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Abstract. We propose a novel method for computing a geometrically
consistent and spatially dense matching between two 3D shapes X and Y
by means of a convex relaxation. Rather than mapping points to points
we match infinitesimal surface patches while preserving the geometric
structures. In this spirit, we consider matchings between objects’ sur-
faces as diffeomorphisms which are by definition geometrically consis-
tent. Since such diffeomorphisms can be represented as closed surfaces
in the product space X × Y , we are led to a minimal surface problem in
a four-dimensional space. The proposed discrete formulation describes
the search space with linear constraints which leads to a binary lin-
ear program. We propose an approximation approach to this potentially
NP-hard problem. To overcome memory limitations, we also propose a
multi-scale approach that refines a coarse matching until it reaches the
finest level. As cost function for matching, we consider a thin shell en-
ergy, measuring the physical energy necessary to deform one shape into
the other. Experimental results demonstrate that the proposed LP re-
laxation allows to compute high-quality matchings which reliably put
into correspondence articulated 3D shapes. To our knowledge, this is the
first solution to dense elastic surface matching which does not require an
initialization and provides solutions of bounded optimality.

1 Introduction

1.1 Shape Similarity and Elastic Matching

Computing the similarity of 3D objects is among the central challenges both for
humans and computers in order to structure the world around them. How can
one determine that two hands are similar, that two faces are similar? A closer
analysis of this problem reveals that the estimation of shape similarity is tightly
coupled to the estimation of correspondence: Two hands in different articula-
tion, for example, turn out to be similar because respective fingers all match
a corresponding finger. The similarity of two given shapes can therefore be de-
termined by finding the minimal elastic deformation which matches one shape
into the other. While there exist algorithms for dense elastic surface matching,
these algorithms typically only determine a locally optimal solution. They re-
quire appropriate initialization and can therefore not be employed in a fully
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Fig. 1. Geometrically Consistent Elastic Matching. We propose to cast the dense
elastic matching of surfaces in 3D as a codimension-two minimal surface problem which
aims at minimizing the distortion when transforming one shape into the other. We show
that a consistent discretization of this minimal surface problem gives rise to an integer
linear program. By means of LP relaxation we can compute near-optimal matchings
such as the one shown above. These matchings are dense triangle-wise matchings. (For
visualization we combined triangles to patches and colored them consistently with their
corresponding patch.)

unsupervised manner. In particular, the accurate and unsupervised comparison
of more sophisticated shapes remains an important challenge.

In this work, we propose a novel framework for finding an optimal geometri-
cally consistent matching between two surfaces. We formulate shape matching as
a minimal surface problem which allows for a linear programming discretization.
This model comes with a sound physical interpretation and allows to compute
high-quality matching without need for initialization. In parts, this work has
been presented at vision conferences [1, 2]. The goal of this paper is to combine
both, the linear programming approach and the related multi-scaling approach
into one comprehensive paper.

1.2 Related Work

While the matching of two different 3D shapes constitutes a very difficult prob-
lem, the problem becomes much easier in one less dimension. It is interesting
to note that the matching of mere planar shapes can be solved by means of
dynamic programming in runtimes which are subcubic in the number of points
on each shape [3]. This is because the matching of planar shapes can be cast
as a problem of finding a shortest closed curve of certain homotopy in a planar
graph.

Unfortunately, the concepts of dynamic programming and variants of Di-
jkstra’s algorithm do not extend to the third dimension where the solution is
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no longer a shortest path but a minimal closed surface in a higher-dimensional
space. Therefore, existing approaches for three-dimensional shape matching typ-
ically rely on local optimization techniques. Our approach tries to overcome this
limitation by describing these closed surfaces with linear constraints involving
the boundary operator. Inspired by Sullivan [4], the boundary operator was
previously introduced in the context of image segmentation by Grady [5] and
Schoenemann et al. [6].

