl e <7 2y dle)
. > eer nle)
An edge of type Il corresponds to only one of these line = T oer dle) i ey <T

segments, so the amis to write the penalty for this r"’F[Notice that the final transformation only holds since the
as a sum over the line segments. If the ratio for the Im(fenominator sum is positive for all cycles

Pop1 Was one or greater the type Il edge can simply be \go initializing ~ with some upper bound on the optimal
given the penalty term ratio, the Minimum Ratio Cycle algorithm proceeds to check
if a negative cycle exists. If one is found,is set to its ratio
and the process is repeated. At some point, the graph will no
longer contain negative cycles. The last found cycle muest th
Our present implementation simply assumes that the optimal: it has cosb for the current ratio and since there
first ratio was at least one. The only case where thig Nno negative cycle, there cannot be a better one.
assumption is violated is when a horizontal or vertical To achieve a (weakly) polynomial running time one ad-
line segment ofC is matched to a diagonal one 8f If ~ ditionally assumes that the edge weight&) and d(e) are
one wants to handle this case correctly, the state spaigtegers. This guarantees a certain minimal distance legtwe
needs to be augmented. Type | edges with this propetwo distinct ratios [24] and a polynomial amount of iterato
would then end in a new state. Type Il edges leaving the worst case. In practice we multiply the continuous
this state would be assigned different length distortiofeights given in the last section with a factor 1f00, then
cost. round to the nearest integer.
It remains to show how a negative cycle can be detected.
This is done by a slight modification of the Moore-Bellman-
V. COMPUTING THEOPTIMAL MATCHING Ford algorithm [16], [33], [1] for distance calculations &

In Section IV-B it was shown that the set of &ll(satisfying grgph with qegat|ve edge weights, but without neggnvees/.cl
Initially all distance labels are set to, except for a given root

the discussed discretization) corresponds to a certaisesub

of all cycles in the torus-like graph spanned by image ann(ide which is initialized with). Then repeatedly all nodes are

. i . checked for whether their distance label can be improved. If
prior template. Each edge in the graph was given two he graph does not have negative cycles, the process teasina
weightsn(e) andd(e), one reflecting the numerator integraf grap g yeies, P

for the corresponding line segment and matching, the otteer 1" polynomial time. Otherwise it does not terminate and at

denominator integral. Functional (6) can now be approxhuiatsome point the predecessor graph will permanently contain
cycles. These cycles correspond to negative cycles and are

Ip— dql?
lIsj —sj—1ll

as ™ n(e) found by regularly checking the predecessor graph for sycle
E() =< 7
(T) > d(e) 0 B. Restriction to the Set of Valid Cycles
ecl’

We are now in a position to find the optimal cycle in the
This function can be optimized ovell cycles in the graph graph. In abou2% of all cases this cycle does not correspond
via the Minimum Ratio Cycle algorithm of Lawler [27]. Thisto a valid continuoug™ since it wraps around multiple times
algorithm was introduced to computer vision by Jermyn and the graph. A straightforward way to exclude this would be
Ishikawa [24]. We will review this algorithm first, then disgs a complete search over the initial correspondence. Theefram
how to restrict the optimization to cycles that correspamdt 0 would then contain only one node in each pass. This would
valid continuoud’. however result in a quadratic run-time.
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Fig. 6. Segmentation with a single template: Despite sicgnifi deformation, scale change and translation, the lingmplate curve (red) is accurately
matched to each image.

Instead we employ a recursive splitting strategy. First @wsually terminates after having visited every node at most
search for the optimal cycle in the graph is run as describéd times for all tested problem instances. During a call of
in the previous section. If this cycle is valid one termisateLawler’'s algorithm, normally less tha0 ratio adjustments
Otherwise frame) is split into as many parts as there arare made. Moreover, there are usually less thamecursive
wrap-arounds in the found cycle, so that all nodes of frémecalls in the subdivision schemes. These numbers already ref
contained in the cycle are assigned to different component® rare cases, the algorithm is usually much faster.

