
THE HODGE CONJECTURE FOR SELF-PRODUCTS OF CERTAIN K3
SURFACES

ULRICH SCHLICKEWEI

Abstract. We use a result of van Geemen [vG4] to determine the endomorphism algebra of

the Kuga–Satake variety of a K3 surface with real multiplication. This is applied to prove the

Hodge conjecture for self-products of double covers of P2 which are ramified along six lines.

1. Introduction

Let S be a complex K3 surface, i.e. a smooth, projective surface over C satisfying H1(S,OS) =
0 and ωS ' OS . Let T (S) ⊂ H2(S,Q) be the rational transcendental lattice of S, defined as
the orthogonal complement of the Néron–Severi group with respect to the intersection form.
The algebra ES := EndHdg(T (S)) of endomorphisms of T (S) which preserve the Hodge de-
composition can be interpreted as a subspace of the space of (2,2)-classes on the self-product
S × S. The Hodge conjecture for S × S predicts that ES consists of linear combinations of
fundamental classes of algebraic surfaces in S×S. Using the Lefschetz theorem on (1,1)-classes,
it is easily seen that conversely the Hodge conjecture for S × S holds if ES is generated by
algebraic classes.

Mukai [Mu1] used his theory of moduli spaces of sheaves to prove that if the Picard number
of S is at least 11, then any ϕ ∈ ES which preserves the intersection form on T (S) can be
represented as a linear combination of fundamental classes of algebraic cycles. Later this result
was improved by Nikulin [N] on the base of lattice-theoretic arguments to the case that the
Picard number of S is at least 5. In [Mu2], Mukai announced that using the theory of moduli
spaces of twisted sheaves, the hypothesis on the Picard number could be omitted.

But how many isometries do exist in the algebra ES? Results of Zarhin [Z] imply that ES is
an algebraic number field, which is either totally real (we say that S has real multiplication) or
a CM field (S has complex multiplication). Isometries of T (S) correspond to elements of norm 1
in ES . If S has complex multiplication, one can use the fact that CM fields are generated as Q-
vector spaces by elements of norm 1 to see that ES is generated by isometries. In combination
with Mukai’s results, this proves the Hodge conjecture for self-products of K3 surfaces with
complex multiplication and with Picard number at least 5. This was noticed by Ramón-Maŕı
[RM]. If S has real multiplication, the only Hodge isometries in ES are plus or minus the
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identity. Thus, Mukai’s results are no longer sufficient to prove the algebraicity of interesting
classes in ES .

In order to approach the case of real multiplication one passes from K3 surfaces to Abelian
varieties by associating to a K3 surface S its Kuga–Satake Abelian variety A. By construction,
see [KS], there exists an inclusion of Hodge structures T (S) ⊂ H2(A × A,Q). Van Geemen
[vG4] studied the Kuga–Satake variety of a K3 surface with real multiplication. He discovered
that the corestriction of a certain Clifford algebra over ES plays an important role for the
Kuga–Satake variety of S. We rephrase and slightly improve his result which then reads as
follows:

Theorem 1. Let S be a K3 surface with real multiplication by a totally real number field ES
of degree d over Q. Let A be a Kuga–Satake variety of S.

Then there exists an Abelian variety B such that A is isogenous to B2d−1
. The endomorphism

algebra of B is
EndQ(B) = CoresE/QC

0(Q).

Here, Q : T × T → ES is a quadratic form on T which already appeared in Zarhin’s paper
[Z] and which will be reintroduced in Section 2.4, C0(Q) is the even Clifford algebra of Q over
ES and CoresE/QC0(Q) is the corestriction of this algebra. The corestriction of algebras will
be reviewed in Section 3.2.

Theorem 1 leads to a better understanding of the phenomenon of real multiplication for K3
surfaces by allowing us to calculate the endomorphism algebra of the corresponding Kuga–
Satake varieties. However, since the Kuga–Satake construction is purely Hodge-theoretic, this
still gives no geometric explanation. Therefore, we focus on one of the few families of K3
surfaces for which the Kuga–Satake correspondence has been understood geometrically. This
is the family of double covers of P2 ramified along six lines. Paranjape [P] found an explicit
cycle on S × A × A which realizes the inclusion of Hodge structures T (S) ⊂ H2(A × A,Q).
Building on the decomposition result for Kuga–Satake varieties we derive

Theorem 2. Let S be a K3 surface which is a double cover of P2 ramified along six lines.
Then the Hodge conjecture is true for S × S.

As pointed out by van Geemen [vG4], there are one-dimensional sub-families of the family
of such double covers with real multiplication by a totally real quadratic number field. In
conjunction with our Theorem 2, this allows us to produce examples of K3 surfaces S with
non-trivial real multiplication for which EndHdg(T (S)) is generated by algebraic classes. We
could not find examples of this type in the existing literature.

The plan of the paper is as follows: In Section 2 we review Zarhin’s results on the endomor-
phism algebra and on the special Mumford–Tate group of an irreducible Hodge structure of
K3 type. Also, we recall from [vG4] how a Hodge structure of K3 type with real multiplication
splits over a finite extension of Q.
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Section 3 is devoted to the proof of Theorem 1. After reviewing the definition of the core-
striction of algebras, we explain in detail how the Galois group of a normal closure of ES acts
on the Kuga–Satake Hodge structure. This is the key of the proof.

In the final Section 4 we study double covers of P2 ramified along six lines. We review
results of Lombardo [Lo] on the Kuga–Satake variety of such K3 surfaces, of Schoen [S] and
van Geemen [vG2] on the Hodge conjecture for certain Abelian varieties of Weil type and of
course Paranjape’s [P] result on the algebraicity of the Kuga–Satake correspondence. Together
with Theorem 1, they lead to the proof of Theorem 2.

Acknowledgements. This work is a part of my Ph.D. thesis prepared at the University of Bonn.
It is a great pleasure to thank my advisor Daniel Huybrechts for suggesting this interesting
topic and for constantly supporting me.

During a four week stay at the University of Milano I had many fruitful discussions with Bert
van Geemen. I am most grateful to him for his insights.

2. Hodge structures of K3 type with real multiplication

2.1. Hodge structures of K3 type and their endomorphisms. Let U(1) be the one-
dimensional unitary group which is a real algebraic group. To fix notations we recall that a
Hodge structure of weight k is a finite-dimensional Q-vector space T together with a morphism
of real algebraic groups h : U(1) → GL(T )R such that for z ∈ U(1)(R) ⊂ C the C-linear
extension of the endomorphism h(z) is diagonalizable with eigenvalues zpzq where p + q = k

and p, q ≥ 0 (cf. e.g. [vG4, 1.1]). The eigenspace to zpzq is denoted by T p,q ⊂ TC.
A polarization of a weight k Hodge structure (T, h) is a bilinear form q : T × T → Q which

is U(1)-invariant and which has the property that (−1)k(k−1)/2q(∗, h(i)∗) : TR × TR → TR is a
symmetric, positive definite bilinear form.

Definition 2.1.1. A Hodge structure of K3 type (T, h, q) consists of a Q-Hodge structure (T, h :
U(1)→ GL(T )R) of weight 2 with dimC T

2,0 = 1 together with a polarization q : T × T → Q.

Examples. The second primitive (rational) cohomology and the (rational) transcendental lattice
of a projective K3 surface yield examples of Hodge structures of K3 type. More generally,
the second primitive cohomology and the Beauville–Bogomolov orthogonal complement of the
Néron–Severi group of an irreducible symplectic variety are Hodge structures of K3 type [GHJ,
Part III].

