
Multilinear Model Estimation with

L
2-Regularization

F. R. Schmidt1, H. Ackermann2, and B. Rosenhahn2

1 University of Western Ontario, Canada
fschmidt@uwo.ca

2 Leibniz University Hannover, Germany
{ackermann,rosenhahn}@tnt.uni-hannover.de

Abstract. Many challenging computer vision problems can be formu-
lated as a multilinear model. Classical methods like principal component
analysis use singular value decomposition to infer model parameters. Al-
though it can solve a given problem easily if all measurements are known
this prerequisite is usually violated for computer vision applications. In
the current work, a standard tool to estimate singular vectors under in-
complete data is reformulated as an energy minimization problem. This
admits for a simple and fast gradient descent optimization with guar-
anteed convergence. Furthermore, the energy function is generalized by
introducing an L

2-regularization on the parameter space. We show a
quantitative and qualitative evaluation of the proposed approach on an
application from structure-from-motion using synthetic and real image
data, and compare it with other works.

1 Introduction

To detect a model based only on observed images constitutes one of the central
tasks in computer vision applications. Problems like structure and motion esti-
mation as well as 3D or even 4D reconstruction can be formulated as a model
fitting problem. Assuming temporal coherence leads to a smoothness prior on
some variables. In this work we will focus on problems that are given as a mul-

tilinear model and we will show how the introduction of an L2-regularizer leads
to better solutions which can even be computed more efficiently.

Fitting a model with only a few parameters to observed data is the base of
the well understood method of principal component analysis (PCA). It is used,
for instance, for computation of eigenfaces [13], image matching [20], pose and
shape estimation [12], rigid structure and motion (SfM) estimation [19] or non-
rigid SfM [2]. Singular value decomposition (SVD) is often used to compute a
PCA. Since SVD can be computed quite easily, it is very popular for dimension
reduction approaches. However, SVD requires all measurements to be known. In
many applications in computer vision, for instance structure and motion esti-
mation, points cannot be observed because of occlusions or tracking failures.

In [19, 3], missing observations are dealt with by solving complete sub-sets
and propagating these solutions while an EM approache is favored in [18]. Both
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types of algorithms work well for low noise or low amounts of missing values, but
they fail for realistic problems. A different approach to estimate the multilinear
model is the power factorization or NIPALS approach [22, 11] which minimizes
an L2 energy function. It estimates solutions starting from the complete data,
i.e. it does not begin on any sub-set of the data.

In [16, 17] Newton and Gauss-Newton approaches were considered which were
later generalized to weighted data [9, 4]. To be more robust to errors that are
related to missing or corrupted data, different error norms are used in [6, 15,
8]. Another approach to cope with corrupted data is to enforce additional con-
straints that are specific to the problem. Constraints on individual projection
matrices were used in [14], consistency with epipolar geometry was imposed in [1]
and the smoothness of camera trajectories was enforced by means of a Kalman
filter in [10].

In this work we will minimize the common L2 energy function of [22, 11,
16, 17, 4] by a gradient descent technique. The difference to power factorization
is that this gradient descent jointly optimizes both sets of variables thereby
avoiding accidental maximization and other numerical pitfalls.

Furthermore, we include a smoothness prior into the L2 energy. This leads to
the minimization of an energy E that is a convex combination of the L2 energy
Edata and the smoothness prior Esmooth. At the presence of a strong data term,
the smoothness term has only a small effect. Otherwise (due to missing data),
the smoothness term takes over control by extra- and interpolating information
that are driven by neighboring data. Therefore, our approach is different from
a Kalman filter approach in the sense that we do not indiscriminately enforce
smoothness but only if there is insufficient data. As a result, non-smooth models
can be estimated if the data information is very strong. Smoothness on the other
hand is stronger in areas of missing data and is weaker in areas that are well
defined by the observed measurements. A second difference to the Kalman filter
is that we do not process the data sequentially. While the L2-regularizer depends
on a specific temporal order of the observed images, the overall energy functional
E depends on all observations at the same time and will not change during the
optimization process.

The difference to the Gauss-Newton variants of [4] is that we only impose
smoothness on one set of variables. In the context of 3D-reconstruction we can
thus enforce smooth camera trajectories yet allow for non-smooth surfaces or
vice versa. Our experimental evaluation will show that the proposed method
performs superior.

Overall, we present the following contributions in this paper:

– A global energy is minimized by gradient descent thus avoiding problems
caused by starting from some sub-set of the data.

– The data term is extended by a smoothness term that governs those areas
with few measurements.

– We do not enforce smoothness on all variables indiscriminately, but only
smooth selectively. Thus partially non-smooth solutions can be obtained.

