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Abstract. We present a new approach to integrated motion estimation
and segmentation by combining methods from discrete and continuous
optimization. The velocity of each of a set of regions is modeled as a
Gaussian-distributed random variable and motion models and segmen-
tation are obtained by alternated maximization of a Bayesian a-posteriori
probability. We show that for fixed segmentation the model parameters
are given by a closed-form solution. Given the velocities, the segmen-
tation is in turn determined using graph cuts which allows a globally
optimal solution in the case of two regions. Consequently, there is no
contour evolution based on differential increments as for example in level
set methods. Experimental results on synthetic and real data show that
good segmentations are obtained at speeds close to real-time.

1 Introduction

Since the seminal works of Lucas and Kanade [17] and Horn and Schunck [13],
motion estimation has become one of the major problems addressed in Computer
Vision. Motion estimation techniques can be employed in numerous Computer
Vision tasks such as the study of dynamical processes [14].

A closely related problem is motion segmentation, namely the grouping of
image regions which are similar in their motion. Early approaches worked by
first estimating the flow field, then segmenting it (cf. [19]). More recently, par-
ticularly since the work of [18] and [9], approaches to address the problems of
motion estimation and segmentation by minimizing a single energy functional
have become popular. Minimization is done by alternatingly updating the flow
field and the segmentation boundary.

Most present approaches handle the case of piecewise affine motion [9,2,15]
or allow non-parametric variation of the flow field [8,1]. In this work we present
models with both piecewise constant and piecewise affine velocities.

Current approaches to motion segmentation are typically based on pde evo-
lution such as the Level Set Method [9,8,1]. While there exist motion segmenta-
tion methods using graph cuts [2,15], they are based on non-linear flow-errors,
resulting in run-times far from real-time. We use linearized flow errors, allowing
accurate segmentations at speeds close to real-time at the costs of less accurate
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motion estimates. Given the velocity in each region, the globally optimal bilayer
segmentation can be obtained in effectively linear time.

This paper is organized as follows: In Section 2 we derive an energy func-
tional for motion segmentation with piecewise constant velocities by modeling
the velocity of each region as a Gaussian-distributed random variable. Section
3 extends this framework to piecewise affine velocities. In Section 4 we propose
an efficient optimization scheme, combining graph cuts and differential methods.
Finally, we present in Section 5 experimental results on synthetic and real data
which demonstrate that high-quality purely motion based segmentations can be
obtained with run-times close to real time.

2 Statistical Formulation of Motion Segmentation

Given two frames I1 and I2 of a video sequence, we are interested in determining
for each pixel p = (xp, yp) in the first image where it is to be found in the second,
i.e. with what velocity it moved. In this work we deal with motion segmenta-
tion and for the sake of efficiency fix the number of regions to 2. Notice that
an extension to multiple regions is easily possible using the expansion moves
of [7]. In this case, however, we can no longer guarantee globally optimal seg-
mentations as the multilabel problem is NP-hard. For the moment, each region
i is associated a constant velocity vi, i ∈ {0, 1}. The next section will extend
this to more elaborate parametric motion models. The problem then is to assign
each pixel p a region l(p) ∈ {0, 1} and determine the optimal velocity for each
region. We denote by Ri the set of all pixels labeled i. We address this problem
by the Bayesian method of minimizing the negative logarithm of the posterior
probability

argmin
l,v̄

− log(pr(l, v̄|I1, I2))

= argmin
l,v̄

⎡
⎢⎣ − log(pr(l))︸ ︷︷ ︸

Esmooth(l)

− log(pr(I2|v̄, l, I1))︸ ︷︷ ︸
Edata(l,v̄)

− log(pr(v̄, I1|l)︸ ︷︷ ︸
uniform

) + const

⎤
⎥⎦ (1)

where v̄ contains all velocities. In this work, we assume the third probability to
be uniform within a reasonable range and assume that the first only depends on
the length of the boundary. Based on the Cauchy-Crofton formula from integral
geometry this length can be approximated by [6]

Esmooth(l) =
ν

2

∑
(p,q)∈N

(1 − δ(l(p), l(q)))
||p − q|| (2)

with Kronecker-δ, the free parameter ν and a neighborhood system N we choose
to be of size 8. Assuming the intensities of the moving objects to stay constant,
pr(v̄, I2|l, I1) might be restricted to be non-zero only if

0 = I2(p + vl(p)) − I1(p) ≈ ∇I(p)T vl(p) + It(p) ∀p (3)
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The last quantity is known as linearized flow-error. However, there are several
reasons for this assumption not to be true: For one, there is the camera noise.
Then there are changes in lighting and reflections. Lastly, we assume that each
region has a constant velocity, but desire to segment objects with partially dif-
ferent depths (think of a mirror on a car, or simply a sphere) as one. However,
parts with different depths will move with different velocities in the image plane.

