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Abstract. In this paper, we address the problem of image sequence
segmentation with dynamical shape priors. While existing formulations
are typically based on hard decisions, we propose a formalism which
allows to reconsider all segmentations of past images. Firstly, we prove
that the marginalization over all (exponentially many) reinterpretations
of past measurements can be carried out in closed form. Secondly, we
prove that computing the optimal segmentation at time t given all images
up to t and a dynamical shape prior amounts to the optimization of a
convex energy and can therefore optimized globally. Experimental results
confirm that for large amounts of noise, the proposed reconsideration of
past measurements improves the performance of the tracking method.

1 Introduction

A classical challenge in Computer Vision is the segmentation and tracking of a
deformable object. Numerous researchers have addressed this problem by intro-
ducing statistical shape priors into segmentation and tracking [1–7].

While in earlier approaches every image of a sequence was handled inde-
pendently, Cremers [8] suggested to consider the correlations which characterize
many deforming objects. The introduction of such dynamical shape priors allows
to substantially improve the performance of tracking algorithms: The dynam-
ics are learned via an auto-regressive model and segmentations of the preceding
images guide the segmentation of the current image. Upon a closer look, this
approach suffers from two drawbacks:

– The optimization in [8] was done in a level set framework which only allows
for locally optimal solutions. As a consequence, depending on the initializa-
tion the resulting solutions may be suboptimal.

– At any given time the algorithm in [8] computed the currently optimal seg-
mentation and only retained the segmentations of the two preceding frames.
Past measurements were never reinterpreted in the light of new measure-
ments. As a consequence, any incorrect decision would not be corrected at
later stages of processing. While dynamical shape priors were called priors

with memory in [8], what is memorized are only the decisions the algorithm
took on previous frames – the measurements are instantly lost from memory,
a reinterpretation is not considered in [8].
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The reinterpretation of past measurements in the light of new measurements is
a difficult computational challenge due to the exponential growth of the solu-
tion space: Even if a tracking system only had k discrete states representing the
system at any time t, then after T time steps, there are kT possible system con-
figurations explaining all measurements. In this work silhouettes are represented
by k continuous real-valued parameters: While determining the silhouette for
time t amounts to an optimization in Rk, the optimizaton over all silhouettes
up to time T amounts to an optimization over Rk·T .

Recent works tried to address the above shortcomings. Papadakis and Memin
suggested in [9] a control framework for segmentation which aimed at a consis-
tent sequence segmentation by forward- and backward propagation of the current
solution according to a dynamical system. Yet this approach is entirely based
on level set methods and local optimization as well. Moreover, extrapolations
into the past and the future rely on a sophisticated partial differential equation.
In [10] the sequence segmentation was addressed in a convex framework. While
this allowed to compute globally optimal solutions independent of initialization,
it does not allow a reinterpretation of past measurements. Hence incorrect seg-
mentations will negatively affect future segmentations.

The contribution of this paper is it to introduce a novel framework for image
sequence segmentation which overcomes both of the above drawbacks. While [8,
10] compute the best segmentation given the current image and past segmenta-

tions here we propose to compute the best segmentation given the current image
and all previous images. In particular we propose a statistical inference frame-
work which gives rise to a marginalization over all possible segmentations of all
previous images. The theoretical contribution of this work is therefore two-fold.
Firstly, we prove that the marginalization over all segmentations of the preceding
images can be solved in closed form which allows to handle the combinatorial
explosion analytically. Secondly, we prove that the resulting functional is convex,
such that the maximum aposteriori inference of the currently best segmentation
can be solved globally. Experimental results confirm that this marginalization
over preceding segmentations improves the accuracy of the tracking scheme in
the presence of large amounts of noise.

2 An Implicit Dynamic Shape Model

In the following, we will briefly review the dynamical shape model introduced in
[10]. It is based on the notion of a probabilistic shape u defined as a mapping

u : Ω → [0, 1] (1)

that assigns to every pixel x of the shape domain Ω ⊂ Rd the probability that
this pixel is inside the given shape. While our algorithm will compute such a
relaxed shape, for visualization of a silhouette we will simply threshold u at
1
2 . We present a general model for shapes in arbitrary dimension. However, the
approach is tested for planar shapes (d = 2).



3

A1A1A1

A2

A2A2

noisenoisenoisenoise

I1 I2 I3 It

α
−1 α0 α1 α2 α3 αt

. . .

. . .

Fig. 1. Model for image sequence segmentation. We assume that all information
about the observed images Iτ (top row) is encoded in the segmentation variables ατ

(bottom row) and that the dynamics of ατ follow the autoregressive model (3) learned
beforehand. If the state space was discrete with N possible states per time instance,
then one would need to consider N t different states to find the optimal segmentation
of the t-th image. In Theorem 1, we provide a closed-form solution for the integration
over all preceding segmentations. In Theorem 2, we prove that the final expression is
convex in αt and can therefore be optimized globally.

