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Abstract—We propose a combinatorial solution to determine
the optimal elastic matching of a deformable template to an
image. The central idea is to cast the optimal matching of each
template point to a corresponding image pixel as a problem
of finding a minimum cost cyclic path in the three-dimensional
product space spanned by the template and the input image.

We introduce a cost functional associated with each cycle
which consists of three terms: a data fidelity term favoring strong
intensity gradients, a shape consistency term favoring similarity
of tangent angles of corresponding points and an elastic penalty
for stretching or shrinking. The functional is normalized with
respect to the total length to avoid a bias toward shorter curves.

Optimization is performed by Lawler’s Minimum Ratio Cycle
algorithm parallelized on state-of-the-art graphics cards. The
algorithm provides the optimal segmentation and point corre-
spondence between template and segmented curve in computation
times which are essentially linear in the number of pixels. To the
best of our knowledge this is the only existing globally optimal
algorithm for real-time tracking of deformable shapes.

I. I NTRODUCTION

Image segmentation and the tracking of objects are two
of the most prominent topics in computer vision. Numerous
authors have tried to solve these problems based on low-level
information such as edges or region statistics [25], [34], [3],
[42], [21]. However, their success has been limited: in real-
world images the low-level information is often corrupted,
e.g. by changing lighting conditions and low contrast between
object and background. As an example consider Figure 1
where a car is tracked in rainy weather.

To cope with such challenges researchers have endeavored
to integrate prior knowledge into the respective segmentation
processes. In numerous studies [19], [4], [13], [7] this was
shown to significantly improve the resulting segmentations.
However, most of these methods find local minima and hence
require an initialization in the vicinity of the solution. The
one that does find globally optimal segmentations [13] has
a quadratic memory complexity. It is hence well-suited for
tracking tasks but for pixel-accurate image segmentation only
rather coarse resolutions can be handled.

In this work we present the first globally optimal shape-
based segmentation method able to yield pixel-accurate seg-
mentations in effectively linear time.

A. Related Work

Image segmentation and tracking are closely related prob-
lems, yet each with its own history. We therefore review them
separately.

1) Tracking Deformable Objects:The tracking of objects
has traditionally been based on feature points [17], [22].
Starting from the KLT-tracker [42], subsequent feature-based
methods appeared in [21], [30].

More recently methods have become popular that treat the
object as an entity [11], [6], [20] rather than an independent
number of parts. Denzler and Niemann [11] consider a set
of patches which are linked by a ray-model. Cremers [6]
models the temporal evolution of shapes by a dynamical,
autoregressive model in a level set framework. This is extended
by Gui et al. [20] to the case of competing priors.

While many of these methods are based on minimizing a
suitable energy, none guarantees to find the global optimum.
To improve performance and avoid poor local minima, re-
searchers have resorted to stochastic methods such as particle
filtering [2], [12] or Kalman filtering [10]. However, such
methods give neither a guarantee to find good (i.e. low energy)
solutions nor a means to verify if a solution is optimal.

To determine global optima in the presence of significantly
deforming curves has remained an open challenge. Further-
more, real-world applications typically require fast algorithms
that can run in real-time. Exactly this challenge is solved in
this paper.

2) Shape-based Image Segmentation:The task to partition
an image into meaningful regions has received considerable
attention in the past. When the limits of low-level methods
[25], [34], [3] became apparent, researchers have endeavored
to integrate prior knowledge into segmentation processes.
The amount of prior knowledge varies from a part-based
(deformable) object structure [15], [14], [35] over a collection
of shapes [19], [4], [29], [43], [9], [37], [7], [8], [28] to a
single shape [13]. We will focus on the latter two categories
since they are closer to our work.

For a long time global approaches to the problem were not
available, which inspired a number of local approaches based
on contour evolution [19], [4], [9], in particular using thelevel
set method [29], [43], [37], [7]. Such methods are bound to
find local optima of the energy they are optimizing and heavily
depend on the initial contour. In addition, they are based on
rather simple shape similarity measures which do not attempt
to establish correspondences of parts or points.

Recently Cremers et al. [8] dealt with the first point: starting
from an implicit representation of shapes and segmentations,
they are able to find globally optimal segmentations while
taking into account shape similarity to a number of training
shapes. The lack of point correspondences remains, however.
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Fig. 1. Tracking a car in bad weather: Despite bad visibility, reflections and camera shake, the proposed method allows reliable tracking over a hundreds of
frames.

In contrast, a number of discrete approaches do allow shape
priors based on point correspondences while guaranteeing
global optimality: Coughlan et al. [5] are able to match
open contours to images, taking into account an elastic shape
similarity measure [31], [32]. Being based on dynamic pro-
gramming, the method is in principle parallelizable. However,
it is limited to open contours and hence does not provide
a segmentation. Although the method could be extended to
closed contours by performing a complete search over the start
point, in practice this would be far too time/consuming.

The first globally optimal shape-based segmentation algo-
rithm was proposed by Felzenszwalb [13]. It is based on
dynamic programming in chordal graphs. The algorithm is
easy to parallelize and invariant with respect to translation,
rotation and scale changes. In practice, however, due to its
quadratic memory complexity, pixel-accurate segmentations
can only be computed on rather coarse resolution.

