Introduction

= Approximations of the Fisher Information Matrix (FIM) are crucial for deep neural
networks.

= The Kronecker-Factored Approximate Curvature (K-FAC) approximates the FIM
with a block-diagonal Kronecker-factored matrix using independence assumptions
that are usually not met in practice.

= \We propose the Kronecker-Factored Optimal Curvature (K-FOC) which is an

optimal and scalable block-diagonal Kronecker-factored approximation of the FIM.
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Our Method

Neural Networks

= a: activation of layer [ — 1, s: pre-activation of layer [

= Fully-connected layer:
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= Convolutional layer:
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Fisher Information Matrix

= Diagonal block for layer (:
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= Fully-connected layer:
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= Convolutional layer:
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= For both layer types, a sum of Kronecker products needs to be computed.

Approximation of Sums of Kronecker Products

Problem.
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Lemma 3.1. Let M, N, K € N, LF € RM>*M gnd RF € RVXN for k € [K]. Then
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Lemma 3.2. let A = 2521 vee(L¥) vec(RF)L and A = ST, az-uiv; be its singular value decomposition with o1 >
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- v = 1[i = j|. Then there is a solution of Equation 1 with

VGC(fJ) = uy, Vec(f{) = o1V].

If o1 > o9, the solution is unique up to changing the sign of both factors and Algorithnm 1 converges almost surely to this
solution.

Kronecker-Factored Optimal Curvature

As a consequence of Lemma 3.2, we can find optimal factors with the power method. However, computing
A AT vec(L) has a complexity of O (n™a% K (N? + M?)) with O (K(N*+ M?)) memory. Therefore, we incorporate
the structure of the matrix and its factors to reduce the complexity:

= Algorithm 1: Power method for sums of Kronecker products

Main idea:
= A= Zle vec(LF) vec(R¥)T is a sum of outer products.
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= Algorithm 2: Adaption for convolutions (and fully-connected layers viewed as convolutions with 7 = {(1,1)})

Main idea:
= LMY = Dsk(Dsh)] and RFYY = af(aF)7 are outer products of vectors.

= The summation is over all combinations of t,t' € 7.

= Pre-compute X* = (Ds")'a¥ for k € [K]
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The algorithms have a similar complexity as K-FAC for practical applications.

Furthermore, we compare two methods to aggregate the batches in an online setting:

= K-FOC_approx: similar aggregation as K-FAC
= K-FOC_running: use Algorithm 1 to combine current estimate with a new batch
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Results

Fully-connected layers
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Conclusion

The Kronecker-Factored Optimal Curvature

= uses the power iteration to approximate the FIM,
= |s tractable for convolutional and fully-connected layers and

= approximates the FIM more accurately than K-FAC.
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