The space of all probabilistic shapes forms a convex set, and the space spanned
by a few training shapes {u1, . . . , uN} forms a convex subset. Any shape u can
be approximated by a linear combination of the first n principal components Ψi

of the training set:

u(x) ≈ u0(x) +
n∑

i=1

αi · Ψi(x) (2)

with an average shape u0. Also, the set

Q := {α ∈ Rn|∀x ∈ Ω : 0 ≤ u0 +

n∑

i=1

αi · Ψi(x) ≤ 1}

of feasible α-parameters is convex [10].

Any given sequence of shapes u1, . . . , uN can be reduced to a sequence of low
dimensional coefficient vectors α1, . . . , αN ∈ Q ⊂ Rn. The evolution of these
coefficient vectors can be modeled as an autoregressive system

αi =

k∑

j=1

Ajαi−j + ηΣ−1 (3)

of order k ∈ N, where the transition matrices Aj ∈ Rn×n describe the linear
dependency of the current observation on the previous k observations. Here ηΣ−1

denotes Gaussian noise with covariance matrix Σ−1.
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3 A Statistical Formulation of Sequence Segmentation

In the following, we will develop a statistical framework for image sequence
segmentation which for any time t determines the most likely segmentation ut

given all images I1:t up to time t and given the dynamical model in (3). The goal
is to maximize the conditional probability P(αt|I1:t), where αt ∈ Rn represents
the segmentation ut := u0 + Ψ · αt.

For the derivation we will make use of four concepts from probabilistic rea-
soning:

– Firstly, the conditional probability is defined as

P(A|B) :=
P(A, B)

P(B)
. (4)

– Secondly, the application of this definition leads to the Bayesian formula

P(A|B) =
P(B|A) · P(A)

P(B)
(5)

– Thirdly, we have the concept of marginalization:

P(A) =

∫

P(A|B) · P(B) dB (6)

which represents the probability P(A) as a weighted integration of P(A|B)
over all conceivable states B. In the context of time-series analysis this
marginalization is often referred to as the Chapman-Kolmogorov equation [11].
In particle physics it is popular in the formalism of path integral computa-
tions.

– Fourthly, besides these stochastic properties we make the assumption that for
any time τ the probability for measuring image Iτ is completely characterized
by its segmentation ατ as shown in Figure 1:

The segmentation ατ contains all information about the sys-
tem in state τ . The rest of the state τ is independent noise.
Hence, Iτ contains no further hidden information, its proba-
bility is uniquely determined by ατ .

(7)

With these four properties, we can now derive an expression for the proba-
bility P(αt|I1:t) that we like to maximize. Using Bayes rule with all expressions
in (5) conditioned on I1:t−1, we receive

P(αt|I1:t) ∝ P(It|αt, I1:t−1) · P(αt|I1:t−1) (8)
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Due to property (7), we can drop the dependency on the previous images in the
first factor. Moreover, we can expand the second factor using Bayes rule again:

P(αt|I1:t) ∝ P(It|αt) · P(I1:t−1|αt) · P(αt) (9)

Applying the Chapman-Kolmogorov equation (6) to (9), we obtain

P(αt|I1:t) ∝ P(It|αt)

∫

P(I1:t−1|α1:t) · P(α|αt) · P(αt)
︸ ︷︷ ︸

P(α1:t)

dα1:t−1 (10)

This expression shows that the optimal solution for αt requires an integration
over all conceivable segmentations α1:t−1 of the preceding images.

To evaluate the right hand side of (10), we will model the probabilities
P(It|αt), P(I1:t−1|α1:t) and P(α1:t). Assuming a spatially independent pre-
learned color distribution Pob of the object and Pbg of the background, we
can define p(x) := − log(Pob(x)/Pbg(x)) which is negative for every pixel that
is more likely to be an object pixel than a background pixel. By introducing an
exponential weighting parameter γ for the color distributions, P(It|αt) becomes

P(It|αt) =
∏

x∈Ω

Pob(x)γut(x)Pbg(x)γ(1−ut(x)) ∝ exp

(
∑

x∈Ω

γut(x) log

(
Pob(x)

Pbg(x)

))

∝ exp

(

−

n∑

i=1

γ · (αt)i ·

(
∑

x∈Ω

Ψi(x) · p(x)

)

︸ ︷︷ ︸

ft,i

)

= exp (−γ 〈at, ft〉) .