Nevertheless, we desire the constraint in (3) to be fulfilled as good as possible
and assume the probability pr(I2|v̄, l, I1) to be only dependent on its deviation
from 0 for all pixels.

It can be shown that the likelihood proposed by [17] is equivalent to the
assumption of Gaussian noise on the image data, where the noise is independent
of the region. This results in a Gaussian-distributed flow-error

Edata(l, v̄) =
1
2

1∑
i=0

∑
p∈Ri

(∇I(p)T vi + It(p))2 (4)

In this work, following [10] we assume that the velocity at each pixel p of region i
is a Gaussian-distributed random variable, that is ṽi(p) = vi +η(p) for p ∈ Ri,
where η(p) ∼ N(0, σ2

i I2) with identity matrix I2. We require that ṽi(p) exactly
fulfill the constraint in (3), resulting in

∇I(p)T vi + It(p) = ∇I(p)T η(p)

The flow-error for vi is now N(0, σ2
i ||∇I(p)||2)-distributed. This leads to

Edata(l, v̄, σ) =
1
2

1∑
i=0

∑
p∈Ri

[
log(2π||∇I(p)||2σ2

i ) +
(∇I(p)T vi + It(p))2

||∇I(p)||2σ2
i

]
(5)

where σ contains all variances. In contrast to [10] we allow a separate vari-
ance for each region. Consequently the normalization term cannot be neglected.
Lacking suitable estimates for the variances, we optimize it in each region. To
avoid numerical instabilities, we replace ||∇I(p)||2 by max{||∇I(p)||2, 1} in the
denominator.

3 Extension to Parametric Motion Models

In this section we extend the data term in (5) to piecewise affine motion. A pixel
p = (xp, yp) belonging to Ri is now no longer assigned the constant velocity vi,
but an affine velocity S(p)ϑi where

S(p) =
(

xp yp 1 0 0 0
0 0 0 xp yp 1

)

and ϑi is the vector containing all parameters of the affine model for region i:

ϑi =
(
ai bi ci di ei fi

)T
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We differ from the common notation Ap + b as this simplifies the equations
for the update of parameters greatly. The task is now to minimize the energy
functional (1) with data term

Edata(l, v̄, σ) =
1
2

1∑
i=0

∑
p∈Ri

[
log(2π||∇I(p)||2σ2

i )

+
(∇I(p)T S(p)ϑi + It(p))2

||∇I(p)||2σ2
i

]
(6)

with respect to the vectors ϑi, the variances σ and the segmentation l.

4 An Efficient Semi-discrete Optimization Scheme

Minimization of the energy functional in (1) is done by alternatingly updating
the segmentation, the velocities and the variances. To this end we propose a
semi-discrete optimization scheme, combining fast discrete global optimization
methods for the segmentation step with continuous optimization for the motion
parameters. In the following we first state how the segmentation is updated
using graph cuts. We then give closed form global solutions for the velocities
and variances. Each quantity is set to the globally optimal one given the others.
In all cases we show the update for the affine motion model.

4.1 Fast Global Segmentation Via Graph Cuts

Given the velocities of each region the segmentation step requires the minimiza-
tion of a cost functional with binary-valued variables. To solve this problem, we
revert to the graph cut method, which will be detailed in the following.

Greig et al. [12] were the first to show how to exploit the graph cut technique
for problems of Computer Vision. They were concerned with the problem of
binary image restoration. In [16] the minimization of submodular functions of
binary variables with at most ternary terms is discussed1.

The complexity of the general problem is low-order polynomial, but using the
fast algorithm of [5] for most Computer Vision problems (including ours) it is
effectively linear. This algorithm makes use of the theorem of Ford and Fulkerson
[11] by solving the related problem to compute the maximum flow in a graph.