The paradigm of the Gromov–Hausdorff framework, proposed by Mémoli
and Sapiro in [7], is to find the correspondence which minimizes the geodesic
distortion. Bronstein et al. [8] proposed an efficient method for computing such
correspondences in a coarse-to-fine strategy much akin to optical flow algorithms.
In [9] the same Gromov–Hausdorff framework was merged with the idea of dif-
fusion distances. Other approaches to shape matching employ techniques from
conformal geometry [10, 11] or Riemannian geometry [12]. The physically moti-
vated energy model we use in this work is related to the works of Litke et al.
[13] and of Rumpf and Wirth [14].

All the above-mentioned methods have in common that they use a local
optimization technique to minimize a non-convex energy. As a consequence, the
quality of solutions depends heavily on a good initialization and an appropriately
designed coarse-to-fine strategy. In addition, solutions do not come with any
optimality guarantees, which implies that in principle they can be arbitrarily
bad. To overcome these problems, methods with a more global flavor have been
recently proposed.

On the one hand, Zeng and coworkers [15] formulate shape matching as a
graph matching problem of third order and apply the QPBO algorithm [16].
Although the overall approach does not guarantee globally optimal solutions, it
is able to detect when a proposed matching pair is globally optimal. Two major
drawbacks of this approach are that firstly it suffers from a very high compu-
tational complexity, considering all triples of possible matchings. In practice it
allows only the matching of a few feature points which is then post-processed
with a local method. Secondly, this approach lacks a continuous counterpart, as
it merely matches discrete points rather than surface elements.

On the other hand, Lipman and Daubechies [17] recently proposed to com-
pare surfaces of genus zero and open surfaces using optimal mass transport and
conformal geometry. Computationally, this amounts to solving a linear program
in n2 variables where n is the number of vertices used in the discretization of the
surfaces. The problem with this approach is that no spatial regularity is imposed
on the matchings.

1.3 Contribution

We propose a novel formulation for the shape matching problem based on finding
an optimal surface of codimension 2 in the product of the two shape surfaces.
This surface minimizes the physical deformation energy needed for deforming
one shape into the other. We derive a consistent discretization of the continuous
framework and show that the discrete minimal surface problem amounts to a
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linear program. Compared to existing approaches the proposed framework has
the following advantages:

– The LP formulation is a global approach allowing to compute matchings
which are independent of initialization with no post-processing.

– The proposed method guarantees a geometrically consistent matching in the
sense that the surfaces are mapped into one another in a continuous and
orientation preserving manner.

– We provide a discretization of the set of diffeomorphisms by means of linear
constraints. This is remarkable because in previous formulations the diffeo-
morphism constraint is non-linear and computationally very difficult [18].

– The algorithmic formulation is independent of the particular choice of de-
formation energy and can be applied universally. As an example, we show
that one can also incorporate local feature similarity in order to improve
performance.

– In order to be independent of potential memory limitations, we propose a
multiscale-approach that starts with a coarse matching that is then refined
in every iteration.

– Experiments demonstrate that reliable and dense matchings are obtained
even for larger problem instances with no need for post-processing.

The paper is organized as follows. In Section 2 we present the relationship
between 3D shape matching and the computation of a minimal surface in a
4D manifold. In Section 3 we present the discretization that we use in order to
model arbitrary surfaces in the induced 4D space and in Section 4 we address the
problem of finding an approximation of the involved integer linear program. After
introducing in Section 5 a multi-resolution approach in order to also compute
dense shape matching, we provide shape matching results in Section 6. Section 7
concludes this work.

2 From Continuous Shape Matching to Minimal Surfaces

One of our goal is to cast the shape matching problem as the computation of
a minimal surface in a four-dimensional space. In Section 2.1 we formulate the
overall energy that we want to minimize. It combines a physically motivated
membrane energy with a bending energy. Subsequently, we show in Section 2.2
how this problem can be translated into an equivalent problem of finding a min-
imal codimension-two surface in the product space of the two involved shapes.