B. Contribution

In this paper we present an effectively linear-time algorithm
to match contours to images. For the first time, the globally op-
timal matching of closed contours to images becomes feasible
in a matter of seconds (on current graphics hardware). While
the employed model bears resemblance to the one in [5], we
address the computationally more challenging case of closed
contours and reduce the bias towards short curves by reverting
to ratio functionals and minimum ratio cycle computation.

The proposed method supports different amounts of in-
variances, including translational and rotational ones. By ex-
ploiting its high parallelizability real-time tracking becomes
feasible.

Preliminary versions of this paper appeared in [38] for
image segmentation and [39] for tracking. The present paper
contains a more in-depth description of the system as well asa
refined discretization of the underlying continuous functional.
In the experimental section we also rely on results of our recent
work [41] on finding global geodesics.

II. M ATCHINGS AS CYCLES IN A PRODUCT SPACE

We are given a prior contourS : S1 → IR2 (whereS1 is
the unit circle) with a uniform parameterization. The task is
to match this contour to a given imageI : Ω → IR, where
Ω ⊆ IR2 is the (typically rectangular) image domain. The
placed contourC : S1 → Ω should be similar to the input

inputs outputs

Fig. 2. Starting from a prior contour (top left) and an input image (bottom
left), the proposed method simultaneously locates the (possibly deformed)
contour in the image (top right) and computes a correspondence function
between the two curves (bottom right).

contour and fulfill some data-driven criteria. In this work we
want it to be located at image edges.

Figure 2 gives an illustration of our approach: when input
a contour and an image, the algorithm locates a deformed
version of the contour in the image and computes an alignment
to the prior contour. Mathematically this alignment is an
orientation-preserving functionm : S1 → S1 which puts the
points on both curves into correspondence. This allows to use
correspondence-based shape similarity measures which were
shown to be important for reproducing human notions of shape
similarity [18], [26].

In this paper the optimal pair ofm andC is characterized
as the global optimum of a ratio energy. We present a method
which allows to find the global optima of a large variety of
cost functions.

The key idea and contribution of this paper is to cast
the problem as an optimization problem over cycles in a
product space. While this was known for open curves [5], the
computationally much more challenging case of closed curves
has so far not been solved.

The product space arises by combining the functionsC and
m into a single function

Γ : S
1 → Ω × S

1
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Fig. 3. Cyclic paths in a3D graph (no edges are shown): For any point
on the prior contour there areK copies of the image in the graph. Any
assignment of pixels in the image to corresponding points onthe template
contour corresponds to a cyclic path in this graph.

which is called acycle. The space in which these cycles live
is visualized in Figure 3. It has the form of a torus and arises
by placing a copy of the image for each point on the (one-
dimensional) prior contour. When splitting a closed contour
at some point, it can be viewed as an open one. The space
would then be a solid block. When additionally imposing that
start and end point are identical, the respective end faces of
the block have to meet and the torus is formed.

A curve (with winding number1) in this space now allows
to read off the desired information: the curveC is obtained by
projectingΓ to the first two dimensions. The correspondences
of the points onC can be read off in the third dimension.

III. A SSIGNING A COST TO EACHCYCLE

We now present an exemplary energy functional for match-
ing shapes to images. The presented method applies to a much
larger class of functionals. For example, in [40] we used
a more sophisticated data term based on patch comparison.
Before we state the cost function, we briefly discuss how
curves are represented.

A. Representing curves

There are infinitely many ways to parameterize a specific
curve. Naturally an optimization problem should not depend
on the chosen parameterization.

The functional we consider in this paper is indeed invariant
with respect to re-parameterizations. For most of this section
we will therefore not assume any specific parameterization of
the contourC to be optimized. Yet, in a few places it will
be convenient to have a uniform parameterization, i.e. with
constant derivative‖Cs(s)‖ = ‖C‖ everywhere. In the given
setting the correspondence functionm is dependent on the
contourC: m(s) will always denote the correspondence of the
point C(s). Hence, if the parameterization ofC is changed,
the functionm changes as well.

In subsequent sections we prefer the combined function
Γ : S1 → Ω × S1. Since the objective function isnot
invariant against re-parameterizations ofΓ (data term and
shape measure are not coupled), we state it in terms ofC

andm.

g(x)
1

|∇I(x)|

C

C(t) αC(t)
dC

dS

(a) (b) (c)

Fig. 4. The three ingredients of the proposed method: (a) an edge detector
function assigning low values to high image gradients. (b) computation of
tangent angles of the contoursC andS (shown forC, the tangent is drawn
in black). (c) computation of length distortion.

We allow self-intersecting contoursC since we have no
means to exclude them. We found them to arise only seldomly
as long as the desired object is truly contained in the image.