To give the reader an intuition of how the method works, we explain it in
the following. We state here the problem for undirected graphs as this suffices
for our application. A graph G = (V , E) consists of a set of nodes V and a set
of edges E . An edge e = {p, q} links two nodes p and q. For the problem of the
minimum 0/1-cut there are two distinguished nodes 0 and 1, i.e. V = {0, 1}∪V0.
In our case V0 will correspond to the set of pixels. Furthermore, each edge {p, q}
is assigned a weight w{p,q}.

1 Code is available at http://www.adastral.ucl.ac.uk/~vladkolm/software.html
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A cut on G is a labeling l of all nodes such that l(v) ∈ {′0′,′ 1′} for v ∈ V and
l(0) =′ 0′ and l(1) =′ 1′. The costs |l| of a cut is the sum of the weights of all
edges between a node labeled ’0’ and one labeled ’1’:

|l| =
∑

{p,q}∈E:l(p)=′0′,l(q)=′1′
w{p,q}

The min-cut problem is to find a cut l with minimal costs. As it is inherently
related to finding a binary labeling, many binary optimization problems of Com-
puter Vision can be reduced to it, including ours.

In the following we show how the graph looks like for motion segmentation
with two regions 0 and 1. In our case V0 is the set of all pixels. Each pixel p
is linked to 0 by an edge {0, p} and to 1 by an edge {p, 1}. These links are
called t-links. Additionally there are n-links connecting pixels p and q for any
{p, q} ∈ N . Their weight is set to w{p,q} = ν. Setting

w{0,p} = log(2πσ2
1 ||∇I(p)||2) +

(∇I(p)T S(p)ϑ1 + It(p))2

σ2
1 ||∇I(p)||2

w{p,1} = log(2πσ2
0 ||∇I(p)||2) +

(∇I(p)T S(p)ϑ0 + It(p))2

σ2
0 ||∇I(p)||2

the reader may verify that the costs of any cut l correspond to the costs of a
segmentation l′ where l′(p) = 0 if l(p) =′ 0′ and l′(p) = 1 if l(p) =′ 1′ (see figure 1
for an example on a one-dimensional image). Hence, using graph cuts the globally
optimal segmentation can be computed in one step. Our efficient implementation
uses flow-recycling [4] where previously computed flows are reused and the t-links
are updated in each iteration.

4.2 Update of Continuous Parameters

As suggested in [17,10] minimization with respect to the motion parameters
vi, σi can be done by setting the respective derivatives of (5) to zero. This leads
to vi = M−1b with

M =
∑
p∈Ri

S(p)T∇I(p)∇I(p)T S(p)
||∇I(p)||2

b = −
∑
p∈Ri

S(p)T∇I(p) · It(p)
||∇I(p)||2

The variance is given by

σ2
i =

1
|Ri| ·

∑
p∈Ri

(∇I(p)T S(p)ϑi + It(p))2

||∇I(p)||2

So all quantities (segmentation, velocities and variances) are set to the globally
optimal solution given the other quantities. Notice that convergence is guaran-
teed as the energy never increases and is always strictly positive.
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ν νν

0

1

p q r s

w{0,p} w{0,q} w{0,r} w{0,s}

w{p,1} w{q,1} w{r,1} w{s,1}

Fig. 1. An example of a graph for the segmentation problem on a 1-D image

5 Experimental Results

To show the abilities of the proposed model, we deal first with synthetic data,
showing that surfaces with non-constant depth can be handled. Afterwards we
present results on real-life data. All images were pre-smoothed. To initialize
the segmentation process, we applied block-matching. Therefore the image was
segmented into non-overlapping blocks, each block was tested against a set of
integer-valued velocities and assigned the best one. Afterwards the two most
frequent velocities were taken.

The only free parameter is the length penalty ν. For all experiments we chose
the ν that gave the best performance. Notice that in contrast to existing pde-
based methods, all minimization processes have been run until convergence.

5.1 Experiments with Synthetic Data

Figure 2 (a) shows an artificial scene with reflections (but without shadows).
The difference image in part (b) shows that only the torus moved (to the right).
The flow field depicted in part (c) shows that the proposed motion segmentation
model is able to handle reflections and surfaces of non-constant depth. The affine
model is not needed here. For all images used to visualize flow fields the color hue
indicates the direction of movement whereas the intensity indicates the strength.