2.1 Shape Matching based on Minimizing Deformation Energies

In the following, we assume that the two shapes X,Y ⊂ R3 are differentiable,
oriented, closed surfaces. While most 3D shape matching approaches like to in-
terpret a matching just as a bijective mapping between the surface points of
these shapes, we pursue a fundamentally different approach. The main reason is
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that in general, bijections do not respect the underlying two-dimensional struc-
ture of surfaces. In fact, there are even continuous bijections between a line
and a two-dimensional patch like the continuous space-filling curve as shown
by Hilbert [19]. Therefore, we propose to search for diffeomorphisms instead of
bijections.

Diffeomorphisms f : X → Y are bijections for which both, f and f−1 are
differentiable. This does not only cope with the dimensionality problem presented
above, but it also helps us to propose an energy function that is symmetric in f
and f−1. Since both f and its inverse exist, the optimal matching f between X
and Y also gives rise to the optimal matching between Y and X, namely f−1 :
Y → X. The set of diffeomorphisms Diff(X,Y ) can be separated in two different
classes, into the class of orientation preserving diffeomorphisms Diff+(X,Y ) and
the class of orientation reversing diffeomorphisms Diff−(X,Y ).

In the following, we formulate the shape matching problem as an optimization
problem over Diff+(X,Y ):

min
f∈Diff+(X,Y )

E(f) + E(f−1) (1)

where E is a suitable energy on the class of all diffeomorphisms between surfaces.
Note that we choose a symmetric problem formulation, penalizing at the same
time deformation energy of X into Y and of Y into X. This is necessary because
usually E takes different values on f and on f−1.

The energy functional we use is borrowed from elasticity theory in physics [20].
Here, we interpret the shapes X and Y as surfaces or “thin shells”. If we now
try to find the deformation of X into Y , it requires a certain amount of stretch-
ing and bending. This results in an energy that usually combines a membrane
energy Emem and a bending energy Ebend penalizing deformations in the first
and in the second fundamental forms of the surfaces. In this work we use the
following formulation:

E(f) =

∫
X

(trgX E) + µ trgX (E2)︸ ︷︷ ︸
Emem

+λ

∫
X

(HX(x)−HY (f(x))
2︸ ︷︷ ︸

Ebend

(2)

where E = f∗gY − gX is the difference between the metric tensors of X and Y ,
typically called the Lagrange strain tensor, trgX (E) is the norm of this tensor
(see [21]), HX and HY denote the mean curvatures and µ and λ are parameters
which determine the elasticity and the bending property of the material. This
energy is a slightly simplified version of Koiter’s thin shell energy [22].

After presenting the overall energy E(f)+E(f−1) that we want to minimize,
we will reformulate this problem in the next section into a problem of finding a
minimal surface in a four-dimensional space.

2.2 Shape Matchings and their Graph Surfaces

As we mentioned in Section 2.1, every matching function f : X → Y between
two shapes X and Y is an orientation preserving diffeomorphism. Given such a
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matching, its graph

Γ = { (x, f(x))|x ∈ X} (3)

becomes a surface in the four-dimensional3 product space X × Y . This surface
Γ comes with the two natural projections:

πX : Γ → X πY : Γ → Y

(x, y) 7→ x (x, y) 7→ y

that will help us to characterize a diffeomorphism completely by its graph:

Proposition 1 (Graph Surfaces). Let Γ be the graph of a diffeomorphism
f : X → Y . Then

1. Γ is a differentiable, connected, closed surface in the product space X × Y .
2. The projections πX and πY are both diffeomorphisms.
3. The two orientations which Γ naturally inherits from X and Y coincide.

Vice versa, any surface Γ ⊂ X × Y which satisfies Conditions 1–3 is the graph
of an orientation-preserving diffeomorphism between X and Y . We call such
surfaces graph surfaces.