B. Characterizing the Optimal Matching

The optimal contour is characterized as the global minimum
of a ratio energy. It combines three terms which are visualized
in Figure 4 and now described in greater detail:

1) Data term. The proposed method supports a variety of
different data terms. In [40] we used a patch compar-
ison along the contour. Since the contribution of the
present work lies in the integration of shape knowledge
into globally optimal image segmentation, we restrict
ourselves to a simple data term here. It exploits the
knowledge that region boundaries typically coincide
with image edges and is based on the simple edge
detector

g(x) =
1

1 + |∇I(x)| , (1)

as shown in Figure 4a. Integrating such a positive func-
tion along the contourC entails a strong bias towards
short curves. To alleviate the problem we normalize by
the contour length, which results in averaging the edge
detector functiong(·) along the contourC:

∫

S1

g(C(s)) ‖Cs(s)‖ ds

∫

S1

‖Cs(s)‖ ds
= <g>C (2)

Shorter curves are still favored, but not as strongly as
before. The remaining bias is counteracted by the shape
similarity measure.

2) Similarity of Curve Attributes. This is the first of two
terms constituting the shape similarity measure. It con-
sists of a comparison of local attributes of corresponding
pointsC(s) and S(m(s)). In this work – as shown in
Figure 4b – we choose the tangent angles of the curves
as attributes. This implies translational invariance since
translating a contour does not change its tangent angles.
The integration of rotational invariance requires extra
effort. This is deferred to Section VI-C.
The similarity of corresponding tangent angles is mea-
sured by their squared cyclic difference|αC(s) −
αS(m(s))|2

S1 , where the difference is taken on the man-
ifold S1. Again we divide by the contour length and get
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the average deformation cost

∫

S1

∣

∣αC(s) − αS(m(s))
∣

∣

2

S1
‖Cs(s)‖ ds

∫

S1

‖Cs(s)‖ ds

=

∫

S1

∣

∣αC(s) − αS(m(s))
∣

∣

2

S1
ds (3)

where the second line holds for a uniform parameteri-
zation ofC.

3) Penalties for Stretching and Shrinking.
Aside from the monotonicity of the correspondence
function, another regularity assumption is made: the
local stretching and shrinking of the contour are dis-
favored. The functional hence favors curves which pre-
serve the scale of the prior contour. This counteracts the
shrinking bias of the data term. In practice we observe
a robustness with respect to gradual scale changes.
The amount of stretching and shrinking is characterized
as length distortion: consider Figure 4c where a piece
dS of S corresponds to a piecedC of C, say at the
point C(s). Then the length distortion is given by the
quotient|dS|/|dC|. With a uniform parameterization of
S this quotient can be expressed as1

|dS|
|dC| (s) =

‖S‖ |ms|
‖Cs(s)‖

Numerous ways to penalize length distortion are con-
ceivable. Before we explain our choice we state a few
properties we consider essential for a penalty function:

a) A ratio of1 (no distortion) should be assigned the
penalty0.

b) As the ratio approaches∞ (i.e. |dC| → 0 for fixed
|dS|), so should the corresponding penalty. This
point is crucial as the edge-based data term favors
short curves and the shape attribute comparison is
independent of scale.

c) Preferably the shape similarity measure should be
symmetric, i.e. comparingC to S should give the
same cost as comparingS to C. This implies
that the ratio|dS|/|dC| should be given the same
penalty as its inverse|dC|/|dS|.

The penalty function chosen in this work satisfies all
three requirements:

Ψ

(

r =
|dS|
|dC|

)

=











r − 1 if K ≥ r ≥ 1

r−1 − 1 if 1
K

≤ r < 1

∞ otherwise

, (4)

Here K ∈ N is a predefined constant limiting the
maximum length distortion. This limit will be exploited
in the optimization algorithm.

1This term is indeed invariant against re-parameterizationof C: any such
re-parameterization will also change the correspondence functionm and with
it its derivative.

0,|S|
1

2

34
56

7

8 9

Fig. 5. A shape is represented as a sequence of pixels on a discrete grid.

Like the two previous terms, the corresponding regular-
ity term takes on the form of a ratio:

∫

S1

Ψ
(

‖S‖ |ms|
‖Cs(s)‖

)

‖Cs(s)‖ ds

∫

S1

‖Cs(s)‖ ds
=

∫

S1

Ψ

(‖S‖ |ms|
‖Cs(s)‖

)

ds

(5)
where again equivalence holds for a uniform parameter-
ization of C. This term is scale-invariant in the sense
that scaling bothC andS by thesameamount does not
affect the cost.

Using positive weighting factorsλ, ν >0 these terms are glued
together into a single functional:

∫

S1

g(C(s)) ds + ν

∫

S1

∣

∣αC(s) − αS(m(s))
∣

∣

2

S1
ds

+ λ

∫

S1

Ψ

(‖S‖ |ms|
‖C‖

)

ds (6)

We state this for a uniform parameterization ofC. The
respective terms for arbitrary parameterizations are given in
the discussion above.

IV. D ISCRETIZING COST AND PRODUCT SPACE

To optimize over the cyclesΓ : S1 → Ω×S1, both the cost
function and the product space are discretized. This section
deals with the discretization, the optimization algorithmis
detailed in the next one.

The key idea is to representC as a polygonal curve with
(an a priori unknown number of) vertices on the pixel grid. In
addition the correspondencem is assumed to be linear along
each polygonal line segment. It is therefore uniquely defined
by assigning point correspondences to the two end points
of such a segment. Specifically we consider line segments
connecting neighboring pixels on the pixel grid, where we
choose an 8-neighborhood.