For each of these components a separate ratio minimizationn addition, the algorithm can be sped up by a constant
is run recursively on a graph with modified fraifitethis frame factor. In particular the distance calculation can be peliaéd.
only contains the nodes of the component (in practice alesodwe will come back to this in Section VII, where we show that
are kept and the distance labels of the other nodes in thesframacking can be solved in real-time. For now we present some
are fixed tooco). As initial upper bound the ratio of the lastresults on image segmentation with prior knowledge.
found valid cycle is taken (or the initial one if no valid cgcl
was found).

It is possible that these calls again find invalid optimal
cycles. In this case further splits and recursive calls aadan
In the end the globally best continuoliscorresponds to the In this section we present results for image segmentation

V1. EXPERIMENTSI|: SHAPE-BASED IMAGE
SEGMENTATION

best cycle found in any of the components. with translation invariance: the globally optimal mataiof
. prior curves to a variety of images will be demonstrated on
C. Complexity of the Method real-world data. We also treat the topic of how to incorperat

To conclude this section, we analyze the running tim@tational invariance.
of the described algorithm. In practice it is run with quan- We treat images with significant distortion. As a conse-
tized numerator and denominator weights, i.e. all weighasience we allowk = 5 image pixels to be matched to a
are multiples of some rational > 0. We start by ana- single shape point and set a low length distortion weighl wit
lyzing a single call of Lawler's algorithm. In such a callA=0.1. The tangent angles are given more weight with0.5
each execution of the Moore-Bellman-Ford algorithm has-athis term really drives the process.
complexity of O(|S|?|P|?). From the bound given in [24] it
follows that the employed linear search scheme invokes
most O(|S|?|P2w?w,, /e3) calls of the Moore-Bellman-Ford
algorithm, wherew,, andw, are the maximal numerator and In Figure 6 the contour of a rabbit (viewed from the side) is
denominator weights before quantization. matched to images from two different sequences. In the first

Finally, the recursive subdivision scheme makegP|?) the rabbit is shown from different viewpoints but at the same
calls in the worst case. Together this results in a complexicale. Despite low contrast between object and background
of O(|S|?|P|"w?w, /e3). The memory complexity is linear the algorithm relocates the object reliably. We emphasize
with O(|S| |P]). that despite the similar scale there is significertal length

As detailed in Section VIII-B, in practice we observe a lindistortion. The second sequence demonstrates matchihg in t
ear run-time dependence: the Moore-Bellman-Ford algorithpresence of a global scale change.

Aa.t Translation-invariant Matching
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- [T}

D Fig. 9. The graph is cut open at frande(shown in red) and the frame is
proposed method without length normalization doubled. The arising graph is acyclic. This is the key foicedfit optimization.
(with length normalization)

Fig. 7. The length normalization removes the bias towarasteh curves.

VIl. SPEEDING UP THEALGORITHM

It will now be detailed how to obtain an efficient imple-
mentation of the described algorithm, where we considen bot
memory efficiency and run-time. Some points will apply to
any kind of hardware platform (sequential or parallel) vezer
others are tailored to parallel platforms.

prior contour no rotational invariance with rotational anance .

Fig. 8. By optimizing over all possible rotations, the methbecomes A. Efficient Memory Management

invariant to rotations of the shape, as well. We described the algorithm in terms of a graph. Yet, due
to the large search space standard graph representatens ar
not sensible: they would easily require TeraBytes of mem-

B. On the Effect of Length Normalization ory. Below we describe three points to reduce the memory

In Section IlI-B we introduced the length normalizatiorfonsumption to an amenable level. Together they allow to
to reduce the bias towards shorter curves. This effect RE0Cess images of siz#20 x 240 with roughly one GigaByte
demonstrated in Figure 7: the figure shows the global optir@hmemory.
for the ratio functional and for the numerator integral &on 1) Implicit storage: It turns out that we can use a much
The latter corresponds to the geodesic energy we propose@fimarter representation: although the weights are assigned
[41]: edges, the optimization algorithm stores only distancel&ab

Eyeo(T) = ||C|| - B(T) for nodes Edges can hence be computed on-the-fly, yvh.|ch

in easy due to the regular structure of the nodes. This is a

and is minimized globally by a combination of branch angignificant advantage over maxflow-based algorithms which
bound and shortest path algorithms. store intermediate flows at the edges.