The energy E(f) + E(f−1) can be expressed as Ẽ(Γ ) via

E(f) + E(f−1) = E(πY ◦ (πX)−1) + E(πX ◦ (πY )−1) =: Ẽ(Γ ). (4)

Concluding the above discussion, we have transformed the optimization prob-
lem (1) into an optimization problem over the set of all graph surfaces in X×Y ,
namely

min Ẽ(Γ )

subject to Γ ⊂ X × Y is a graph surface
(5)

We remark that the idea of casting optimal diffeomorphism problems as
minimal surface problems has been applied previously in the theory of nonlinear
elasticity [23]. In the setup of shape matching, it is related to the approach that
Tagare [24] proposed for the matching of 2D shapes. Its connection to orientation
preserving diffeomorphisms was made in [3].

3 The Discrete Setting

In this section we develop a discrete representation of graph surfaces introduced
in Section 2.2. We start in Section 3.1 with the definition of discrete surface
patches in X ×Y . These patches are derived from a given discrete triangulation
ofX and Y itself. The surface patches in the product spaceX×Y are the building
blocks for discrete graph surfaces that we introduce in Section 3.2. Finally in
Section 3.3 we give a discrete version of the energy minimization problem (5).

3 X × Y is a 4-manifold embedded in R6.
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Fig. 2. Product Triangles. To assure a geometrically consistent, elastic matching
from mesh X to mesh Y , we define a space of feasible solutions which is spanned by
a set of 45 basic matchings among triangles, edges and vertices on either mesh. Two
representative matchings and their corresponding representation in the product space
X × Y are shown. Left image: The triangle (a1, a2, a3)

T on surface X is matched to
triangle (b1, b2, b3)

T on Y by assigning vertex ai to vertex bi. This directly corresponds
to the triangle with vertices (ai, bi) in the product graph. Right image: The triangle
(a1, a2, a3)

T is matched to the edge (b1, b3)
T , represented here as degenerate triangle

(b1, b1, b3)
T .

3.1 Discrete Surface Patches

In the following, we assume that a shape X is given as a triangulated oriented
surface mesh GX = (VX , EX , FX), consisting of a set of vertices VX , a set of
directed edges EX and a set of oriented triangles FX .

While the orientation of X defines a natural orientation of the faces in FX ,
such a natural orientation does not exist for the edge in EX . Moreover, two faces
f1, f2 ∈ FX that touch each other along an edge e ∈ EX induce opposite orien-
tations onto this edge e. Since edges on X do not have a preferable orientation,
we fix an orientation for each edge on X. Thus, whenever two vertices a1 and
a2 of X are connected by an edge, either(

a1
a2

)
∈ EX or

(
a2
a1

)
= −

(
a1
a2

)
∈ EX .

For simplicity, we extend the set of edges by degenerate edges

EX = EX ∪
{(

a

a

) ∣∣∣∣ a ∈ VX

}
. (6)

By assumption, the triangular faces ofX are oriented. If the vertices a1, a2, a3
build an oriented triangle on X, thena1a2

a3

 =

a2a3
a1

 =

a3a1
a2

 ∈ FX

and analogously to the edges, we extend the set of triangles by degenerate tri-
angles

FX = FX ∪


a1a2
a2

 ∣∣∣∣ a1, a2 ∈ VX , ±
(
a1
a2

)
∈ EX

 . (7)
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Due to the definition of EX , degenerate triangles can consist of two vertices or
even of only one vertex. The existence of these degenerate triangles will allow
stretching or compression of parts of the shapes as we will see below (cf. right
image of Figure 2 and Figure 6).

Next, we define triangles F , edges E and vertices V that operate as building
blocks for the graph surfaces introduced in Section 2.2. To this end, let us assume
that two shapes X and Y are given as triangulated oriented surface meshes
GX = (VX , EX , FX) resp. GY = (VY , EY , FY ) and that EX , FX , EY , FY are
defined as above. Then define the graph G = (V,E, F ) of the product space
X × Y by

V :=VX × VY

E :=EX × EY

F :=(FX × FY ) ∪ (FX × FY )

The product triangles in F are the pieces which are later glued together in order
to obtain discrete graph surfaces. For shape matching, a product triangle(a1, b1)

(a2, b2)
(a3, b3)

 ∈ F (8)

is interpreted as setting vertex ai ∈ VX in correspondence with vertex bi ∈ VY .
While a triangle provides us with such a point-to-point matching, it also takes
care of the geometric structure within the two shapes X and Y . In that sense it
is more powerful than a mere point matching.