– We will demonstrate the proposed algorithm for simulated and real data.
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This paper is organized as follows. In Section 2, we derive the gradient descent
algorithm and discuss the advantages compared to power factorization. Section 3
generalizes the functional to include a smoothness prior. A quantitative analysis
with synthetic data is conducted in Section 4. Real image experiments with
challenging sequences are conducted in Section 5. In the same section we briefly
discuss future work. Section 6 provides a summary.

2 Energy Minimization Formulation

In this section, we will formulate the multilinear model estimation as an energy
minimization method and derive the gradient of this energy functional. We will
then discuss in which sense a gradient descent deviates from the popular power
factorization [11]. After presenting these two approaches, we will in Section 3
introduce a generalization that incorporates an L2-smoothness term into the
here presented energy functional.

First let us start with the general problem of multilinear model estimation.
To this end, we have a set of observations that are encoded in a m × n matrix
W . This can be understood as n observations of dimension m. The idea of a
multilinear model is it now to incorporate the knowledge that the observations
do not form an n-dimensional but rather an r-dimensional subspace with r ≪ m.

Hence, we have r model vectors x1, . . . , xr ∈ R
m and y⊤1 , . . . , y

⊤
r ∈ R

n that
form a left and right base of the r-dimensional model space. Let xi,k and yk,j
denote the kth coordinate of vector xi and y⊤j . Every element Wij of W can

then be written as a linear combination of xi and y⊤j and we obtain for Wij =
∑r

k=1 xi,k · yk,j . If we now put the vectors xi and y⊤j into the m× r matrix X

and the r × n matrix Y , we receive the following equation

W = X · Y. (1)

In the perfect noiseless case, W has rank r, but since measurements are
usually perturbed by noise, matrix W can also exhibit ranks which are larger
than r. In practice, Equation (1) can thus not be solved exactly and is often
reformulated as the following least squares problem:

min
X∈Rm×r,Y ∈Rr×n

‖W −X · Y ‖
2
fro (2)

where the Frobenius norm ‖A‖fro :=
√

∑

i,j a
2
i,j is the canonical norm on matri-

ces. In order to solve this problem, we can simply use the SVD of W = Q1ΣQ⊤
2 .

This results in the solution X = Q1Σ
1

2 for the left subspace and Y = Σ
1

2Q⊤
2 for

the right subspace, respectively.
As SVD requires each entry of W to be known, for most real computer vision

problems it is not applicable. If some entries of W are unknown, we also have a
visibility mask V ∈ {0, 1}m×n which encodes the information whether the entry
wij is a valid observation (vij = 1) or not (vij = 0). Equation (2) then becomes

Edata(X,Y ) :=
1

2
‖(W −X · Y )⊙ V ‖

2
fro (3)
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where the operator ⊙ denotes the element-wise product. In Section 3, we will
add a smoothness term to this data term in order to obtain better results, but
for now we will stick to this data term.

To minimize Eq. (3), we can use a gradient descent approach. In order to do
this, we have to compute the gradient of Edata. The next lemma states that this
task is easy in the sense that in only involves elementary matrix operations.

Lemma 1. The gradient of Edata can be computed as

∇Edata =

(

∂Edata

∂X
∂Edata

∂Y

)

=

(

[(XY −W )⊙ V ]Y ⊤

X⊤ [(XY −W )⊙ V ]

)

.

Proof. We will only show how to compute ∂Edata

∂X
. The computation of ∂Edata

∂Y

can be done analogously. Now denote the columns V by vj . Then, we can write

∂Edata

∂yj
=
1

2

∂

∂yj





n
∑

j=1

‖(wj −X · yj)⊙ vj‖
2





=
1

2

∂

∂yj
‖Vj(wj −X · yj)‖

2

with the diagonal matrix Vj consisting of the entries of vj .

=
(

X⊤VjXyj −X⊤Vjwj

)

=X⊤ ((Xyj − wj)⊙ vj)

⇒
∂Edata

∂Y
=X⊤ ((XY −W )⊙ V )

⊓⊔

Since Edata is neither convex nor quasi-convex there is no obvious way of
finding the global minimum efficiently. In [22, 11], Eq. (3) was minimized by
iteratively solving for ∂Edata

∂X
= 0 and ∂Edata

∂Y
= 0 while keeping the other set of

variables fixed. However, this method can get trapped in a local extremum: at
every iteration, a potential local extremum at least for one of the two variable X
or Y is chosen and thus the vulnerability that a local extremum for Edata is found
increases dramatically. Of course, we like to believe that this local extremum is
at least a local minimum. But this is not true in general. Since Edata is not a
convex function, every iterative update step can even increase the energy that we

want to minimize. If for example ∂2Edata

∂2X
is negative definite or even indefinite,

the update w.r.t to X will move Y into a local maximum or a saddle-point.
To overcome these problems, we perform a gradient descent approach which

jointly optimizes X and Y . After each update of X and Y , X is projected to
an orthonormal representation as classical power factorization does. This has
several advantages:

1. The gradient descent approach will always decrease and thus we will omit
any local maximum.
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2. Gradient descent methods tend to not get stuck in saddle-points. This is
because the area that will lead neighboring points via gradient descent into
the saddle-point form themself a zero set in the definition domain.