Clearly the ratio functional produces longer curves. We Distance labels are conveniently stored in matrices. In
observe this whenever there is low contrast in some regiogdition one needs to store predecessor entries for eagh nod
along the desired curve. These only need to code the number of the incoming edge.

For K <5 this can be encoded in one byte, otherwise two
bytes are needed. We used four bytes in our implementation.
C. Including Rotational Invariance 2) Sweep-based distance calculatiop obtain further

Aside from translational invariance, sometimes one als§peed-ups we implement the distance calculation by a se-
wants rotational invariance. The proposed framework can Bgence of distance calculations on a related, acyclic graph
easily extended to include this: one simply samples theiosta This graph is obtained by introducing a copy of frarbe
angle in sufficiently dense intervals. The prior contour i@ssigned the numbef| - K. All edges previously ending
rotated by the specified amount and the obtained contourifisframe 0 are connected to the respective nodes in the new
matched to the image. When all angles have been processgme. This is visualized in Figure 9.
the match with lowest energy is output. Now the distance calculation can be performed in sweeps.

The run-time of this process depends linearly on the nurfior the first sweep all distance labels in frathare initialized
ber of sampled angles. In practice, substantial speed-ps with 0. Then, in each sweep the distance labels and predeces-
gained by exploiting a property of the optimization algiomit ~ SOF entries for the frameisto |S|- K are determined. Since the
for the subsequent comparisons one can initialize thevatio - 9raph is acyclic and no edges connect nodes in the same frame,
the last determined one. this can be done by dynamic programming. After each sweep

Figure 8 shows an application for a sequéncentaining the di_stance labels in franeare compare_d to the respective
a significant rotation of the object. Here we sample tHgnes in frameS| - K. If the latter label is below the label
rotation angle betweer90° and+90° in steps of2°. Where in frame0, this label and the corresponding predecessor entry

translational invariance alone failed, the algorithm nowdé are updated. Simultaneously the optimal path ending in @ nod
the desired solution. is backtraced. If a (possibly invalid) cycle is found it must

be negative (since the initial distance w@sand the ratio is
2Image data courtesy of Bodo Rosenhahn. updated.
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Otherwise the ratio is kept and possibly another sweep hdetermined for the previous frame to the current frame. This
to be performed: this is the case if one of the distance labglerforms better than keeping a fixed template since largke-sc
in frame0 was updated. In practice we seldom observe modeformations are decomposed into a sequence of smaller ones
than three sweeps for one ratio. In contrast to image segmentation, for tracking transtatio

3) Intermediate StorageThe final storage-based improvedinvariance is generally not desired. Instead temporal ieotee
ment is less obvious but very important in practice. Befolig exploited, i.e. the knowledge that the next contour wdl b
moving to the details we first observe that during a sweep oakese to the previous contour. We therefore extend funation
does not need all distance labels: the dynamic programmif@) to include a motion penalty:
algorithm processes frames in the order of their numbeceSin
no edge skips more thaR? frames, one only needs to storé min /g(C(s)) ds + y/‘ac(s) — as(m(S))@l ds
the lastK? distance matrices. r=em g 4