A cycle Γ can now be composed out of a finite set of basic
parts∆Γ = (∆C, ∆m).

A. Discretizing Prior Contour and Correspondence

In addition to the cycleΓ, also the prior contourS is
discretized. As shown in Figure 5, we represent it in the same
form as the contourC, i.e. as an ordered sets0, . . . s|S| of
points on a suitable pixel grid, where – for ease of notation –
s0 = s|S| is represented twice. To get a dense representation
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of the contour we require thatsi be among the eight closest
neighbors ofsi−1.

The discrete correspondence function assigns each image
pixel on C one of these|S| + 1 prior points. To ensure
a monotone matching we enforce that the start pixel of a
segment∆C is assigned a shape point with index lower or
equal to that of the endpoint. Closure of the matching is
obtained by the fact thats|S| = s0.

The length distortion penalizer (4) gives two hard con-
straints which limit the minimal and maximal distortion ratio.
In the discrete setting these are realized in terms of the indices
of the two shape points assigned to a line segment. The
upper limit corresponds to an index difference of at mostK.
Ensuring the lower limit is more intricate since here several
line segments∆C may correspond to the same partsi−1si of
S. We therefore allow the two indices to be equal. However,
for any shape pointsi there may be at mostK parts∆Γ where
both endpoints of∆C correspond tosi.

In practice this is realized by modifying the correspondence
functionm: in the discrete settingm maps to pairs(i, k) where
i gives the shape point andk<K gives the number of image
pixels already corresponding tosi. If m maps to the samei at
the beginning and end of the contour segment, then the index
k must be one higher for the end node. This is formalized in
the following section.

B. From Product Space to Product Graph

With the described parts∆Γ it is straightforward to dis-
cretize the product spaceΩ×S1 into a graph. The pieces∆Γ

serve as edges in this product graph: a part is the connection
of two image pixels with assigned point correspondences
for each pixel. Combinations of an image pixel and a point
correspondence can be represented in the state space

V = P × {0, . . . , K · |S|}

whereP is the set of image pixels. In this setting, consider
a part∆Γ = (∆C, ∆m) where∆C connects the pixelsp
andq with p corresponding to(i, k) andq corresponding to
(i′, k′). This part can be seen as a directed edge

(p, i · K + k) → (q, i′ · K + k′)

By construction we haves0 = s|S|, so the indices0 and |S|
are merged into a single state. The result is a torus-like graph
(of the same form as the product space depicted in Figure 3),
where each point on the prior contour is assignedK frames of
nodes, each containing one node for every pixel in the image.

For a set of parts (or edges)∆Γ to represent a continuous
cycle Γ, two properties must be fulfilled: (1) for each edge
ending in a node, there must be an edge starting in the node
and (2) for each(i, k) there may be at most one edge whose
start node has(i, k) as second index.

Property (1) is the usual characterization of a cycle in
a graph, whereas property (2) states that a cycle may not
wrap around multiple times in the torus-graph. Computing the
optimal Γ therefore corresponds to finding the optimal cycle
in a certain subset of all cycles of the torus graph.

C. Setting up the Edge Weights

So far we have not considered how to represent the cost of
a cycleΓ. To this end each edge∆Γ is assigned a numer-
ator weightn and a denominator weightd which represent
the respective integral of the cost function along∆Γ. The
denominator weight always corresponds to the length of the
line segment∆C.

Setting up the numerator weights is more intricate. In this
point we differ from the edge weights given in [38]: We give
a refined discretization of the length distortion penalty, which
better approximates the continuous functional.

In the graph we have two types of edges, called type I and
type II. Type I edges correspond to the assignment of a new
shape pixel. They are of the form

(type I) (p, i · K + k) → (q, j · K) with i < j ≤ i + K

where0≤ i, j< |S| and0≤k<K are integers andp andq are
neighboring pixels in the image. Edges of type two correspond
to assigning an entire line segment to the same shape point.
They are of the form

(type II) (p, j·K+k) → (q, j·K+k+1) with k+1 < K

The numerator weights for these edges are composed as
follows:

1) Data term. For both types of edges, the data term
contributes

1

2
‖p− q‖ (g(p) + g(q)).

2) Comparison of Tangent AnglesWe denote byϕ(x,y)
the tangent angle of the line segment connectingx

and y. It can be computed via the functionatan2
contained in most standard programming languages. The
contribution of this term is then

ν ‖p− q‖
∣

∣ϕ(p,q) − ϕ(sj , sj−1)
∣

∣

2

S1
,

again for edges of both types.
3) Length Distortion A simple discretization of the length

distortion penalty would be to add a termλ for type II
edges andλ(j − i − 1) for type I edges. Both could be
further multiplied with the distance‖p − q‖. We used
this discretization in previous publications.
The problem with this discretization is that it assigns no
cost when a diagonal line (length