3 Introducing L
2-regularization

Many real problems provide further constraints on the model. In this section
it will be shown how Eq. (3) can be generalized to include a smoothness prior
on the coordinates X . In the context of 3D-reconstruction we want to allow for
non-smooth surfaces hence we do not enforce smoothness on the variables Y .

X can be understood as a path in R
r which corresponds to the temporal

coherent observation in R
m encoded by the rows of the observation matrix W .

Therefore, X can be understood as a discrete sub-sampling of the following
trajectory:

c : [0, 1] →R
r

c

(

i− 1

m− 1

)

=(xi,1 · · ·xi,r)
⊤ ∀i = 1, . . . ,m.

With this formulation, we can now introduce the L2-regularization on c via

Esmooth(c) =
1
2

∫ 1

0 c′(t)2 dt which becomes for its discrete representation X the
following backward difference:

Esmooth(X) =
1

2

1

m− 1

r
∑

s=1

m
∑

i=2

(xi,s − xi−1,s)
2. (4)

By weighting the importance of the smoothness term over the data term by a
non-negative number λ, we can formulate the multilinear model estimation with

L2-regularization as minimizing the following energy function:

E(X,Y ) = Edata(X,Y ) + λ · Esmooth(X) (5)

As in Section 2 we want to minimize this energy via a gradient descent
approach. In order to do this, we have to compute the gradient of Esmooth. It
turns out that also this gradient can be computed by easy matrix operations:

∂Esmooth

∂xi,s

=
1

m− 1
(−xi−1,s + 2xi,s − xi+1,s) (6)

Instead of matrix multiplication as in Lemma 1, we only need to compute
a simple linear combination of neighboring rows in the matrix X . Combining
Equation (6) with Lemma 1, we can find a minimum of E by projected gradient
descent.
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Fig. 1. Mean root square error (MRSE) of 10 trials between the estimated matrix
and the ground truth. The solid blue line indicates the proposed method, the dashed
blue line power factorization, the solid (dashed) red line Kalman-EM with (without)
specified variance, the solid green line nuclear norm minimization (NNM), and the
magenta dash-dotted line the regularized Gauss-Newton scheme.
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Fig. 2. Average mean root square error (MRSE) with ground truth data of 10 trials.
The solid blue line indicates the proposed method, and the solid (dashed) red line
Kalman-EM with (without) specified variance.

4 Evaluation for Synthetic Data

For experimental evaluation, we draw on an application from structure from
motion: it was shown in [19] that feature trajectories of a rigid body over several
images taken by affine cameras are constrained to span a low-dimensional linear
subspace. Due to the incomplete trajectories, centroids cannot be computed, thus
the standard rank-3 constraint used in [19] must include the unknown center,
hence generalizes into a rank-4 constraint [1, 18] in Eq. (2). We simulated 200 3D-
points distributed on a cylindrical surface. The points were translated, rotated,
and projected onto 20 images. For projection, an affine camera model was used,
thus avoiding non-Gaussian noise induced by estimating an incorrect model. We
experimentally determined that the functional obtains a global minimum for
λ = 3 · 108.

The proposed method was further compared with the power factorization
(NIPALS) algorithm, the Kalman-filtering EM approach, a method which mini-
mizes the nuclear norm [5]3, and a Tikhonov-regularized Gauss-Newton scheme
from [4]. Power factorization, the Gauss-Newton scheme, and the proposed gradi-
ent descent were randomly initialized 50 and the best result taken. The Kalman-

3 The code is provided at svt.caltech.edu.
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EM-algorithm was executed twice: once with specified variance (see below), once
with a generic variance of 1. For the nuclear norm minimization (NNM) there are
several parameters to specify. We set them to values which are very conservative
according to the authors.

Occlusion was simulated by randomly removing parts at the beginning and
the end of trajectories. We thus had trajectories only visible on a more or less
narrow band on the diagonal of W increasing the difficulty 4. We increased the
amount of invisible data from 5% until 95% in steps of 5%. Visible measurements
were perturbed with normally distributed noise with standard deviations σ =
{0, 3, 5}. For each combination of noise and missing observations, we simulated 10
different realizations of W , i.e. perturbed and sampled its entries, and computed
average errors and computation times.