Less obvious, but quite important, is the observation that IS 2]
in fact only 2K instead of K2 distance matrices need to bg +>\/\If (W) ds + /P(C(S), S(m(s)))ds (8)
stored. Recall that edges of type | are of the fdmni - K + §1
k) — (q,7- K). The important point is that the correspondin%| _ . .
edge weights dmot depend ork. In the distance calculation ere p is a penalty function for the movement OT points on
only the best of thesé( edges is needed. It corresponds ':?18 cpntou@. Our iramework makes no_assumptlons on this
the optimal start node. This node need be computed only O;gctlon.- it can be non-convex, negative and need not be
for each shape point and each pixel. Since the decision i : erentlablg. ) ) ) )
needed for the followings shape points, this precomputation We experimented with several motion penalties and found it

not only saves memory, but also gives considerable savmg§3f95t to simply limit the maximal motion and treat all remaui
run-time. motions equally:

Taking all these improvements together, images of size
376 x 284 are processed with less tha@h0 MegaByte.

0 if |x—=¥|leo < Dma
)= {1 < o

. The limiting distanceDmax is set betweeri0 and 20 pixels
B. Parallel Implementation . : :
_ _ _ N in practice. A value ofi5 performs well on real-world traffic
In the preVlOUS section We introduced an aUXIIIary acyC||§equenceS and gives real-time performance in some cases.

graph. This graph has the nice property that edges never linkis performance is due to the optimizations presenteden th
two nodes in the same frame. The distances for an entire fraggvious section, but also due to the structureofhe limit

can therefore be determined in parallel. We have implendenign the distance allows to shrink the frames to a small window
this on a graphics card with28 parallel threads, using theggch.

CUDA framework. This reduces the run-times by a fatf Al experiments were carried out on a Core2 Duo machine

about12. with 2.66 GHz. The machine is equipped with a GTX 8800
graphics card which is accessed via the CUDA interface. We
C. Profiting from Smart Initializations give run-times for a sequential implementation on a single c

Our final optimization is to reduce the number of rati(?Ind a parallel version on the GPU.

adjustments in the ratio minimization. In practice this fugm

depends on the quality of the initial upper bound. If the prign. Fast Tracking with Real-time Potential

contour fits entirely into the image, such a bound is easy to . . .

determine computationally: one can simply try several @lac We first present tracking results on challenging real-world

ments of the undeformed contour and calculate the respecﬁ(f"ﬁ'c data, vyhere the algorlt_hm has to deal W'th. d|ﬁ|cu]t
ratios. weather conditions such as rain, shadows and sunlighndalli

We have made particularly good experiences for the prog)i_rectly into the camera. In addition to the poor signal gyal

lem of tracking, where we try displacements of upstpixels one also has to dee_ll w?th varying shutter times. Nevertkeles
in each direction. For the considered problems this restultg]e proposed combination of edge-based data terms and shape

in no more than one ratio adjustment per frame, with Onﬁpngstency performs very robustly on these data.

minimal computational overhead. The results are given én th In SOme cases this is already possible in real-time: the
next section. sequence in Figure 1 (on page 2) was recorded ®@itHps

and is processed at the same frame-rate on the GPU.

Since the run-time depends on the length of the prior
contour, bigger objects cannot yet be processed in rea-tim
In this section we presents results for the problem gfhe sequence in Figure 10 runs3dps. Here the car is tracked

tracking deformable objects (or contours). In the first feampyer the entire sequence (roughl0 frames), despite contour
the contousS is given. Then, subsequently we map the contodeformation, scale changes and shadows.

3 Our final experiment in Figure 11 shows the tracking of a
In our conference paper [38] we erroneously reported arfat800. The bottle in th f Il wh
confusion is probably due to an inappropriate choice of datactures in the transparent bottle in the presence of camera roll, wherereve a
CPU code used for [38]. using a maximal displacement éimax = 25.

VIIl. EXPERIMENTSII: SHAPE-BASED TRACKING
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frame #60 frame #80 ) frame #100 frame #110

Fig. 10. Stable tracking of deforming silhouettes. Thekirag performance is quite robust to changing lighting ctinds (caused by shadows and varying
shutter times).

frame #100. frame #125. frame #150. frame #200.