Consider the Hodge decomposition

TC := T ⊗Q C = T 2,0 ⊕ T 1,1 ⊕ T 0,2.

Since the quadratic form q is a polarization, this decomposition is q-orthogonal. Moreover, q
is positive definite on (T 2,0 ⊕ T 0,2) ∩ TR and negative definite on T 1,1 ∩ TR.

Assume that T is an irreducible Hodge structure. Let E := EndHdg(T ) be the division
algebra of endomorphisms of Hodge structures of T . Let ′ : E → E be the involution given by
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adjunction with respect to q and let E0 ⊂ E be the subalgebra of E formed by q-self-adjoint
endomorphisms.

Theorem 2.1.2 (Zarhin [Z]). The map

ε : E → C, e 7→ eigenvalue of e on the eigenspace T 2,0

identifies E with a subfield of C. Moreover, E0 is a totally real number field and the following
two cases are possible:
• E0 = E (in this case we say that T has real multiplication) or
• E0 ⊂ E is a purely imaginary, quadratic extension and ′ is the restriction of complex

conjugation to E (we say that T has complex multiplication).

2.2. Splitting of Hodge structures of K3 type with real multiplication. (For this and
the next section see [vG4], 2.4 and 2.5.) Let (T, h, q) be an irreducible Hodge structure of K3
type and assume that E = EndHdg(T ) is a totally real number field. Note that by Theorem
2.1.2, all endomorphisms in E are q-self-adjoint.

By the theorem of the primitive element, there exists α ∈ E such that E = Q(α). Let
d = [E : Q]. Let P be the minimal polynomial of α over Q, denote by Ẽ the splitting field of
P in R. Let G = Gal(Ẽ/Q) and H = Gal(Ẽ/E). Choose σ1 = id, σ2, . . . , σd ∈ G such that

G = σ1H t . . . t σdH.

Note that each coset σiH induces a well-defined embedding E ↪→ Ẽ. In Ẽ[X] we get

P (X) =
d∏
i=1

(X − σi(α))

and consequently

E ⊗Q Ẽ =Q[X]/(P )⊗Q Ẽ

'
d⊕
i=1

Ẽ[X]/(X − σi(α))

'
d⊕
i=1

Eσi .

The symbol Eσi stands for the field Ẽ, the index σi keeps track of the fact that the Ẽ-linear
extension of E ⊂ EndQ(E) acts on Eσi via e(x) = σi(e) · x. See Section 3.2 for another
interpretation of Eσi .

In the same way, since T is a finite-dimensional E-vector space we get a decomposition

T eE = T ⊗Q Ẽ =
d⊕
i=1

Tσi .
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This is the decomposition of T eE into eigenspaces of the Ẽ-linear extension of the E-action on
T , Tσi being the eigenspace of e eE to the eigenvalue σi(e) for e ∈ E. Since each e ∈ E is q-self-
adjoint (that is e′ = e), the decomposition is orthogonal. Let q eE be the Ẽ-bilinear extension of
q to T eE × T eE . Using the notation

Ti := Tσi and qi = (q eE)|Ti×Ti ,

we have an orthogonal decomposition

(1) (T eE , q eE) =
d⊕
i=1

(Ti, qi).

2.3. Galois action on T eE. Letting G act in the natural way on Ẽ, we get a (only Q-linear)
Galois action on T eE = T ⊗Q Ẽ. Under this action, for τ ∈ G we have

(2) τTσi = Tτσi .

This is because the Galois action commutes with the Ẽ-linear extension of any endomorphism
e ∈ E ⊂ EndQ(T ) the latter being defined over Q and because for ti ∈ Tσi and e ∈ E

e eE(τ(ti)) = τ(e eE(ti)) = τ(σi(e)ti) = τ(σi(e))τ(ti) = (τσi(e))τ(ti),

which means that τ permutes the eigenspaces of e eE precisely in the way we claimed. Define a
homomorphism

(3) γ : G→ Sd, τ 7→ {i 7→ τ(i) where (τσi)H = στ(i)H}.

(This describes the action of G on G/H.) With this notation, (2) reads

(4) τTi = Tτ(i).

Interpret T as a subspace of T eE via the natural inclusion T ↪→ T eE , t 7→ t ⊗ 1. Denote by
πi the projection to Ti. For t ∈ T and τ ∈ G we have t = τ(t). Write ti := πi(t ⊗ 1), then
t =

∑
i ti. Using (4) we see that

(5) tτi = τ(ti).

It follows that

(6) ιi : T → Ti, t 7→ πi(t⊗ 1)

is an injective map of E-vector spaces (E acting on Ti via σi : E ↪→ Ẽ). Equation (5) can be
rephrased as

(7) ιτi = τ ◦ ιi.

Since q is defined over Q, we have for t ∈ T eE and τ ∈ G

q eE(τt) = τq eE(t).

This implies that for t ∈ T

(8) qi(ιi(t)) = σiq1(ι1(t)).
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2.4. The special Mumford–Tate group of a Hodge structure of K3 type with real
multiplication. Zarhin [Z] also computed the special Mumford–Tate group of an irreducible
Hodge structure of K3 type. Recall that for a Hodge structure (W,h : U(1) → GL(W )R)
the special Mumford–Tate group SMT(W ) is the smallest linear algebraic subgroup of GL(W )
defined over Q with h(U(1)) ⊂ SMT(W )R (cf. [G]).

Assume that (T, h, q) is an irreducible Hodge structure of K3 type with real multiplication by
E = EndHdg(T ). We continue to use the notations of Section 2.2. Denote by Q the restriction
of q1 to T ⊂ T1 (use the inclusion ι1 of (6)). This is an E-valued (since H-invariant), non-
degenerate, symmetric bilinear form on the E-vector space T . Denote by SO(Q) the E-linear
algebraic group of Q-orthogonal, E-linear transformations of T with determinant 1.

Recall that for an E-variety Y the Weil restriction ResE/Q(Y ) is the Q-variety whose K-
rational points are the E ⊗Q K-rational points of Y for any extension field Q ⊂ K (cf. [BLR]).

Theorem 2.4.1 (Zarhin, see [Z], see also [vG4], 2.8). The special Mumford–Tate group of the
Hodge structure (T, h, q) with real multiplication by E is

SMT(T ) = ResE/Q(SO(Q)).

Its representation on T is the natural one, where we regard T as a Q-vector space and use that
any E-linear endomorphism of T is in particular Q-linear. After base change to Ẽ

SMT(T ) eE =
∏
i

SO((Ti), (qi)),

its representation on T eE =
⊕

i(Ti) is the product of the standard representations.

3. Kuga–Satake varieties and real multiplication

3.1. Kuga–Satake varieties. Let (T, h, q) be a Hodge structure of K3 type. Kuga and Sa-
take [KS] found a way to associate to this a polarizable Q-Hodge structure of weight one
(V, hs : U(1) → GL(V )R), in other words an isogeny class of Abelian varieties, together with
an inclusion of Hodge structures

(9) T ⊂ V ⊗ V.