√
2) in the image is

matched to a horizontal or vertical line (length1) in the
prior template. We therefore now present a refined dis-
cretization which is closer to the continuous functional.
Type I Suppose the last aligned shape point was point
i. For an edge of type I one either moves to the direct
predecessor pointj = i+1 or skips up toK−1 shape
points. In both cases there can be length distortion. This
distortion is computed as

r =
|dS|
|dC| =

j
∑

j′=i+1

‖sj′ − sj′′−1‖

‖p− q‖
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It is straightforward to compute the penalty by evaluat-
ing the function (4) on this term. In fact, for edges of
type I one could use any other penalty function.
Type II This case is more intricate as now several line
segments are matched to the same linesj−1sj of the
prior template and the single evaluation of (4) has to be
distributed over several edge weights. Here we exploit
that once it is known that the length distortion ratio is
below 1, the function (4) is linear inr−1 − 1. Since all
polygonal lines have length at least1 and an edge of
type I must already have been aligned tosj−1sj , it is
safe to exploit this for all type II edges.
Let p0p1, . . . ,pk−1pk beall line segments ofC aligned
to sj−1sj . Then the inverse ratio can be written as

r−1 =

k
∑

k′=1

‖pk′ − pk′−1‖

‖sj − sj−1‖
=

k
∑

k′=1

‖pk′ − pk′−1‖
‖sj − sj−1‖

An edge of type II corresponds to only one of these line
segments, so the aim is to write the penalty for this ratio
as a sum over the line segments. If the ratio for the line
p0p1 was one or greater the type II edge can simply be
given the penalty term

λ
‖p− q‖2

‖sj − sj−1‖

Our present implementation simply assumes that the
first ratio was at least one. The only case where this
assumption is violated is when a horizontal or vertical
line segment ofC is matched to a diagonal one ofS. If
one wants to handle this case correctly, the state space
needs to be augmented. Type I edges with this property
would then end in a new state. Type II edges leaving
this state would be assigned different length distortion
cost.

V. COMPUTING THE OPTIMAL MATCHING

In Section IV-B it was shown that the set of allΓ (satisfying
the discussed discretization) corresponds to a certain subset
of all cycles in the torus-like graph spanned by image and
prior template. Each edgee in the graph was given two
weightsn(e) and d(e), one reflecting the numerator integral
for the corresponding line segment and matching, the other the
denominator integral. Functional (6) can now be approximated
as

E(Γ) =

∑

e∈Γ

n(e)

∑

e∈Γ

d(e)
(7)

This function can be optimized overall cycles in the graph
via the Minimum Ratio Cycle algorithm of Lawler [27]. This
algorithm was introduced to computer vision by Jermyn and
Ishikawa [24]. We will review this algorithm first, then discuss
how to restrict the optimization to cycles that correspond to a
valid continuousΓ.

A. Ratio-Optimization over all Cycles

Given arbitrary numerator weightsn(e) and non-negative
denominator weightsd(e) where no cycle is assigned a de-
nominator of0, Lawler’s algorithm finds the cycle of optimal
ratio (7) in the graph.

The basic principle is negative cycle detection: letτ be some
ratio and define edge weights

w(e) = n(e) − τ d(e)

The following equivalence transformations show thatτ is
above the optimal ratio if and only if there is a negative cycle
Γ w.r.t. w(e):

∑

e∈Γ

w(e) < 0

⇔
∑

e∈Γ

[n(e) − τd(e)] < 0

⇔ ∑

e∈Γ

n(e) < τ · ∑

e∈Γ

d(e)

⇔
∑

e∈Γ
n(e)

∑

e∈Γ
d(e) < τ

Notice that the final transformation only holds since the
denominator sum is positive for all cycles.

After initializing τ with some upper bound on the optimal
ratio, the Minimum Ratio Cycle algorithm proceeds to check
if a negative cycle exists. If one is found,τ is set to its ratio
and the process is repeated. At some point, the graph will no
longer contain negative cycles. The last found cycle must then
be optimal: it has cost0 for the current ratio and since there
is no negative cycle, there cannot be a better one.

To achieve a (weakly) polynomial running time one ad-
ditionally assumes that the edge weightsn(e) and d(e) are
integers. This guarantees a certain minimal distance between
two distinct ratios [24] and a polynomial amount of iterations
in the worst case. In practice we multiply the continuous
weights given in the last section with a factor of1000, then
round to the nearest integer.

It remains to show how a negative cycle can be detected.
This is done by a slight modification of the Moore-Bellman-
Ford algorithm [16], [33], [1] for distance calculations ina
graph with negative edge weights, but without negative cycles.
Initially all distance labels are set to∞, except for a given root
node which is initialized with0. Then repeatedly all nodes are
checked for whether their distance label can be improved. If
the graph does not have negative cycles, the process terminates
in polynomial time. Otherwise it does not terminate and at
some point the predecessor graph will permanently contain
cycles. These cycles correspond to negative cycles and are
found by regularly checking the predecessor graph for cycles.

B. Restriction to the Set of Valid Cycles

We are now in a position to find the optimal cycle in the
graph. In about2% of all cases this cycle does not correspond
to a valid continuousΓ since it wraps around multiple times
in the graph. A straightforward way to exclude this would be
a complete search over the initial correspondence. The frame
0 would then contain only one node in each pass. This would
however result in a quadratic run-time.