Given two non-degenerate triangles a ∈ FX and b ∈ FY , we allow for 45
different matchings between them:

– 3 orientation-preserving bijective matchings,

– 36 triangle-to-edge matchings and

– 6 triangle-to-vertex matchings.

The degenerate triangle-to-edge and triangle-to-vertex matchings allow us to
handle infinitesimal stretching and compression in the proposed framework. Vi-
sualizations for two of the 45 possibilities is given in Figure 2.

3.2 Discrete Surfaces

Following Section 2, a diffeomorphism can be represented as a surface Γ ⊂ X×Y
satisfying conditions 1–3 of Proposition 1. In this section we derive discrete
versions of these three properties. First, we define a surface in the product space:

Definition 1. A discrete surface in G = (V,E, F ) is a subset Γ ⊂ F . The
set of all discrete surfaces is denoted by surf(G).
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b3b4
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a3a4

X

Y X × Y
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Fig. 3. Geometric Consistency. To ensure that neighboring triangles on X are
matched with neighboring triangles on Y , we impose the closedness condition. Left im-
age (general case): The triangles (a1, a2, a3)

T and (b1, b2, b3)
T are matched, thereby

activating f2. The boundary condition ∂Γ = 0 ensures that the matching continues
with a correspondence whose triangles in X and Y are positively incident to (a1, a3)

T

and (b1, b3)
T respectively. This constraint is satisfied for example by triangle f1 which

is visualized here. Right image (stretching): The stretching is achieved by match-
ing triangle (a1, a2, a3)

T to edge (b3, b1)
T . Again, the geometric consistency is granted

by the boundary condition evaluated on the product edges ((a2, b1), (a3, b3))
T and

((a3, b3), (a1, b1))
T .

As we have seen in Section 3.1, any triangle in F can be interpreted as
matching a (possibly degenerated) triangle of FX to a (possibly degenerated)
triangle of FY . Thus, the intuitive meaning of a discrete surface Γ ⊂ F is a set
of point correspondences between the shapes X and Y . Imposing the discrete
counterparts of 1–3 on such a discrete surface will result in a geometrically
consistent matching that approximates a diffeomorphism between the continuous
counter-parts of X and Y .

Discrete Version of Condition 1 In the following we will find a condition
which guarantees the continuity of our matching. Recall that the boundary op-
erator for triangle meshes [25] maps triangles to their oriented boundary. We
extend this definition to the product graph G.

As for the sets EX and EY we choose arbitrary orientations for each product
edge e ∈ E. By means of these orientations we define for any edge (v1, v2)

> ∈ E
connecting two vertices v1, v2 ∈ V a vector O

(
(v1, v2)

>) ∈ Z|E| whose e-th entry
is given by

O
(
(v1, v2)

>)
e
=


1 if e =

(
v1

v2

)
−1 if e =

(
v1

v2

)
0 else.

(9)

The triangles in F naturally inherit orientations from the triangles in FX

and FY . This allows us to define the boundary operator as follows.

Definition 2. The boundary operator ∂ : F → Z|E| is defined by

∂

(a1, b1)
(a2, b2)
(a3, b3)

 := O

(
(a1, b1)
(a2, b2)

)
+O

(
(a2, b2)
(a3, b3)

)
+O

(
(a3, b3)
(a1, b1)

)
, (10)
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where the ai ∈ VX and bi ∈ VY form triangles on X resp. on Y and
(
(ai,bi)
(aj ,bj)

)
∈ E

connects the vertices (ai, bi) ∈ V with (aj , bj) ∈ V . The boundary operator is
linearly extended to a map

∂ : surf(G) → Z|E|. (11)

and a discrete surface Γ in G is closed if ∂Γ = 0.