Additionally we tested the proposed model on the well-known Yosemite Se-
quence as shown in figure 3. As is common, we measure the motion between
frame 8 (displayed in part a) and frame 9. The difference image gives little in-
formation here. Parts (b) and (c) display the segmentation result and the flow
field, respectively. As desired, the clouds are separated from the mountains and
the valley (except for some small regions in the lower left corner). The average
angular error amounts to 11.27. While this error is larger than those reported
for non-parametric motion models [8,1], it is still a good value considering the
simplicity of the method.
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(a) (b) (c)

Fig. 2. (a) first frame of an artificial scene (b) difference image to second frame (c)
motion segmentation by piecewise constant velocity, ν = 9.5

(a) (b) (c)

Fig. 3. Results for motion segmentation on the Yosemite Sequence between frame 8
(a) and frame 9 (not shown) of the sequence. (b) segmentation obtained with the
affine model, ν = 9.5. The white line indicates the boundary of the two regions (c)
visualization of the flow field.

5.2 Experiments with Real Data

Here we present results on real data. We start with the well-known Flower Gar-
den Sequence shown in figure 4 (a). The motion is estimated between frames
1 and 2. Parts (c-f) show the segmentations and flow fields obtained with con-
stant and affine velocities. The affine model gives the better flow field as the
background decreases smoothly in depth. For the segmentation this does not
matter much. Figure 5 depicts how the flow field evolves at different stages of
the minimization process. We only show this for constant velocities.

When applying the model with constant velocities to every pair of consecutive
frames, we obtain an average run-time of 825 msec per frame pair on the full
resolution of 360 × 240 on a 3.4 GHz machine. When reducing the resolution
to 180 × 120, this reduces to 180 msec per frame2. If the number of iterations
is reduced to 2 for each frame pair (excepting the first), 80 msec or 12.5 fps
are achieved, which is good enough for real time. Actually, even 1 iteration
per frame pair gives sufficient quality, yielding 16.5 fps. Admittedly, the quality
reduces slightly compared to full resolution.
2 The length penalty is then divided by 2 as that is the relative decrease of the length

of a line compared to the number of pixels.
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(a) (b) (c) (d)

(e) (f)

Fig. 4. Results on the Flower Garden Sequence (a) frame 1 of the sequence (b) dif-
ference image to second frame (c) flow field obtained with constant velocities, ν = 4
(d) flow field obtained with affine velocities, ν = 4. Note that the velocity of the back-
ground gradually decays toward the top of the image. (e+f) segmentations obtained
in (c) and (d). The white lines indicate segmentation boundaries.

(a) (b) (c) (d) (e)

Fig. 5. Intermediate steps for minimizing the energy functional with constant veloci-
ties. 14 iterations were needed until convergence. Here the flow fields after iteration 1
(a), 3 (b), 5 (c), 7 (d) and 12 (e) are shown. Compare figure 4 (c) for the final result.

(a) (b) (c) (d) (e)

Fig. 6. Results for the Pickup Sequence (a) first frame (b) difference image to second
frame (c) segmentation for the model with constant velocities, ν = 3 (d) segmentation
for the affine model, ν = 3 (e) flow field for the affine model
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About 40% of the run-time are used for the computation of the minimum cut.
The other major sources are the computation of edge costs and the update of
velocities. The affine model more than doubles the run-time.

Lastly, we present results on the Pickup Sequence from [3], which we modified
by introducing artificial motion of the whole image (originally only the hand with
the can moved). The first frame and the difference image are show in figure 6
(a) and (b). Part (c) shows that the model with constant velocities is able to
separate the hand and the can from the background. As can be seen in part (d)
the affine model produces a similar segmentation, but part (e) reveals that the
lower parts of the arm are assigned lower velocities as their depth is greater.

6 Conclusion

We proposed an efficient semi-discrete optimization method for motion segmen-
tation. Based on the assumption that the velocity in each region can be modeled
as a Gaussian distributed random variable, we derived a cost functional for the
joint estimation and segmentation of piecewise constant or piecewise affine mo-
tion. For the case of two motion models, we developed a fast minimization scheme
which alternates a globally optimal segmentation via graph cuts with a globally
optimal motion estimation. Experiments show that for moderate resolutions ac-
curate purely motion-based segmentations can be obtained in real-time.
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