T. SCHOENEMANN AND D. CREMERS 7

prior contour low contrast matching after shape
in input data 3D-rotation deformation

after stronger shape matching to another scale
3D-rotation deformation image sequence change

Fig. 6. Segmentation with a single template: Despite significant deformation, scale change and translation, the initial template curve (red) is accurately
matched to each image.

Instead we employ a recursive splitting strategy. First a
search for the optimal cycle in the graph is run as described
in the previous section. If this cycle is valid one terminates.
Otherwise frame0 is split into as many parts as there are
wrap-arounds in the found cycle, so that all nodes of frame0
contained in the cycle are assigned to different components.

For each of these components a separate ratio minimization
is run recursively on a graph with modified frame0: this frame
only contains the nodes of the component (in practice all nodes
are kept and the distance labels of the other nodes in the frame
are fixed to∞). As initial upper bound the ratio of the last
found valid cycle is taken (or the initial one if no valid cycle
was found).

It is possible that these calls again find invalid optimal
cycles. In this case further splits and recursive calls are made.
In the end the globally best continuousΓ corresponds to the
best cycle found in any of the components.

C. Complexity of the Method

To conclude this section, we analyze the running time
of the described algorithm. In practice it is run with quan-
tized numerator and denominator weights, i.e. all weights
are multiples of some rationalǫ > 0. We start by ana-
lyzing a single call of Lawler’s algorithm. In such a call,
each execution of the Moore-Bellman-Ford algorithm has a
complexity ofO(|S|2|P|2). From the bound given in [24] it
follows that the employed linear search scheme invokes at
mostO(|S|3|P|3w2

dwn/ǫ3) calls of the Moore-Bellman-Ford
algorithm, wherewn andwd are the maximal numerator and
denominator weights before quantization.

Finally, the recursive subdivision scheme makesO(|P|2)
calls in the worst case. Together this results in a complexity
of O(|S|5|P|7w2

dwn/ǫ3). The memory complexity is linear
with O(|S| |P|).

As detailed in Section VIII-B, in practice we observe a lin-
ear run-time dependence: the Moore-Bellman-Ford algorithm

usually terminates after having visited every node at most
10 times for all tested problem instances. During a call of
Lawler’s algorithm, normally less than20 ratio adjustments
are made. Moreover, there are usually less than6 recursive
calls in the subdivision schemes. These numbers already refer
to rare cases, the algorithm is usually much faster.

In addition, the algorithm can be sped up by a constant
factor. In particular the distance calculation can be parallelized.
We will come back to this in Section VII, where we show that
tracking can be solved in real-time. For now we present some
results on image segmentation with prior knowledge.

VI. EXPERIMENTS I: SHAPE-BASED IMAGE

SEGMENTATION

In this section we present results for image segmentation
with translation invariance: the globally optimal matching of
prior curves to a variety of images will be demonstrated on
real-world data. We also treat the topic of how to incorporate
rotational invariance.

We treat images with significant distortion. As a conse-
quence we allowK = 5 image pixels to be matched to a
single shape point and set a low length distortion weight with
λ=0.1. The tangent angles are given more weight withν =0.5
– this term really drives the process.

A. Translation-invariant Matching

In Figure 6 the contour of a rabbit (viewed from the side) is
matched to images from two different sequences. In the first
the rabbit is shown from different viewpoints but at the same
scale. Despite low contrast between object and background
the algorithm relocates the object reliably. We emphasize
that despite the similar scale there is significantlocal length
distortion. The second sequence demonstrates matching in the
presence of a global scale change.
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proposed method without length normalization
(with length normalization)

Fig. 7. The length normalization removes the bias towards shorter curves.

prior contour no rotational invariance with rotational invariance
Fig. 8. By optimizing over all possible rotations, the method becomes
invariant to rotations of the shape, as well.

B. On the Effect of Length Normalization

In Section III-B we introduced the length normalization
to reduce the bias towards shorter curves. This effect is
demonstrated in Figure 7: the figure shows the global optima
for the ratio functional and for the numerator integral alone.
The latter corresponds to the geodesic energy we proposed in
[41]:

Egeo(Γ) = ‖C‖ · E(Γ)

and is minimized globally by a combination of branch and
bound and shortest path algorithms.

Clearly the ratio functional produces longer curves. We
observe this whenever there is low contrast in some regions
along the desired curve.

C. Including Rotational Invariance

Aside from translational invariance, sometimes one also
wants rotational invariance. The proposed framework can be
easily extended to include this: one simply samples the rotation
angle in sufficiently dense intervals. The prior contour is
rotated by the specified amount and the obtained contour is
matched to the image. When all angles have been processed,
the match with lowest energy is output.

The run-time of this process depends linearly on the num-
ber of sampled angles. In practice, substantial speed-ups are
gained by exploiting a property of the optimization algorithm:
for the subsequent comparisons one can initialize the ratiowith
the last determined one.

Figure 8 shows an application for a sequence2 containing
a significant rotation of the object. Here we sample the
rotation angle between−90◦ and+90◦ in steps of2◦. Where
translational invariance alone failed, the algorithm now finds
the desired solution.

2Image data courtesy of Bodo Rosenhahn.

⇒

Fig. 9. The graph is cut open at frame0 (shown in red) and the frame is
doubled. The arising graph is acyclic. This is the key for efficient optimization.