To compute P(I1:t−1|α1:t), we use the assumption (7). Besides the infor-
mation encoded in α1:t, the images Iτ contain no further informations and are
therefore pairwise independent:

P(I1:t−1|α1:t) =

t−1∏

τ=1

P(Iτ |α1:t) =

t−1∏

τ=1

P(Iτ |ατ ) =

t−1∏

τ=1

exp (−γ 〈aτ , fτ 〉)

The second equation holds again due to (7): Since the probability for Iτ is
uniquely determined by ατ , the dependency on the other states can be dropped.

Now, we have to address the probability P(α1:t) which can recursively be
simplified via (4):

P(α1:t) = P(αt|α1:t−1) · P(α1:t−1) = · · · =

t−1∏

τ=1

P(ατ |α1:τ−1) (11)

Using the dynamic shape prior (3), this expression becomes

P(α1:t) ∝

t−1∏

τ=1

exp



−

∥
∥
∥
∥
∥
ατ −

k∑

i=1

Aiατ−i

∥
∥
∥
∥
∥

2

Σ−1
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To make this formula more accessible, we introduced k additional segmenta-
tion parameters α1−k, . . . , α0. These parameters represent the segmentation of
the past prior to the first observation I1 (cf. Figure 1). To simplify the notation,
we will introduce α := α1−k:t−1. These are the parameters that represent all
segmentations prior to the current segmentation αt.

Combining all derived probabilities, we can formulate the image segmentation
as the following minimization task

arg min
αt

∫

exp




−

t∑

τ=1

γ · 〈fτ , ατ 〉 −

t∑

τ=1

∥
∥
∥
∥
∥
∥

ατ −

k∑

j=1

Ajατ−j

∥
∥
∥
∥
∥
∥

2

Σ−1




 dα (12)

Numerically computing this n · (t + k − 1)-dimensional integral of (12) leads
to a combinatorial explosion. Even for a simple example of t = 25 frames, n = 5
eigenmodes and an autoregressive model size of k = 1, a 100-dimensional integral
has to be computed. In [8], this computational challenge was circumvented by the
crude assumption of a Dirac distribution centered at precomputed segmentation
results – i.e. rather than considering all possible trajectories the algorithm only
retained for each previous time the one segmentation which was then most likely.

In this paper, we will compute this integral explicitely and receive a closed-
form expression for (12) described in Theorem 1. This closed-form formulation
has the important advantage that for any given time it allows an optimal recon-
sideration of all conceivable previous segmentations.

To simplify (12), we write the integral as
∫

exp(Q(α, αt))dα. Note that Q is
a quadratic expression that can be written as

Q(α, αt) = γ · 〈ft, αt〉
︸ ︷︷ ︸

I

+ ‖αt‖Σ−1 + 〈α, Mα〉
︸ ︷︷ ︸

II

−〈b, α〉
︸ ︷︷ ︸

III

(13)

with the block vector b and the block matrix M :

bi =−γ · fi
︸ ︷︷ ︸

i≥1

+ 2AT
t−iΣ

−1αt
︸ ︷︷ ︸

i≥t−k

Mi,j =ΣAT
t−iΣ

−1At−j
︸ ︷︷ ︸

i,j≥t−k

+ 1
︸︷︷︸

i=j≥1

− 2Ai−j
︸ ︷︷ ︸

i≥1
k≥i−j≥1

+
∑

1≤l≤k
1≤i+l≤t−1
1≤i−j+l≤k

ΣAT
l Σ−1Ai−j+l

Despite their complicated nature, the three terms in (13) have the following
intuitive interpretations:

– I assures that the current segmentation encoded by αt optimally segments
the current image.

– II assures that the segmentation path (α−1, . . . , αt) is consistent with the
learned autoregressive model encoded by (Ai, Σ

−1).
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– III assures that the current segmentation αt also consistently segments all
previous images when propagated back in time according to the dynami-
cal model. In dynamical systems such backpropagation is modeled by the
adjoints AT of the transition matrices.

In the next theorem we will provide a closed form expression for (12) that
is freed of any integration process and can therefore computed more efficiently.
Additionally, we will come up with a convex energy functional. Therefore, to
compute the global optimum of the image sequence problem is an easy task.

Theorem 1. The integration over all conceivable interpretations of past mea-

surements can be solved in the following closed form:

P(αt|I1:t) = exp

[

−γ 〈αt, ft〉 − ‖αt‖
2
Σ−1 +

1

4

〈
M−1

s b, b
〉

+ const

]

(14)

Proof.