Set V := C0(q) where C0(q) is the even Clifford algebra of q. Define a weight one Hodge
structure on V in the following way: Choose f1, f2 ∈ (T 2,0⊕T 0,2)R such that C(f1 + if2) = T 2,0

and q(fi, fj) = δi,j (recall that q|(T 2,0⊕T 0,2)R is positive definite). Define J : V → V, v 7→ f1f2v,
then we see that J2 = − id. Now we can define a homomorphism of algebraic groups

hs : U(1)→ GL(V )R, exp(xi) 7→ exp(xJ),

and this induces the Kuga–Satake Hodge structure. One can check that hs is independent of
the choice of f1, f2 (see [vG3, Lemma 5.5]).

It can be shown that the Kuga–Satake Hodge structure admits a polarization (cf. [vG3, Prop.
5.9]) and that there is an embedding of Hodge structures as in (9) (see [vG3, Prop. 6.3]).
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3.2. Corestriction of algebras. Let E/K be a finite, separable extension of fields of degree
d and let A be an E-algebra. We use the notations of Section 2.2, so Ẽ is a normal closure of E
over K, σ1, . . . , σd is a set of representatives of G/H where G = Gal(Ẽ/K) and H = Gal(Ẽ/E).

For σ ∈ G define the twisted Ẽ-algebra as the ring

Aσ := A⊗E Ẽ

which carries an Ẽ-algebra structure given by

λ · (a⊗ e) = a⊗ σ−1(λ)e.

Note that Aσ ' A⊗E Eσ.
Let V be an E-vector space and W an Ẽ-vector space, let σ ∈ G. A homomorphism of

K-vector spaces ϕ : V →W is called σ-linear if ϕ(λv) = σ(λ)ϕ(v) for all v ∈ V and λ ∈ E. If
both, V and W are Ẽ-vector spaces, there is a similar notion of an σ-linear homomorphism.

Lemma 3.2.1. The map
κσ : A→ Aσ, a 7→ a⊗ 1

is a σ-linear ring homomorphism and the pair (Aσ, κσ) has the following universal property:
For all Ẽ-algebras B and for all σ-linear ring homomorphisms ϕ : A→ B there exists a unique
Ẽ-algebra homomorphism ϕ̃ : Aσ → B making the diagram

A
κσ //

ϕ   A
AA

AA
AA

A Aσ

eϕ
��
B

commutative.

Proof. We only check the universal property. To give a K-linear map α : A ⊗E Ẽ → B is the
same as to give a K-bilinear map β : A× Ẽ → B satisfying

(10) β(λa, e) = β(a, λe)

for all a ∈ A, e ∈ Ẽ and λ ∈ E. These maps are related by the condition

α(a⊗ e) = β(a, e).

Now given ϕ as in the lemma, we define

ψ : A× Ẽ → B, (a, e) 7→ σ(e)ϕ(a).

This is a K-bilinear map which satisfies (10) and therefore, it induces a K-linear map

ϕ̃ : A⊗E Ẽ → B, a⊗ e 7→ σ(e)ϕ(a).

It is clear that ϕ̃ is a ring homomorphism and that it respects the Ẽ-algebra structures if we
interpret ϕ̃ as a map ϕ̃ : Aσ → B. The uniqueness of this map is immediate. 2

Remark. (i) The lemma shows that up to unique Ẽ-algebra isomorphism, the twisted algebra
Aσi depends only on the coset σiH. Indeed, for σ ∈ σiH the inclusion A ↪→ Aσi is σ-linear
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because σ and σi induce the same embedding of E into Ẽ. By the lemma, there exists an
Ẽ-algebra isomorphism ασ,σi : Aσ

∼→ Aσi , a⊗ e 7→ σ(e) · (a⊗ 1) = a⊗ σ−1
i σ(e).

(ii) In Section 2.2 we were in the situation E = Q(α). There we discussed the splitting
E ⊗Q Ẽ '

⊕
i Ẽ[X]/(X − σi(α)) '

⊕
iEσi and we used the symbol Eσi for the field Ẽ with

E-action via e(x) = σi(e) · x. This is precisely our twisted Ẽ-algebra Eσi on which E acts via
the inclusion κσi .

For τ ∈ G there is a unique τ -linear ring isomorphism τ : Aσi → Aστi which extends the
identity on A ⊂ Aσi (in the sense that τ ◦ κσi = κστi). This map is given as the composition
of the following two maps: First apply the identity map Aσi → Aτσi , a⊗ e 7→ a⊗ e which is a
τ -linear ring isomorphism. Then apply the isomorphism ατσi,στi (by definition of the G-action
on {1, . . . , d} we have τσi ∈ στiH). On simple tensors the map τ takes the form

(11) a⊗ e 7→ a⊗ σ−1
τi τσi(e).

These maps induce a natural action of G on

ZG(A) := Aσ1 ⊗ eE . . .⊗ eE Aσd
where

(12) τ((a1 ⊗ e1)⊗ . . .⊗ (ad ⊗ ed))

=
(
aτ−11 ⊗ σ−1

1 τστ−11(eτ−11)
)
⊗ . . .⊗

(
aτ−1d ⊗ σ−1

d τστ−1d(eτ−1d)
)
.

Definition 3.2.2 ([D], §8, Def. 2 or [T], 2.2). The corestriction of A to K is the K-algebra of
G-invariants in ZG(A)

CoresE/K(A) := ZG(A)G.

Remark. (i) By [D, §8, Cor. 1] there is a natural isomorphism

CoresE/K(A)⊗K Ẽ ' ZG(A)

In particular, with d = [E : K] one gets dimK CoresE/K(A) = (dimE(A))d.

(ii) Let X = Spec(A) for a commutative L-algebra A. Then for any K-algebra B we get a
chain of isomorphisms, functorial in B

HomK−Alg(CoresE/K(A), B) '
(

Hom eE−Alg
(ZG(A), B ⊗K Ẽ)

)G
' HomE−Alg(A,B ⊗K E).

Here, the last isomorphism is given by composing f ∈
(

Hom eE−Alg
(ZG(A), B ⊗K Ẽ)

)G
with

the inclusion j : A ↪→ ZG(A), a 7→ κσ1(a) ⊗ 1 ⊗ . . . ⊗ 1. (The image of this composition is
contained in the H-invariant part of B ⊗K Ẽ which is B ⊗K E.) This map is an isomorphism,
since ZG(A) is generated as an Ẽ-algebra by elements of the form σ ◦ j(a) with a ∈ A and
σ ∈ G.
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It follows that
ResE/K(Spec(A)) ' Spec(CoresE/K(A)),

i.e. the Weil restriction of affine E-schemes is the same as the corestriction of commutative
E-algebras.

3.3. The decomposition theorem. We will assume from now to the end of the section that
(T, h, q) is an irreducible Hodge structure of K3 type with E = EndHdg(T ) a totally real number
field.

Recall that in this case T is an E-vector space which carries a natural E-valued quadratic
form Q (see 2.4). Let C0(Q) be the even Clifford algebra of Q over E. It was van Geemen (see
[vG4, Prop. 6.3]) who discovered that the algebra CoresE/Q(C0(Q)) appears as a sub-Hodge
structure in the Kuga–Satake Hodge structure of (T, h, q). We are going to show that this
contains all information on the Kuga–Satake Hodge structure.

Theorem 3.3.1. Denote by (V, hs) the Kuga–Satake Hodge structure of (T, h, q).

(i) The special Mumford–Tate group of (V, hs) is the image of ResE/Q(Spin(Q)) in Spin(q)
under a morphism m of rational algebraic groups which after base change to Ẽ becomes

m eE : Spin(q1)× . . .× Spin(qd)→ Spin(q) eE , (v1, . . . , vd) 7→ v1 · . . . · vd.