VII. SPEEDING UP THEALGORITHM

It will now be detailed how to obtain an efficient imple-
mentation of the described algorithm, where we consider both
memory efficiency and run-time. Some points will apply to
any kind of hardware platform (sequential or parallel) whereas
others are tailored to parallel platforms.

A. Efficient Memory Management

We described the algorithm in terms of a graph. Yet, due
to the large search space standard graph representations are
not sensible: they would easily require TeraBytes of mem-
ory. Below we describe three points to reduce the memory
consumption to an amenable level. Together they allow to
process images of size320× 240 with roughly one GigaByte
of memory.

1) Implicit storage: It turns out that we can use a much
smarter representation: although the weights are assignedto
edges, the optimization algorithm stores only distance labels
for nodes. Edges can hence be computed on-the-fly, which
in easy due to the regular structure of the nodes. This is a
significant advantage over maxflow-based algorithms which
store intermediate flows at the edges.

Distance labels are conveniently stored in matrices. In
addition one needs to store predecessor entries for each node.
These only need to code the number of the incoming edge.
For K ≤ 5 this can be encoded in one byte, otherwise two
bytes are needed. We used four bytes in our implementation.

2) Sweep-based distance calculation:To obtain further
speed-ups we implement the distance calculation by a se-
quence of distance calculations on a related, acyclic graph.
This graph is obtained by introducing a copy of frame0,
assigned the number|S| · K. All edges previously ending
in frame 0 are connected to the respective nodes in the new
frame. This is visualized in Figure 9.

Now the distance calculation can be performed in sweeps.
For the first sweep all distance labels in frame0 are initialized
with 0. Then, in each sweep the distance labels and predeces-
sor entries for the frames1 to |S|·K are determined. Since the
graph is acyclic and no edges connect nodes in the same frame,
this can be done by dynamic programming. After each sweep
the distance labels in frame0 are compared to the respective
ones in frame|S| · K. If the latter label is below the label
in frame0, this label and the corresponding predecessor entry
are updated. Simultaneously the optimal path ending in a node
is backtraced. If a (possibly invalid) cycle is found it must
be negative (since the initial distance was0) and the ratio is
updated.
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Otherwise the ratio is kept and possibly another sweep has
to be performed: this is the case if one of the distance labels
in frame0 was updated. In practice we seldom observe more
than three sweeps for one ratio.

3) Intermediate Storage:The final storage-based improve-
ment is less obvious but very important in practice. Before
moving to the details we first observe that during a sweep one
does not need all distance labels: the dynamic programming
algorithm processes frames in the order of their number. Since
no edge skips more thanK2 frames, one only needs to store
the lastK2 distance matrices.

Less obvious, but quite important, is the observation that
in fact only 2K instead ofK2 distance matrices need to be
stored. Recall that edges of type I are of the form(p, i ·K +
k) → (q, j ·K). The important point is that the corresponding
edge weights donot depend onk. In the distance calculation
only the best of theseK edges is needed. It corresponds to
the optimal start node. This node need be computed only once
for each shape pointi and each pixel. Since the decision is
needed for the followingK shape points, this precomputation
not only saves memory, but also gives considerable savings in
run-time.

Taking all these improvements together, images of size
376 × 284 are processed with less than750 MegaByte.

B. Parallel Implementation

In the previous section we introduced an auxiliary acyclic
graph. This graph has the nice property that edges never link
two nodes in the same frame. The distances for an entire frame
can therefore be determined in parallel. We have implemented
this on a graphics card with128 parallel threads, using the
CUDA framework. This reduces the run-times by a factor3 of
about12.

C. Profiting from Smart Initializations

Our final optimization is to reduce the number of ratio
adjustments in the ratio minimization. In practice this number
depends on the quality of the initial upper bound. If the prior
contour fits entirely into the image, such a bound is easy to
determine computationally: one can simply try several place-
ments of the undeformed contour and calculate the respective
ratios.

We have made particularly good experiences for the prob-
lem of tracking, where we try displacements of up to5 pixels
in each direction. For the considered problems this resulted
in no more than one ratio adjustment per frame, with only
minimal computational overhead. The results are given in the
next section.

VIII. E XPERIMENTS II: SHAPE-BASED TRACKING

In this section we presents results for the problem of
tracking deformable objects (or contours). In the first frame
the contourS is given. Then, subsequently we map the contour

3In our conference paper [38] we erroneously reported a factor of 300. The
confusion is probably due to an inappropriate choice of datastructures in the
CPU code used for [38].

determined for the previous frame to the current frame. This
performs better than keeping a fixed template since large-scale
deformations are decomposed into a sequence of smaller ones.

In contrast to image segmentation, for tracking translation
invariance is generally not desired. Instead temporal coherence
is exploited, i.e. the knowledge that the next contour will be
close to the previous contour. We therefore extend functional
(6) to include a motion penalty:

min
Γ=(C,m)

∫

S1

g(C(s)) ds + ν

∫

S1

∣

∣αC(s) − αS(m(s))
∣

∣

2

S1
ds

+ λ

∫

S1

Ψ

(‖S‖ |ms|
‖C‖

)

ds +

∫

S1

ρ(C(s),S(m(s))) ds (8)

Here ρ is a penalty function for the movement of points on
the contourC. Our framework makes no assumptions on this
function - it can be non-convex, negative and need not be
differentiable.