Figure 1 shows the average Frobenius error per pixel between the the es-
timated matrix and the ground truth, i.e. a mean root sum of squares error
(MRSE). The noise level was σ = 3. The solid blue line indicates the proposed ap-
proach, the dashed blue line, the solid red line Kalman-EM with known variance
and the dashed red line Kalman-EMwithout known variance. The green solid line
indicates NNM. Lastly, the magenta dash-dotted line indicates the Tikhonov-
regularized Gauss-Newton scheme of [4]. The NNM approach usually converged
to solutions of rank larger than 4. Since the physical model requires rank 4, we
then truncated the estimated left and right subspaces which caused large er-
rors. We varied its parameters yet could not find a more successful combination.
The Gauss-Newton method performed poorly for large amounts of missing data.
Other variants from this box achieved similar results. Both Kalman-approaches
(KF) and the proposed solution both achieve low errors. Our approach performs
superior to all other methods including power factorization.

The plots in Figure 2 compare both KFs and our method. The left plot
corresponds to σ = 0, the middle to σ = 3, and the right to σ = 5. The blue
error curves look similar for σ = 3 and σ = 5, yet differ slightly. For noise-free
data, all three methods achieve similar errors if less than 40% of the matrix is
known. For larger sampling ratios, the proposed algorithm performs more than
twice as good. For noisy data, the proposed method is between 2.5 and more
than 14 times more accurate.

5 Real World Applications

In this section we show successful application of the proposed method to two real
image sequences containing large noise and even a few outliers. While regularized
energies have already been applied to 3D reconstruction [7, 21], the problem
that we address here is different from prior work. In [7, 21], camera calibration
including intrinsic and extrinsic parameters is known, while the current work
considers unknown calibration information. Furthermore, regularization is not
applied to the 3D-points. Instead, we regularize the camera path.

4 Due to the random occlusion, trajectories have to be permuted properly to make
the band-diagonal structure of W visible.
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The scene shown in Fig. 3(a) shows a corner of a historic building. A total
of 2000 trajectories were observed over 60 images with 68.6% missing features.
While there are no obvious outliers, noise is very large. Four images of the 3D-
reconstruction are shown in Fig. 3(b). The color of the pixel in the image it was
first observed in was assigned to each 3D-point. The overall reconstruction looks
reasonable, only the depth of the scene is underestimated. This error is due to
the affine camera model which cannot handle significant scene depth compared
with the the distance to the camera.

(a)

(b)

Fig. 3. (a) Five images of a 60 image sequence with 2000 trajectories. 68.6% of the
data is missing and there is large noise. Red points indicate the feature found in each
image. (b) Four views of the reasonable 3D-reconstruction.

The second sequence consists of 672 trajectories over 10 images5. A single
image is shown in Fig. 4, left. A total of 57.7% of the data matrix is unknown.
Since there are several outliers present in the data, we adopted a RANSAC
approach on minimal subsets.

Four images of this 3D-reconstruction are shown in the left images of Fig. 4.
The ground plane is not rectangular with the wall of the house, and the right
side is heavily distorted. Considering the affine camera model, the reconstruction
is reasonable.

The achieved results look reasonable considering the affine camera model
and the fact that the shown squences have significant depth variation whereas
the assumption is that all 3D-points have similar depths. Approaches for projec-
tive or Euclidean bundle adjustment can achieve better results yet require good
initializations which can be provided by the proposed algorithm. Furthermore,
such software packages are much more complex than the proposed algorithm.

It is known that the L2 error metric defined by Eq. (3) is not entirely suit-
able for 3D-reconstruction. Nonetheless, the L2 metric is quite general and can

5 This sequence is provided at http://www.robots.ox.ac.uk/∼vgg
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Fig. 4. Left: One image of a 10 image sequence with 672 trajectories and 57.7% un-
known features. Red points indicate features in the current image, green points corre-
spondences in the next image. Red boxes indicate apparent outliers. Right: Four views
of the 3D-reconstruction. Overall, it looks reasonable. The angle between ground plane
and house is not orthogonal due to the strong perspective distortion of the points close
the to camera which the affine camera model cannot handle.

be directly applied to many other problems [13, 20, 12]. For SfM, we therefore
like to interpret the used error as an approximation of the prefered metric.
Future work will focus on studying more descriptive errors which better suit
3D-reconstruction. For the general problem of multilinear model, we would still
advocate the Frobenius error because it is a very general error which is consistent
with the proposed L2-regularizer.

6 Conclusion

In this work, a factorization algorithm for partially known matrices was pre-
sented. It uses a globally invariant energy function which was generalized to
include a smoothness prior. This prior penalizes non-smooth models only if the
data term is locally insufficient. Using the generalized energy functional, a gra-
dient descent method was derived. Using simulated data, we showed that this
algorithm is more accurate than all other methods even if significant parts of
the matrix are unknown. Using real image data, reasonable 3D-reconstructions
were presented. The proposed solution can be used to initialize a bundle adjust-
ment. Although structure and motion estimation was presented as application
the proposed algorithm is general and can be applied to any PCA problem [13,
20, 12, 19, 2].
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