Fig. 11. Even transparent objects like the bottle can b&adover several hundred frames despite camera rotatiorsuatrstantial background clutter.

B. Run-time Analysis C. Comparison to Other Methods

To analyze the dependence of the running time of theWe compare the proposed method to two other shape-
algorithm on the input size, we processed the fitstrames of based tracking methods, based on the level set method for
the sequence in Figure 11 with varying window sizes. Thekzcal contour evolution. Approaches based on this method
experiments were run on a GTX 280 card an@.66 Ghz usually use region-based data terms since they are ledg like
QuadCore computer (where only a single core was used). to provide poor local optima.

The resulting run-times are plotted in Figure 12. Clearly th We select two different data terms. The first one models
dependence is far from quadratic and very close to linear. a non-parametric intensity distribution via histogramsisT

Finally, as for tracking one has a rather small number pfoved robust for the application in [36], but in our case the
threads, the CPU may be faster than the GPU. For the sequenigject is lost afted frames already. The approach is stabilized
in Figure 1 this is evaluated for various window sizes in Fggu by a patch-based data term, but aftérframes the object is
13: as soon as the size of the search window exceflsx = lost, too. In contrast, the proposed method is successkil ov
10, the GPU implementation is faster. the entire100 frames of the sequence.
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Run-time dependence on the CPU. Run-time dependence onRble G

Fig. 12. Dependence of the run-time on the size of the segrabes(resulting from choosinémax € [20, 45]): clearly the practical running times are
sub-quadratic, both on CPU and GPU. These run-times aredcking the first25 frames of the bottle sequence in Figure 11.

T T T T
CPU (1 core
5 S — ]
8
e 20
g
g
S 15 i ;
5 ' X B L
m Method in [36] on frames 1, 5 and 15:
& wr the object is lost almost immediately.
£
= ol
O 1 1 1 1

5 10 15 20 25 30
maximal displacement D_max
Fig. 13. Run-times for a sequential and a parallel platfoomtifie sequence

LN

in Figure 1. The plot shows the dependence of running-tinmethe maximal . A \ [l Y
displacementDmax. Note that the number of pixels in the search window Results with patch comparison (same frames):
increases quadratically withmax. here, too, the object is lost soon.

IX. CONCLUSION

In this paper we introduced a polynomial-time solution for
matching a given contour to an image despite translatio
rotation, scale change and deformation. The central idéa is
cast the assignment of an image pixel to each template poi
as a problem of finding optimal ratio cycles in3@ graph
that represents the product space of image and template. The
energy that is optimized globally consists of an edge-basg&d. 14. While both simple and sophisticated methods fadlra few frames,
data term and a shape similiarity measure favoring sintylafi itrr:erep:arlc_)t[iar%séed method tracks the object over the entire ondrédrframes -
local edge angles and minimal distortion (stretchingrgtirig)
of the template curve.

On a variety of challenging segmentation and tracking tasks
the proposed algorithm provides reliable results. Spedijic
we showed that one can track cars or even semi-transpargniffectively linear. In addition, real-time performancan be
objects over hundreds of frames despite camera motion, ca§Btained by imposing an upper bound on the maximal velocity,
era shake, changing illumination and prominent backgrouggnstructing a smart initialization and reverting to ancait

clutter. o _ ~ parallel implementation on state-of-the-art graphicsiare.
In contrast to most existing methods for real-time tracking

the proposed method is globally optimal: Among all conceiv- An extension of this algorithm which simultaneously infers
able solutions the algorithm provides the best one in polihe location of articulated parts by computing cyclic paitihs
nomial time. Experimentally we observed that the algorithia respectivel D graph was recently presented in [40].

S v : ._ :'z».;,»
In contrast, tracking with the proposed
method is stable.
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