The closedness condition ensures that adjacent triangles on X are in corre-
spondence with adjacent triangles on Y and therefore guarantees the geometric
consistency (see Figure 3). The natural discrete version of Condition 1 is a closed,
connected discrete surface in G.

Discrete Version of Condition 2 Analogously to the continuous case, we can
project product triangles of F to triangles of the surfaces X and Y .

Definition 3. The projection πX : F → Z|FX | is defined by

πX

(a1, b1)
(a2, b2)
(a3, b3)

 :=


ea if a =

a1a2
a3

 ∈ FX

(0, . . . , 0) else

. (12)

Here, ea is the base vector with 1 in the a-entry and 0 in all other entries.
We extend the projection πX linearly to a map πX : surf(G) → Z|FX |. The
projection πY : F → Z|FY | and its linear extension πY : surf(G) → Z|FY | are
defined analogously.

Let now Γ be a discrete surface in G. Then we say that the projections of Γ
to X and Y are discrete diffeomorphisms if and only if

πX(Γ ) = (1, . . . , 1) ∈ Z|FX | and πY (Γ ) = (1, . . . , 1) ∈ Z|FY |. (13)

This gives a discrete version of Condition 2.
Note that in this definition we do not ask for injectivity on the vertices

set. This is necessary for modelling discretely strong compressions. However,
conditions (13) ensure a global bijectivity property which is sufficient in our
context.

Discrete Version of Condition 3 By definition, the set of surfaces in G only
contains surface patches which are consistently oriented. Therefore any surface
in surf(G) satisfies Condition 3.

Definition 4. Let Γ ∈ {0, 1}|F | be a discrete surface in G, represented by its
indicator vector. Then Γ is a discrete graph surface in G if ∂

πX
πY

 · Γ =

0
1
1

 . (14)
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3.3 Discrete Surface Energy

Now we introduce a discrete energy on the set of product triangles in G. For the
membrane energy in (2) we adopt the term proposed by Delingette [26]. Given
two triangles T1, T2 ⊂ R3, Delingette computes the stretch energy Emem(T1 →
T2) necessary for deforming T1 in T2. In our framework we associate with each
product triangle (a, b) ∈ F consisting of a = (a1, a2, a3)

> ∈ FX and b =
(b1, b2, b3)

> ∈ FY the membrane cost

Emem(a, b) :=Emem

a1a2
a3

 →

b1b2
b3

+ Emem

b1b2
b3

 →

a1a2
a3

 . (15)

For the bending term we proceed similarly associating with each product triangle
(a, b) the cost

Ebend(a, b) =

∫
a

(HX −HY )
2 +

∫
b

(HY −HX)2. (16)

In practice we discretize the mean curvature following [27].
Next, we extend the energy linearly from discrete surface patches to discrete

surfaces in G. Identify a discrete surface with its indicator vector Γ ∈ {0, 1}|F |.
Define the vector E ∈ R|F | whose f -th entry is

Ef = Emem(f) + Ebend(f). (17)

Then the discrete energy of Γ is given by the vector product

Et · Γ. (18)

4 Linear Programming Solution

In the previous section we have introduced a discrete notion of graph surfaces
(14) and a discrete deformation energy (18) for such graph surfaces. This enables
us to state the discrete version of (5) in the form of a binary linear program:

min
Γ∈{0,1}|F |

Et · Γ

subject to

 ∂
πX
πY

 · Γ =

0
1
1

 .
(19)

For solving (19), we relax the binary constraints to Γ ∈ [0, 1]|F |. This relaxed
version can be solved globally optimally in polynomial time. We employed an
alternating direction method developed by Eckstein et al. [29]. This algorithm
is parallelizable which allowed us an efficient implementation on the GPU.
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Fig. 4. SHREC 2011 benchmark and matching different objects. Left: The
image illustrates the performance of the proposed method on the SHREC 2011 [28]
dataset. Right: Matching of two different objects. While it is not well defined what
a good matching between a skirt and trousers is, it is really remarkable how well
the proposed algorithm finds a matching that apparently minimizes the deformation
energy.