(ii) Let W := CoresE/Q(C0(Q)). Then W can be canonically embedded in V and the image

is SMT(V )-stable and therefore, it is a sub-Hodge structure. Furthermore, there is a (non-
canonical) isomorphism of Hodge structures

V 'W 2d−1
.

(iii) We have
EndHdg(W ) = CoresE/Q(C0(Q))

and consequently
EndHdg(V ) = Mat2d−1

(
CoresE/Q(C0(Q))

)
.

The proof will be given in Section 3.5. The theorem tells us that the Kuga–Satake variety
A of (T, h, q) is isogenous to a self-product B2d−1

of an Abelian variety B with EndQ(B) =
CoresE/Q(C0(Q)) and therefore, it proves Theorem 1.

Note that B is not simple in general. We will see examples below where B decomposes
further.

3.4. Galois action on C(q) eE. By Section 2.2 there is a decomposition

(T, q) eE =
d⊕
i=1

(Ti, qi).

This in turn yields an isomorphism

C(q) eE ' C(q eE) ' C(q1)⊗̂ eE . . . ⊗̂ eEC(qd).
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Here, the symbol ⊗̂ denotes the graded tensor product of algebras, which on the level of vector
spaces is just the usual tensor product, but which twists the algebra structure by a suitable
sign (see [vG3, ??]).

Decompose C(qi) = C0(qi) ⊕ C1(qi) in the even and the odd part. If we forget the algebra
structure and only look at Ẽ-vector spaces, we get

C(q) eE =
⊕

a∈{0,1}d
Ca1(q1)⊗ eE . . .⊗ eE Cad(qd).

For a = (a1, . . . , ad) ∈ {0, 1}d define

Ca(q) = Ca1(q1)⊗ . . .⊗ Cad(qd).

We introduced an action of G = Gal(Ẽ/Q) on {1, . . . , d} (see (3)). This induces an action

(13) G× {0, 1}d → {0, 1}d, (τ, (a1, . . . , ad)) 7→ (aτ−11, . . . , aτ−1d).

The next lemma describes the Galois action on C(q) eE .

Lemma 3.4.1. (i) Via the map

C(qi) ⊂ C(q) eE , vi 7→ 1⊗ . . .⊗ vi ⊗ . . .⊗ 1

we interpret C(qi) as a subalgebra of C(q) eE. Then the restriction of τ ∈ G to C(qi) induces an
isomorphism of Z/2Z-graded Q-algebras

τ : (C(qi))
∼→ C(qτi).

(ii) For τ ∈ G and a ∈ {0, 1}d we get

τ(Ca(q)) = Cτa(q).

Proof. Tensor the natural inclusion T ↪→ C(q) with Ẽ to get a G-equivariant inclusion

T ⊗Q Ẽ =
d⊕
i=1

Ti → C(q) eE .
Using (4), we find for ti ∈ C(qi) that τ(ti) ∈ C(qτ(i)). Now, C(qi) is spanned as a Q-algebra
by products of the form

t1 · . . . · tk = ±(1⊗ . . .⊗ t1 ⊗ . . .⊗ 1) · . . . · (1⊗ . . .⊗ tk ⊗ . . .⊗ 1)

for t1, . . . , tk ∈ Ti. Since G acts by Q-algebra homomorphisms on C(q) eE , this implies (i).
Item (ii) is an immediate consequence of (i): The space Ca(q) is spanned as Q-vector space

by products of the form v1 · . . . · vd = ±v1 ⊗ . . .⊗ vd with vi ∈ Cai(qi). Then use again, that G
acts by Q-algebra homomorphisms. 2

Lemma 3.4.2. For i ∈ {1, . . . , d} the twisted algebra C0(Q)σi is canonically isomorphic as an
Ẽ-algebra to C0(qi). Thus

ZG(C0(Q)) ' C0(q1)⊗ eE . . .⊗ eE C0(qd).



THE HODGE CONJECTURE FOR SELF-PRODUCTS OF CERTAIN K3 SURFACES 11

On both sides there are natural G-actions: On the left hand side G acts via the action introduced
in (12), whereas on the right hand side it acts via the restriction of its action on C(q) eE (use
Lemma 3.4.1). Then the above isomorphism is G-equivariant.

Proof. Fix i ∈ {1, . . . , d}. The composition of the canonical inclusion C0(Q) ⊂ C0(q1) '
C0(Q) eE with the restriction to C0(Q) of the map σi : C(q1) → C(qi) from Lemma 3.4.1
induces a σi-linear ring homomorphism

ϕi : C0(Q) ↪→ C0(qi).

By Lemma 3.2.1 we get an Ẽ-algebra homomorphism

ϕ̃i : C0(Q)σi → C0(qi).

Recall that there are inclusions ιi : T ↪→ Ti (see (6)) which satisfy τ ◦ ιi = ιτi (see (7)). Let
t1, . . . , tm ∈ T such that ι1(t1), . . . , ι1(tm) form a q1-orthogonal basis of T1. Then the vectors
ιi(t1), . . . , ιi(tm) form a qi-orthogonal basis of Ti (use (8)). By definition of ϕ̃i

(14) ϕ̃i
(
ι1(t1)i1 · . . . · ι1(tm)id

)
= ιi(t1)i1 · . . . · ιi(tm)im .

This implies that ϕ̃i maps an Ẽ-basis of C0(Q)σi onto an Ẽ-basis of C0(qi), whence ϕ̃i is an
isomorphism of Ẽ-algebras.

As for the G-equivariance, we have to check that for all τ ∈ G the diagram

C0(Q)σi
eϕi−−−−→ C0(qi)

τ

y yτ
C0(Q)στi

eϕτi−−−−→ C0(qτi)

is commutative. It is enough to check this on an Ẽ-basis of C0(Q)σi because the vertical maps
are both τ -linear whereas the horizontal ones are Ẽ-linear. Since τ : C0(Q)σi → C0(Q)στi was
defined as the extension of the identity map on C0(Q) ⊂ C0(Q)σi , we have

ϕ̃τi ◦ τ
(
ι1(t1)i1 · . . . · ι1(tm)im

)
=ϕ̃τi

(
ι1(t1)i1 · . . . · ι1(tm)im

)
= ιτi(t1)i1 · . . . · ιτi(tm)im

= (τ ◦ ιi)(t1)i1 · . . . · (τ ◦ ιi)(tm)im

= τ
(
ιi(t1)i1 · . . . · ιi(tm)im

)
= τ ◦ ϕ̃i

(
ι1(t1)i1 · . . . · ιm(tm)im

)
.

This completes the proof of the lemma. 2

3.5. Proof of the decomposition theorem. Let K be a field and (U, r) be a quadratic
K-vector space. Recall that the spin group of r comes with two natural representations:

First there is the covering representation ρ : Spin(r) → SO(r) which over an extension field
K ⊂ L maps y ∈ Spin(r)(L) = {x ∈ (C0(r) ⊗K L)∗ | xι(x) = 1 and xUx−1 ⊂ U} to the
endomorphism U → U, u 7→ xux−1. Here, ι : C(r) → C(r) is the natural involution of the
Clifford algebra.
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Secondly, the spin representation realizes Spin(r) as a subgroup of GL(C0(r)) by sending
y ∈ Spin(r)(L) to the endomorphism of C0(r) given by x 7→ y · x.