We experimented with several motion penalties and found it
best to simply limit the maximal motion and treat all remaining
motions equally:

ρ(x,y) =

{

0 if ‖x− y‖∞ ≤ Dmax
∞ else

The limiting distanceDmax is set between10 and 20 pixels
in practice. A value of15 performs well on real-world traffic
sequences and gives real-time performance in some cases.
This performance is due to the optimizations presented in the
previous section, but also due to the structure ofρ: the limit
on the distance allows to shrink the frames to a small window
each.

All experiments were carried out on a Core2 Duo machine
with 2.66 GHz. The machine is equipped with a GTX 8800
graphics card which is accessed via the CUDA interface. We
give run-times for a sequential implementation on a single core
and a parallel version on the GPU.

A. Fast Tracking with Real-time Potential

We first present tracking results on challenging real-world
traffic data, where the algorithm has to deal with difficult
weather conditions such as rain, shadows and sunlight falling
directly into the camera. In addition to the poor signal quality,
one also has to deal with varying shutter times. Nevertheless,
the proposed combination of edge-based data terms and shape
consistency performs very robustly on these data.

In some cases this is already possible in real-time: the
sequence in Figure 1 (on page 2) was recorded with25 fps
and is processed at the same frame-rate on the GPU.

Since the run-time depends on the length of the prior
contour, bigger objects cannot yet be processed in real-time.
The sequence in Figure 10 runs at3 fps. Here the car is tracked
over the entire sequence (roughly140 frames), despite contour
deformation, scale changes and shadows.

Our final experiment in Figure 11 shows the tracking of a
transparent bottle in the presence of camera roll, where we are
using a maximal displacement ofDmax= 25.
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frame #1 frame #10 frame #20 frame #40

frame #60 frame #80 frame #100 frame #110
Fig. 10. Stable tracking of deforming silhouettes. The tracking performance is quite robust to changing lighting conditions (caused by shadows and varying
shutter times).

frame #1. frame #25. frame #50. frame #75

frame #100. frame #125. frame #150. frame #200.

Fig. 11. Even transparent objects like the bottle can be tracked over several hundred frames despite camera rotation andsubstantial background clutter.

B. Run-time Analysis

To analyze the dependence of the running time of the
algorithm on the input size, we processed the first25 frames of
the sequence in Figure 11 with varying window sizes. These
experiments were run on a GTX 280 card and a2.66 Ghz
QuadCore computer (where only a single core was used).

The resulting run-times are plotted in Figure 12. Clearly the
dependence is far from quadratic and very close to linear.

Finally, as for tracking one has a rather small number of
threads, the CPU may be faster than the GPU. For the sequence
in Figure 1 this is evaluated for various window sizes in Figure
13: as soon as the size of the search window exceedsDmax=
10, the GPU implementation is faster.

C. Comparison to Other Methods

We compare the proposed method to two other shape-
based tracking methods, based on the level set method for
local contour evolution. Approaches based on this method
usually use region-based data terms since they are less likely
to provide poor local optima.

We select two different data terms. The first one models
a non-parametric intensity distribution via histograms. This
proved robust for the application in [36], but in our case the
object is lost after4 frames already. The approach is stabilized
by a patch-based data term, but after15 frames the object is
lost, too. In contrast, the proposed method is successful over
the entire100 frames of the sequence.
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IX. CONCLUSION

In this paper we introduced a polynomial-time solution for
matching a given contour to an image despite translation,
rotation, scale change and deformation. The central idea isto
cast the assignment of an image pixel to each template point
as a problem of finding optimal ratio cycles in a3D graph
that represents the product space of image and template. The
energy that is optimized globally consists of an edge-based
data term and a shape similiarity measure favoring similarity of
local edge angles and minimal distortion (stretching/shrinking)
of the template curve.

On a variety of challenging segmentation and tracking tasks
the proposed algorithm provides reliable results. Specifically
we showed that one can track cars or even semi-transparent
objects over hundreds of frames despite camera motion, cam-
era shake, changing illumination and prominent background
clutter.

In contrast to most existing methods for real-time tracking,
the proposed method is globally optimal: Among all conceiv-
able solutions the algorithm provides the best one in poly-
nomial time. Experimentally we observed that the algorithm

Method in [36] on frames 1, 5 and 15:
the object is lost almost immediately.

Results with patch comparison (same frames):
here, too, the object is lost soon.

In contrast, tracking with the proposed
method is stable.

Fig. 14. While both simple and sophisticated methods fail after a few frames,
the proposed method tracks the object over the entire one hundred frames -
in real-time.

is effectively linear. In addition, real-time performancecan be
obtained by imposing an upper bound on the maximal velocity,
constructing a smart initialization and reverting to an efficient
parallel implementation on state-of-the-art graphics hardware.

An extension of this algorithm which simultaneously infers
the location of articulated parts by computing cyclic pathsin
a respective4D graph was recently presented in [40].
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