Since the constraint matrix of the relaxed problem is not totally unimodular,
we are not guaranteed an integral solution. A simple thresholding scheme would
destroy the geometric consistency of the solution. Instead, we propose an itera-
tive scheme: solve the relaxed version of (19), fix the variables with values above
a threshold > 0.5 to 1 and solve the relaxed version of (19) with these addi-
tional constraints. If there is no variable with value above the threshold fix only
one variable with the highest value. In our experiments, this scheme typically
converged to a binary solution after less than 10 iterations, in no experiment it
took more than 20 iterations.

5 Multiresolution Framework

Because the number of product triangles grows quadratically with the number of
triangles in both shapes the resulting Integer Linear Program (ILP) has a very
high number of variables and constraints. Even the minimization of the relaxed
Linear Program (LP) becomes impractical for state-of-the-art LP solvers, if the
shapes have more than 250 triangles. In this section we present a multiresolution
approach that overcomes this limitation and allows to match shapes of more than
2000 triangles.

The basic idea of the multiresolution approach is to solve the problem at a
very coarse scale with the methods described in Section 4 and to recursively use
the found solution to narrow the search space at the next finer level. To reduce
the size of the search space we impose that a possible solution at a finer level
must lie ”near” an already found solution at the coarser scale.

For the definition of ”near” we use a hierarchy of triangles across the res-
olution levels. Suppose that we obtain a triangle mesh Xi from a finer trian-



Dense Elastic 3D Shape Matching 13

gle mesh Xi+1 by repeatedly merging triangles. In practice we use the quadric
edge decimation algorithm [30] in its OpenMesh implementation [31]. Denote
by χi : F (Xi+1) → F (Xi) the child-parent relation, mapping each triangle in
FXi+1 to the triangle it is merged to on the coarser mesh Xi. These maps are

extended to maps between the extended sets of triangles χi : FXi+i → FXi (see
Section 3.2).

Let nowX and Y be two high-resolution meshes and letX = Xn, Xn−1, . . . , X0

and Y = Yn, Yn−1, . . . , Y0 be successive coarsenings with corresponding child-
parent relations {χi}0≤i≤n−1 and {ψi}0≤i≤n−1. We proceed as follows:

1. We compute a discrete graph surface Γ0 (cf. Definition 4) inducing a match-
ing of the coarsest meshes X0 and Y0. We use the methods described in
Section 4 for this task.

2. Assuming inductively that we have found a discrete graph surface Γi which
induces a matching of Xi and Yi, we search for a discrete graph surface
Γi+1. This surface has to lie in a search space which is reduced using the
input of the already computed surface Γi. Rather than allowing Γi+1 to be
built of all product triangles Fi+1 between Xi+1 and Yi+1, we only allow
for product triangles whose parents or whose parents’ neighbors are set in
correspondence by Γi. Thus, Γi+1 is searched as a subset of the reduced set
of product triangles

F red
i+1 =

(fa, fb) ∈ Fi+1

∣∣∣∣∣∣∣
∃(f ′a, f ′b) ∈ Γi ⊂ Fi s.t.

χi(fa) ∈ N (f ′a) and

ψi(fa) ∈ N (f ′b)

 . (20)

Here, for a triangle f on a triangle mesh we used the set of triangles in the
one-ring or the two-ring of its vertices as neighborhood N (f).
Then we compute Γi+1 by solving problem (19) over the reduced search

space, that is Γi+1 ∈ {0, 1}|F
red
i+1|.