P(αt|I1:t) ∝

∫

e−γ〈αt,ft〉−‖αt‖Σ−1−〈α,Msα〉+〈b,α〉dα

=

∫

e
−〈αt,ft〉−‖αt‖Σ−1−‖α− 1

2
M−1

s b‖2

Ms
+ 1

4‖M−1

s b‖2

Ms dα

∝ exp

[

−γ 〈αt, ft〉 − ‖αt‖
2
Σ−1 +

1

4

〈
M−1

s b, b
〉
]

⊓⊔

Theorem 2. The resulting energy E(αt) = − log(P(αt|I1:t)) is convex and can

therefore be minimized globally.

Proof. The density function P(αt|I1:t) is the integral of a log-concave function,
i.e., their logarithm is a concave function. It was shown in [12] that integrals of
log-concave functions are log-concave. Hence, E is convex. Therefore, the global
optimum can be computed using, for example, a gradient descent approach. ⊓⊔

In [10], discarding all preceding images and merely retaining the segmenta-
tions of the last frames gave rise to the simple objective function:

E1(αt) =γ · 〈αt, ft〉 + ‖αt − v‖
2
Σ−1 (15)

where v is the prediction obtained using the AR model (3) on the basis of the
last segmentations.

The proposed optimal path integration gives rise to the new objective function

E2(αt) =γ · 〈αt, ft〉 + ‖αt‖
2
Σ−1 −

1

4

〈
M−1

s b, b
〉

(16)

In the next section, we will experimentally quantify the difference in performance
brought about by the proposed marginalization over preceding segmentations.
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Fig. 2. Optimal Parameter Estimation. The tracking error averaged over all frames
(plotted as a function of γ) shows that γ = 1 produces the best results for both methods
at various noise levels (shown here are σ=16 and σ=256).

4 Experimental Results

In the following experiments, the goal is to track a walking person in spite of
noise and missing data. To measure the tracking accuracy, we handsegmented
the sequence (before adding noise) and measured the relative error with respect
to this ground truth. Let T : Ω → {0, 1} be the true segmentation and S : Ω →
{0, 1} be the estimated one. Then we define the scaled relative error ǫ as

ǫ :=

∫

Ω
|S(x) − T (x)| dx

2 ·
∫

Ω
T (x) dx

.

It measures the area difference relative to twice the area of the ground truth.
Thus we have ǫ=0 for a perfect segmentation and ǫ=1 for a completely wrong
segmentation (of the same size).

Optimal parameter estimation.
In order to estimate the optimal parameter γ for both approaches, we added

Gaussian noise of standard deviation σ to the training images. As we can see
in Figure 2, the lowest tracking error ǫ (averaged over all frames) is obtained at
γ = 1 for both approaches. Therefore, we will fix γ = 1 for the test series in the
next section.

Robust tracking through prominent noise.
The proposed framework allows to track a deformable silhouette despite large

amounts of noise. Figure 3 shows segmentation results obtained with the pro-
posed method for various levels of Gaussian noise. The segmentations are quite
accurate even for high levels of noise.

Quantitative comparison to the method in [10].
For a quantitative comparison of the proposed approach with the method of [10],

we compute the average error ǫ of the learned input sequence I1:151 for different
levels of Gaussian noise. Figure 4 shows two different aspects. While the method
in [10] exhibits slightly lower errors for small noise levels, the proposed method
shows less dependency on noise and exihibits substantially better performance
at larger noise levels. While the difference in the segmentation results for low
noise level are barely recognizable (middle row), for high noise level, the method
in [10] clearly estimates incorrect poses (bottom row).
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Fig. 3. Close-ups of segmentation results. The proposed method gets correct
segmentation results. Even at the presence of high Gaussian noise (σ ∈ {64, 512}).

Average tracking error ǫ as a function of the noise level.

Segmentation for σ=128 method in [10] proposed method

Segmentation for σ=2048 method in [10] proposed method

Fig. 4. Robustness with respect to noise. Tracking experiments demonstrate that
in contrast to the approach in [10], the performance of the proposed algorithm is less
sensitive to noise and outperforms the former in the regime of large noise. While for low
noise, the resulting segmentations are qualitatively similar (middle row), for high noise
level, the method in [10] provides an obviously wrong pose estimate (bottom row).
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5 Conclusion

In this paper we presented the first approach for variational object tracking with
dynamical shape priors which allows to marginalize over all previous segmenta-
tions. Firstly, we proved that this marginalization over an exponentially growing
space of solutions can be solved analytically. Secondly, we proved that the re-
sulting functional is convex. As a consequence, one can efficiently compute the
globally optimal segmentation at time t given all images up to time t.

In experiments, we confirmed that the resulting algorithm allows to reli-
ably track walking people despite prominent noise. In particular for very large
amounts of noise, it outperforms an alternative algorithm [10] that does not
include a marginalization over the preceding segmentations.
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