Proof of (i). By [vG3, Prop. 6.3], there is a commutative diagram

(15)

U(1) hs−−−−→ Spin(q)R −−−−→ GL(C0(q))R∥∥∥ yρ
U(1) −−−−→

h
SO(q)R −−−−→ GL(T )R.

(Van Geemen works with the Mumford–Tate group, therefore he gets a factor t2 in 6.3.2. This
factor is 1 if one restricts the attention to the special Mumford–Tate group, moreover it is then
clear that hs(C∗) ⊂ CSpin(q) = {v ∈ C0(q)∗ | vTv−1 ⊂ T} implies hs(U(1)) ⊂ Spin(q).)

Claim: There is a Cartesian diagram

SMT(V ) −−−−→ Spin(q)

ρ| SMT(V )

y yρ
SMT(T ) −−−−→ SO(q).

where the horizontal maps are appropriate factorizations of the inclusions SMT ⊂ GL whose
existence is guaranteed by (15).

Proof of the claim. It is clear by looking at (15) and at the definition of the special Mumford–
Tate group that

SMT(V ) ⊂ SMT(T )×SO(q) Spin(q).

In the same way we see that

SMT(T ) ⊂ ρ(SMT(V ))

and hence we have a chain of inclusions

SMT(V ) ⊂ SMT(T )×SO(q) Spin(q) ⊂ ρ(SMT(V ))×SO(q) Spin(q).

But over any field, the kernel of ρ consists of {±1} ⊂ SMT(V ) (because hs(−1) = −1) and
thus

SMT(V ) = ρ(SMT(V ))×SO(q) Spin(q).

This proves the claim. (Claim)2

To continue the proof of (i) we have to define the morphism of rational algebraic groups

m : ResE/Q(Spin(Q))→ Spin(q).



THE HODGE CONJECTURE FOR SELF-PRODUCTS OF CERTAIN K3 SURFACES 13

For that sake, note first that there is a natural isomorphism of Ẽ-algebras

(16)

C0(Q)⊗Q Ẽ ' C0(Q)⊗E (E ⊗Q Ẽ)

'
⊕
i

C0(Q)⊗E Eσi

'
⊕
i

C0(Q)σi

' C0(q1)⊕ . . .⊕ C0(qd)

where we use the notations of Section 3.2 and for the last identification Lemma 3.4.2. Consider
the natural G-action on C0(q1)⊕ . . .⊕ C0(qd) given by

(τ, (v1, . . . , vd)) 7→ (τvτ−11, . . . , τvτ−1d).

On C0(Q) ⊗Q Ẽ, the Galois group G acts by its natural action on Ẽ. Then the identification
made in (16) is G-equivariant and we get an isomorphism of Q-vector spaces

C0(Q) '
(
C0(q1)⊕ . . .⊕ C0(qd)

)G
, v 7→ (σ1(v), . . . , σd(v)).

Now, look at the morphism of Ẽ-affine spaces

C0(q1)⊕ . . .⊕ C0(qd)→ C0(q) eE , (v1, . . . , vd) 7→ v1 · . . . · vd.

This morphism is G-equivariant on the Ẽ-points and hence it comes from a morphism of Q-
varieties

ResE/QC
0(Q)→ C0(q).

The restriction of this latter to ResE/Q(Spin(Q)) is the morphism m we are looking for. It is
a morphism of algebraic groups which after base change to Ẽ takes the form

m eE : ResE/Q(Spin(Q)) eE ' Spin(q1)× . . .× Spin(qd)→ Spin(q) eE , (v1, . . . , vd) 7→ v1 · . . . · vd.

It remains to show that the image of m in Spin(q) is SMT(V ). Using the claim we have to
show that the following diagram exists and that it is Cartesian

(17)

im(m) −−−−→ Spin(q)

ρ| im(m)

y yρ
ResE/Q(SO(Q)) −−−−→ SO(q).

Here, the lower horizontal map is the one coming from Zarhin’s Theorem 2.4.1.
It is enough to study (17) on Q-points. It is easily seen that over Ẽ ⊂ Q the composition

ρ ◦m factorizes over

ρ1× . . .×ρd : Spin(q1)× . . .×Spin(qd)→ SO(q1)× . . .×SO(qd) ' ResE/Q(SO(Q)) eE ⊂ SO(q) eE .
This shows that (17) exists. Moreover we see that ρ| im(m) surjects onto SMT(T )(Q) because
ρ1 × . . . × ρd does so. Since ker(ρ) = {±1} ⊂ im(m), the diagram (17) is Cartesian. This
completes the proof of (i). (i)2
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Proof of (ii). Choose a0 = (0, . . . , 0), . . . ,ar ∈ {0, 1}d such that{
a ∈ {0, 1}d |

∑
i

ai ≡ 0 (2)

}
= Ga0 t . . . tGar,

where G acts on {0, 1}d via the action introduced in (13). Let Gaj ⊂ G be the stabilizer of aj .
Then

(18)

C0(q) eE =
r⊕
j=0

 ⊕
[τ ]∈G/Gaj

Cτaj (q)


=

r⊕
j=0

Daj

with Daj =
⊕

[τ ]∈G/Gaj
Cτaj (q).

By Lemma 3.4.1 this is a decomposition of G-modules. Moreover, recall that Spin(q1)× . . .×
Spin(qd) acts on C0(q) eE by sending (v1, . . . , vd) to the endomorphism of C0(q) eE given by left
multiplication with m(v1, . . . , vd) = v1 · . . . ·vd. Under this action each Ca(q) is (Spin(q1)× . . .×
Spin(qd))-stable. Thus, by (i) the decomposition (18) is also a decomposition of SMT(V )(Ẽ)-
modules. Hence, by passing to G-invariants, (18) leads to a decomposition of Hodge structures.

Denote by
R := Da0 = Ca0(q) = C0(q1)⊗ eE . . .⊗ eE C0(qd).

By Lemma 3.4.2, using the notations of Section 3.2, we have

R = ZG(C0(Q))

as G-modules and hence RG = CoresE/Q(C0(Q)). Thus we have recovered

W = CoresE/Q(C0(Q)) ⊂ C0(q) = V

as a sub-Hodge structure. We now prove that after passing to G-invariants, the remaining
summands in (18) are isomorphic to sums of copies of W .

Denote by dj = ](G/Gaj ) and choose a set of representatives µ1, . . . , µdj of G/Gaj in G. We
consider three group actions on R⊕dj :

• First there is a natural (Spin(q1)× . . .×Spin(qd))-action which is just the diagonal action
of the one on R.

• Let α : G×R⊕dj → R⊕dj be the diagonal action of the G-action on R.

• Finally define the G-action β by

β :


G×

dj⊕
l=1

R[µl] →
dj⊕
l=1

R[µl]

(τ, (r[µ1], . . . , r[µd ])) 7→ (τr[τ−1µ1], . . . , τr[τ−1µdj ]
).
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Now we will proceed in two steps:

(a) We show that Daj is isomorphic as G-module and as (Spin(q1)× . . .× Spin(qd))-module
to R⊕dj where G acts on the latter via β.

(b) We show that R⊕dj is isomorphic as G-module and as (Spin(q1)× . . .×Spin(qd))-module
with G acting via α to R⊕dj with G acting via β.

Note that neither of these two isomorphisms is canonical. Once (a) and (b) are proved, we
have an isomorphism

V eE = C0(q) eE ' R⊕2d−1

of G-modules and of SMT(V )(Ẽ)-modules, G acting diagonally on the right hand side. Here
we use that ∑

j

dj = ]

{
a ∈ {0, 1}d |

∑
i

ai ≡ 0 (2)

}
= 2d−1.