3. We repeat Step 2 until a discrete graph surface Γn has been computed which
induces a matching between X and Y .

6 Experimental Results

We have introduced a framework for computing geometrically consistent elastic
matchings between 3D shapes using LP relaxation. We evaluated the proposed
method on several shapes taken from the SHREC 2011 benchmark [28] and a
dataset by Vlasic et al. [32].

6.1 Matching of Articulated Shapes

A common problem in shape matching is that the same shape may undergo
substantial deformation and articulation. Nevertheless, one would like to re-
liably identify corresponding structures. Figures 1 and 7 show the matchings
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Fig. 5. Multiresolution Framework. The images show matchings between two
shapes at different resolutions. As described in Section 5 the computational cost is
drastically reduced by first solving the matching problem at a lower resolution and
then using the obtained solution to restrict the search space at the next higher resolu-
tion.

computed for models of different articulations. Although the movement of arms
and legs deform the shapes drastically the proposed method identifies the correct
matchings. Since the proposed framework enforces geometric consistency match-
ing errors occur only on a small spatial scale. In contrast to methods without
spatial regularization strong outliers such as single points matched to the wrong
leg do not arise.

6.2 Partial Matching

The ability of the proposed method to model stretching and shrinking also allows
to match shapes where large parts of the geometry are missing. The right image
of Figure 6 demonstrates this ability experimentally. The proposed algorithm
matches the remaining parts of a human body missing a hand, a leg and the
head to its original shape.

6.3 Quantitative Evaluation

We quantitatively evaluated the proposed method on 30 pairs of models from
Vlasic et al. [32] by computing the mean geodesic error. One of the matchings
is visualized in Figure 1. Computing each of the matchings took about 2 hours.
The results were compared to matchings generated by the GMDS method of
Bronstein et al. [8] using their code.

Given two meshes X,Y and the available ground truth correspondences
(xi, yi) we defined the mean geodesic error of a matching ϕ : X → Y by
1
N

∑
i d(ϕ(xi), yi), where d is the normalized geodesic distance on the mani-

fold of mesh Y . The mean geodesic error produced by GMDS (using their code)
was 0.079 while the proposed method had a mean geodesic error of 0.03.
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Elastic matching of planar shapes [3] Proposed elastic matching of 3D shapes

Fig. 6. 2D and 3D Shape Matching. While the elastic matching of planar shapes
can be solved in polynomial time as a minimal cyclic path on a torus [3], the framework
developed in this paper allows to compute an elastic matching of 3D shapes via linear
programming relaxation. In both cases, missing parts can be accounted for due to the
elasticity.

Fig. 7. Linear Interpolation. The images show a matching between the leftmost
and rightmost models taken from the SHREC 2011 benchmark [28] by linearly inter-
polating between the triangle correspondences. This transition illustrates the geometric
consistency property of the proposed method: At any time during the interpolation the
model is a closed triangle mesh.

Of course, this experiment does not pretend to be an exhaustive comparison
against all methods in the literature. Nonetheless it shows, that the proposed
method can compete with state-of-art matching algorithms in terms of accuracy
while guaranteeing geometrically consistent solutions.

7 Conclusion

We proposed a new framework for finding a geometrically consistent matching
of 3D shapes which minimizes an elastic deformation energy. The approach is
based on finding discrete minimal surfaces which set infinitesimal surface patches
on both shapes into correspondence. In that sense the framework manages to
generalize the planar shape matching to the more complex 3D shape matching.
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While the planar shape matching finds correspondences between infinitesimal
line elements of two contours, the 3D shape matching sets infinitesimal surface
elements in correspondence. We showed that a consistent discretization leads
to an integer linear program. As a consequence, we can compute high-quality
solutions to the matching problem which are independent of initialization by
means of LP relaxation.

To improve the runtime and overcome possible memory limitations, we also
introduced a multi-scale approach that improves iteratively matchings from a
coarse level to its finest level. Experimental results confirm that the proposed
method generates reliable dense correspondences for a variety of articulated real-
world shapes.
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