The proof of (ii) is then accomplished by passing to G-invariants.

Proof of (a). Denote by Fj the field ẼGaj . As Caj (q) ⊂ Daj is Gaj -stable, Caj (q) = Wj ⊗Fj Ẽ
for some Fj-vector space Wj . Since Caj contains units in C(q) eE , so does Wj ⊂ Caj . (Very
formally: There is a linear map Caj → End(C(q) eE), w 7→ {v 7→ v ·w} which is defined over Fj .
The image of this map over Ẽ intersects the Zariski-open subset of automorphisms of C(q) eE ,
hence this must happen already over Fj .)

Choose a unit wj ∈ Wj . Then for τ ∈ G, since wj is Gaj -invariant, τwj ∈ Cτaj (q) depends
only on the coset τGaj and is again a unit in C(q) eE .

Define an isomorphism of Ẽ-vector spaces

ϕ :


Daj =

dj⊕
l=1

Cµlaj (q)→
dj⊕
l=1

R[µl]

(vµ1 , . . . , vµdj ) 7→ (vµ1 · µ1(wj), . . . , vµdj · µdj (wj)).

This map is clearly (Spin(q1)×. . .×Spin(qd))-equivariant since this group acts by multiplication
on the left whereas we multiply on the right.

As for the G-equivariance (G acting via β on the right hand side), we find for
(v[µ1], . . . , v[µdj ]

) ∈ Daj and τ ∈ G:

ϕ
(
τ(v[µ1], . . . , v[µdj ]

)
)

= ϕ
(
τv[τ−1µ1], . . . , τv[τ−1µd]

)
=
(
τv[τ−1µ1] · µ1wj , . . . , τv[τ−1µdj ]

· µdjwj
)

=
(
τ(v[τ−1µ1] · τ−1µ1wj), . . . , τ(v[τ−1µdj ]

· τ−1µdjwj)
)

= β
(
τ, (vµ1 · µ1wj , . . . , vµd · µdjwj)

)
= β

(
τ, ϕ(v[µ1], . . . , v[µdj ]

)
)
.
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Here we used in the penultimate equality that σwj depends only on the coset σGaj . This
proves (a). (a)2

Proof of (b). Choose a Q-basis f1, . . . , fdj of Fj . For i = 1, . . . , dj define an Ẽ-vector space
homomorphism by

ψi :


R ↪→

dj⊕
l=1

R[µl]

r 7→
(
µ1(fi) · r, . . . , µdj (fi) · r

)
.

As (Spin(q1)× . . .×Spin(qd))(Ẽ) acts by Ẽ-linear automorphisms on R, the ψi are equivariant
for the Spin-action.

Let’s show that ψi is G-equivariant, G acting on the right hand side via β. For τ ∈ G and
r ∈ R we get

ψi(τr) =
(
µ1(fi) · τr, . . . , µdj (fi) · τr

)
=
(
τ(τ−1µ1(fi) · r), . . . , τ(τ−1µdj (fi) · r)

)
= β

(
τ, (µ1(fi) · r, . . . , µdj (fi) · r)

)
= β(τ, ψi(r)).

Once more, we used the fact that σfi depends only on the coset σGaj .
Finally, using Artin’s independence of characters (see [La, Thm. VI.4.1]), we get

det((µl(fi))l,i) 6= 0.

Consequently, the map

⊕dji=1ψi : R⊕dj → R⊕dj

is an isomorphism which has the equivariance properties we want and (b) is proved. (ii)2

Proof of (iii). Using that endomorphisms of Hodge structures are precisely those endomor-
phisms which commute with the special Mumford–Tate group, we have to show that

EndSMT(V )(W ) = CoresE/Q(C0(Q)).

Denote by g the Lie algebra of SMT(V ). Then

EndSMT(V )(W ) = Endg(W )

= {f ∈ EndQ(W ) | Xf − fX = 0 for all X ∈ g}.

Since for any field extension K/Q we have Lie(SMT(V )K) = g⊗Q K this implies that

(19) EndSMT(V )K (WK) = EndSMT(V )(W )⊗Q K.

Now SMT(V )(Ẽ) = Spin(q1) × . . . × Spin(qd)(Ẽ) acts on W eE = C0(q1) ⊗ . . . ⊗ C0(qd) by
factorwise left multiplication:(

(v1, . . . , vd), w1 ⊗ . . .⊗ wd
)
7→ (v1 · w1)⊗ . . .⊗ (vd · wd).



THE HODGE CONJECTURE FOR SELF-PRODUCTS OF CERTAIN K3 SURFACES 17

Therefore, using multiplication on the right, we get an inclusion(
C0(q1)⊗ . . .⊗ C0(qd)

)op
↪→ End

SMT(V )( eE)
(W eE), w 7→ {w′ 7→ w′ · w}.

Now, (C0(q1)⊗ . . .⊗C0(qd))op ' C0(q1)op ⊗ . . .⊗C0(qd)op ' C0(q1)⊗ . . .⊗C0(qd) and hence
passing to G-invariants we have an inclusion

(20) CoresE/Q(C0(Q)) ↪→ EndSMT(V )(Q)(W ).

We will now show that this is an isomorphism over Ẽ. Using (19) and comparing dimensions
this will prove (iii).

To show that (20) is an isomorphism over Ẽ we have to determine the Spin(q1)×. . .×Spin(qd)-
invariants in

End eE (C0(q1)⊗ . . .⊗ C0(qd)
)

= End eE C0(q1)⊗ . . .⊗ End eE C0(qd).

Using the next lemma inductively, this is equal to

EndSpin(q1)C
0(q1)⊗ . . .⊗ EndSpin(qd)C

0(qd).

Now by [vG3, Lemma 6.5], EndSpin(qi)C
0(qi) = C0(qi). This proves (iii). 2

Lemma 3.5.1. Let G and H be two reductive linear algebraic groups over a field K of charac-
teristic 0. Let M resp. N be finite-dimensional representations over K of G resp. H. Then

(M ⊗K N)G×H = MG ⊗K NH .

Proof. Decompose M =
⊕

iMi and N =
⊕

j Nj in irreducible representations. Then Mi ⊗Nj

is an irreducible representation of G×H since fixing 0 6= m0 ∈ Mi and 0 6= n0 ∈ Ni the orbit
(G×H)m0 ⊗ n0 generates Mi ⊗Nj .

To conclude the proof note that the space of invariants is the direct sum of trivial, one-
dimensional sub representations. 2

3.6. The Brauer–Hasse–Noether theorem. Let k be a field of characteristic 6= 2, let A
be a central simple k-algebra (i.e. a finite-dimensional k-algebra with center k which has no
non-trivial two-sided ideals). By Wedderburn’s theorem, there exists a central division algebra
D over k and an integer n > 0 such that A ' Matn(D). Let d2 be the dimension of D over k
(this is a square because after base change, D becomes isomorphic to a matrix algebra). Then
d is the index of A, denoted by i(A). The class of A in the Brauer group of k has finite order.
This integer is called the exponent of A, it is denoted by e(A). In general, we have e(A)|i(A).

Let K/k be a cyclic extension of degree n, let σ be a generator of the Galois group Gal(K/k),
let a ∈ k∗. There is a central simple k-algebra (σ, a,K/k) which as a k-algebra is generated by
K and an element y ∈ (σ, a,K/k) such that

yn = a and r · y = y · σ(r) for r ∈ K.

This algebra is called the cyclic algebra associated with σ, a and K/k. A cyclic algebra over k
of dimension 4 is a quaternion algebra.
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Theorem 3.6.1 (Brauer, Hasse, Noether [BHN]). Let k be an algebraic number field. Then
any central division algebra A over k is a cyclic algebra (for an appropriate cyclic extension
K/k and σ and a as above). Moreover, the exponent and the index of A coincide. In particular,
a central division algebra of exponent 2 is a quaternion algebra.

3.7. An example. We continue to assume that (T, h, q) is a Hodge structure of K3 type with
E = EndHdg(T ) a totally real number field of degree d over Q. By [vG4, Prop. 3.2] we have
dimE T ≥ 3. We will consider now the case that dimE T = 3.

Then T1 is an 3-dimensional Ẽ-vector space with quadratic form q1 of signature (2+, 1−).
The 3-dimensional quadratic spaces (T2, q2), . . . , (Td, qd) are negative definite. This implies that

C0(q1)R = Mat2(R) and

C0(qi)R = H for i ≥ 2

(see [vG3, Thm. 7.7]). Since

CoresE/Q(C0(Q))⊗Q Ẽ = ZG(C0(Q)) = C0(q1)⊗ eE . . .⊗ eE C0(qd)

we get
CoresE/Q(C0(Q))⊗Q R = Mat2(R)⊗R H⊗R . . .⊗R H.

Now, since H⊗H ' Mat4(R) this becomes

(21) CoresE/Q(C0(Q))⊗Q R '

{
Mat2d−1(H) for even d

Mat2d(R) for odd d.

On the other hand, the corestriction induces a homomorphism of Brauer groups

cores : Br(E)→ Br(Q)

(cf. [D, §9, Thm. 5]). Therefore, the exponent of CoresE/Q(C0(Q)) in the Brauer group of Q
is 2. By the Brauer–Hasse–Noether Theorem 3.6.1 there exists a (possibly split) quaternion
algebra D over Q with

(22) CoresE/Q(C0(Q)) ' Mat2d−1(D).

Combining (21) with (22) we see that D is a definite quaternion algebra over Q in case d is
even and an indefinite quaternion algebra in case d is odd. The endomorphism algebra of a
Kuga–Satake variety of (T, h, q) is Mat22d−2(D). Since the dimension of a Kuga–Satake variety
is 2dimQ(T )−2 = 23d−2, we have proved

Corollary 3.7.1. Let (T, q, h) be a Hodge structure of K3 type with E = EndHdg(T ) a totally
real number field of degree d over Q. Assume that dimE(T ) = 3. Then for any Kuga–Satake
variety A of (T, h, q) there exists an isogeny

A ∼ B22d−2

where B is a 2d-dimensional Abelian variety.
If d is even, B is a simple Abelian variety of type III, i.e. EndQ(B) = D for a definite

quaternion algebra D over Q.
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If d is odd, B has endomorphism algebra EndQ(B) = D for an indefinite (possibly split)
quaternion algebra D over Q.

Remark. (i) In the case d = 2 and dimE(T ) = 3, van Geemen showed in [vG4, Prop. 5.7] that
the Kuga–Satake variety of T is isogenous to a self-product of an Abelian fourfold with definite
quaternion multiplication and Picard number 1. It is this case which will be of interest in the
next section.

(ii) The case d = dimE(T ) = 3 was also treated by van Geemen (see [vG4, 5.8 and 6.4]). He
considers the case D ' Mat2(Q) and relates this to work of Mumford and Galluzzi. Note that
in this case the Abelian variety B of the corollary is not simple.

Example. In [vG4, 3.4], van Geemen constructs a one-dimensional family of six-dimensional
K3 type Hodge structures with real multiplication by a quadratic field E = Q(

√
d) for some

square-free integer d > 0 which can be written in the form d = c2 + e2 for rational c, e > 0.
These Hodge structures are realized as the transcendental lattice of certain K3 surfaces which
are double covers of P2, see Section 4. Pick a member S of this family. Then T (S) ⊗Q E

splits in the direct sum of two three-dimensional E-vector spaces T1 and T2. It turns out that
the quadratic space (T1, q1) = (T1, Q) is isometric to (E3,

√
dX2

1 +
√
dX2

2 − (d −
√
dc)X2

3 ).
Consequently

C0(Q) = (−d,
√
d(d−

√
dc))E ' (−1,

√
d− c)E .

Here for a, b ∈ E∗, the symbol (a, b)E denotes the quaternion algebra over E generated by
elements 1, i and j subject to the relations i2 = a, j2 = b and ij = −ji (see [vG3, Ex. 7.5]).

The projection formula for central simple algebras (see [T, Thm. 3.2]) implies that

CoresE/Q(C0(Q)) ' (−1, NE/Q(
√
d− c))Q

' (−1, c2 − d)Q ' (−1,−e2)Q ' (−1,−1)Q

which are simply Hamilton’s quaternions over Q. Here, NE/Q : E → Q is the norm map.
Hence, a Kuga–Satake variety for T (S) is isogenous to a self-product B4 where B is a simple
Abelian fourfold with EndQ(B) = (−1,−1)Q.

4. Double covers of P2 branched along six lines

Let S be a K3 surface which admits a morphism p : S → P2 such that the branch locus of p
is the union of six lines.

In this section we use the decomposition theorem to prove Theorem 2 which states that the
Hodge conjecture holds for S × S.

4.1. Abelian varieties of Weil type. By a result of Lombardo [Lo], the Kuga–Satake variety
of S is of Weil type. We briefly recall what this means.

Let K = Q(
√
−d) for some square-free d ∈ N. A polarized Abelian variety (A,H) of dimen-

sion 2n is said to be of Weil type for K if there is an inclusion K ⊂ EndQ(A) mapping
√
−d

to ϕ such that
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• the restriction of ϕ∗ : H1(A,C)→ H1(A,C) to H1,0(A) is diagonalizable with eigenvalues√
−d and −

√
−d, both appearing with multiplicity n,

• ϕ∗H = dH.

There is a natural K-valued Hermitian form on the K-vector space H1(A,Q) which is defined
by

H̃ : H1(A,Q)×H1(A,Q)→ K, (v, w) 7→ H(ϕ∗v, w) +
√
−dH(v, w).

By definition, the discriminant of a polarized Abelian variety of Weil type (A,H,K) is

disc(A,H,K) = disc(H̃) ∈ Q∗/NK/Q(K∗)

where NK/Q : K → Q is the norm map.
Polarized Abelian varieties of Weil type come in n2-dimensional families (see [vG2, 5.3]).

Weil introduced such varieties as examples of Abelian varieties which carry interesting Hodge
classes. He constructs a two-dimensional space, called the space of Weil cycles

WK ⊂ Hn,n(A,Q).

For the definition of WK see [vG2, 5.2]. In general, the algebraicity of the classes in WK is not
known. Nonetheless there are some positive results. Here we mention one which we will use
below.

Theorem 4.1.1 (Schoen [S] and van Geemen [vG1], Thm. 3.7). Let (A,H) be a polarized
Abelian fourfold of Weil type for the field Q(i). Assume that the discriminant of (A,H,Q(i))
is 1. Then the space of Weil cycles WQ(i) is spanned by classes of algebraic cycles.

Van Geemen uses a six-dimensional eigenspace in the complete linear system of the unique
totally symmetric line bundle L with c1(L) = H to get a rational (2:1) map of A onto a quadric
Q ⊂ P5. Then the projection on WQ(i) of the classes of the pullbacks of the two rulings of Q
generate the space WQ(i).

4.2. Abelian varieties with quaternion multiplication. Let D be a definite quaternion
algebra over Q. Such a D admits an involution x 7→ x which after tensoring with R becomes
the natural involution on Hamilton’s quaternions H.

A polarized Abelian variety (A,H) of dimension 2n has quaternion multiplication by D if
there is an inclusion D ⊂ EndQ(A) such that

• H1(A,Q) becomes a D-vector space and

• for x ∈ D we have x∗H = xxH.

We say that (A,H,D) is an Abelian variety of definite quaternion type. Polarized Abelian
varieties of dimension 2n with quaternion multiplication by the same quaternion algebra come
in n(n− 1)/2-dimensional families (cf. [BL, Sect. 9.5]).
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Let K ⊂ D be a quadratic extension field of Q. Then K is a CM field and (A,H,K) is a
polarized Abelian variety of Weil type (see [vGV, Lemma 4.5]). The space of quaternion Weil
cycles of (A,H,D)

WD ⊂ Hn,n(A,Q)

is defined as the span of x∗WK where x runs over D. It can be shown that this is independent
of the choice of K (see [vGV, Prop. 4.7]). For the general member of the family of polarized
Abelian varieties with quaternion multiplication these are essentially all Hodge classes:

Theorem 4.2.1 (Abdulali, see [A], Thm. 4.1). Let (A,H,D) be a general Abelian variety of
quaternion type. Then the space of Hodge classes on any self-product of A is generated by
products of divisor classes and quaternion Weil cycles on A.

In particular, if for one quadratic extension field K ⊂ D the space of Weil cycles WK is
known to be algebraic, then the Hodge conjecture holds for any self-product of A.

In Abdulali’s theorem, a triple (A,H,D) is general if the special Mumford–Tate group of
H1(A,Q) is the maximal one. In the moduli space of triples (A,H,D) the locus of general
triples is everything but a countable union of proper, closed subsets.

4.3. The transcendental lattice of S. We now turn back to our K3 surface S. Let p : S → P2

be the (2:1) morphism which is ramified over six lines.
The Néron–Severi group of S contains the 15 classes e1, . . . , e15 corresponding to the excep-

tional divisors over the intersection points of the six lines. Let h be the class of the pullback
of OP2(1).

Define T̃ (S) := 〈e1, . . . , e15, h〉⊥ ⊂ H2(S,Q). The (rational) transcendental lattice of S is
defined to be T (S) := NS(S)⊥ ⊂ H2(S,Q). Then we have

T (S) ⊂ T̃ (S).

Both, T (S) and T̃ (S) are Hodge structures of K3 type. In addition, T (S) is irreducible. Since
the second Betti number of S is 22, the Q-dimension of T̃ (S) is 6.

4.4. The Kuga–Satake variety of T̃ (S). Denote by A the Kuga–Satake variety associated
with T̃ (S).

Theorem 4.4.1 (Lombardo, see [Lo], Cor. 6.3 and Thm. 6.4). There is an isogeny

A ∼ B4

where B is an Abelian fourfold with Q(i) ⊂ EndQ(B). Moreover, B admits a polarization H

such that (B,H,Q(i)) is a polarized Abelian variety of Weil type with disc(B,H,Q(i)) = 1.

Paranjape [P] explains in a very nice way how this variety B is geometrically related to S.
He shows that there exists a triple

(C,E, f : C → E)
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where C is a genus five curve, E an elliptic curve and f a (4 : 1) map such that

Prym(f) = B.

Then S can be obtained as the resolution of a certain quotient of C ×C. It is noteworthy that
Paranjape does not construct explicitly a triple (C,E, f) starting with a K3 surface S in the
family π. His proof goes the other way round. He associates to any triple a K3 surface and
shows then that letting vary the triple he obtains all surfaces in the family π.

Paranjape’s construction establishes that the Kuga–Satake inclusion

(23) T̃ (S) ↪→ H2(B4 ×B4,Q)

is given by an algebraic cycle on S ×B4 ×B4.

4.5. Proof of Theorem 2. As pointed out in the introduction, we have to prove that ES :=
EndHdg(T (S)) is spanned by algebraic classes. Since the Picard number of S is at least 16, we
can apply Ramón-Maŕı’s corollary [RM] of Mukai’s theorem [Mu1] which proves the assertion
in the case that S has complex multiplication.

Therefore, we may assume that S has real multiplication. Note that T (S) is an ES-vector
space and that dimES T (S) · [ES : Q] = dimQ T (S) ≤ 6. On the other hand, by [vG4, Lemma
3.2], we know that dimES T (S) ≥ 3. It follows that either ES = Q or ES = Q(

√
d) for some

square-free d ∈ Q>0. In the first case we use the fact, that the class of the diagonal ∆ ⊂ S ×S
induces the identity on the cohomology and that the Künneth projectors are algebraic on
surfaces so that Q id ⊂ ES is spanned by an algebraic class.

It remains to study the case ES = Q(
√
d). The idea is to consider the Kuga–Satake variety

A(S) of T̃ (S) = T (S). By Paranjape’s theorem the inclusion

T̃ (S) ⊂ H2(A(S)×A(S),Q)

is algebraic. It follows that there is an algebraic projection π : H2(A(S) × A(S),Q) → T̃ (S)
(see [K, Cor. 3.14]) and therefore it is enough to show that there is an algebraic class

α ∈ H2(A(S)×A(S),Q)⊗H2(A(S)×A(S),Q) ⊂ H4(A(S)4,Q)

with π ⊗ π(α) =
√
d.

Combining Corollary 3.7.1 with Lombardo’s theorem 4.4.1 we see that A(S) ∼ B4 where
B is an Abelian fourfold with EndQ(B) = D for a definite quaternion algebra and Q(i) ⊂ D.
Moreover, there is a polarization H of B such that (B,H,Q(i)) is a polarized Abelian variety of
Weil type of discriminant 1. Since by [BL, Prop. 5.5.7], the Picard number of B is 1, (B,H,D)
is a polarized Abelian variety of quaternion type.

There is a one-dimensional family (B,H,D)t of deformations of (B,H,D) and this corres-
ponds to a one-dimensional family St of deformations of S which parametrizes K3 surfaces with
real multiplication by the same class. By Abdulali’s Theorem 4.2.1, for t general the space of
Hodge classes on (Bt)16 ∼ A(St)4 is generated by products of divisors and quaternion Weil
cycles, that is by products of H and classes in WD. Denote the span of these products in
H4(A(St)4,Q) by Ft.
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Since the class corresponding to
√
d ∈ T̃ (St) ⊗ T̃ (St), the projection π : H2(A(St)2,Q) →

T̃ (St) and the space Ft are locally constant, there exists a locally constant class αt ∈ H4(ASt ,Q)
with the properties:
• for all t we have π ⊗ π(αt) =

√
d,

• for all t we have αt ∈ Ft.
Now by Schoen’s and van Geemen’s Theorem 4.1.1 the space of Weil cycles WQ(i) is generated

by algebraic classes on any Bt. It follows that WD is generated by algebraic classes and
consequently Ft is generated by algebraic classes for any t. In particular, αt ∈ Ft is algebraic.
This proves the theorem. 2
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