arXiv:1612.03653v1 [cs.Al] 12 Dec 2016

Learning to Drive using Inverse Reinforcement
Learning and Deep Q-Networks

Sahand Sharifzadeh! Ioannis Chiotellis' Rudolph Triebel''> Daniel Cremers’
! Department of Computer Science, Technical University of Munich, Germany
{sharifza, chiotell, triebel, cremers}@in.tum.de
2 Institute of Robotics and Mechatronics, Department of Perception and Cognition
German Aerospace Center (DLR), Oberpfaffenhofen-WeBling, Germany
rudolph.triebel@dlr.de

Abstract

We propose an inverse reinforcement learning (IRL) approach using Deep Q-
Networks to extract the rewards in problems with large state spaces. We evaluate the
performance of this approach in a simulation-based autonomous driving scenario.
Our results resemble the intuitive relation between the reward function and readings
of distance sensors mounted at different poses on the car. We also show that, after
a few learning rounds, our simulated agent generates collision-free motions and
performs human-like lane change behaviour.

1 Introduction

Robots and autonomous systems are becoming more and more a part of everyday life by assisting
us in various different tasks. One important requirement for these systems is therefore that they
behave in a human-acceptable, socially normative way, e.g. by respecting personal spaces or treating
groups based on the social relations of the individuals [} 2]. This also means that humans should not
just be regarded as obstacles and that an optimal robot motion also must consider human comfort
metrics [3]. One of the most popular instances of autonomous systems in the current decade are
self-driving cars. The ultimate goal of autonomous cars is to drive the passengers from one point
to another without any human input, while assuring the comfort of human passengers. Defining
“comfort” is not straight forward and this makes it hard to define a suitable objective function for
motion planning. One widely used method aiming to fulfil this objective is introduced by Werling et
al [4]]. They propose to provide “ease and comfort” by producing jerk-optimal trajectories. Later,
lane change experiments conducted by Tehrani et al in Japanese highways showed that the human
lane change behavior cannot be modelled by a single stage of jerk-optimal trajectories [5}6]. Instead
they proposed a two-stage model. Many other models exist similar to these. However, they mostly
fail to produce human-like behaviors. Modelling the human driving behavior becomes even more
complicated when considering scenarios such as driving in large cities with many intersections, traffic
lights, pedestrians, etc. Therefore, applying machine learning methods to extract the models directly
from the expert demonstrations appears more promising.

In a recent work, Bojarski et al [[7], proposed an end-to-end supervised learning approach that maps
the front facing camera images of a car to steering angles, given expert data. However, they require a
large amount of data from different possible driving scenarios in order to give a good approximation
of the policy. Still, they might fail when facing scenarios that are very different from the ones in
the training data. A more promising formulation for this problem is based on Markov Decision
Processes (MDPs). In this framework, one can apply Inverse Reinforcement Learning (IRL) to extract
the unknown reward function of the driving behavior [8]. By approximating this function rather

Workshop on ”Deep Learning for Action and Interaction”, Conference on Neural Information Processing Systems
(NIPS 2016), Barcelona, Spain.

than directly learning the state-action pairs in a supervised fashion, one can handle new scenarios
better. Finding the reward function of an MDP using IRL is proposed by Ng and Russel [§] and
further improved by Abbeel and Ng [9]. Since then, several variations of IRL have been proposed
such as Bayesian IRL [10], maximum entropy based methods [[11]] and max margin prediction [[12].
Most of the recent methods have been inspired by these works. For example, Wulfmeier et al [[13]]
proposed a maximum entropy based approach that handles nonlinear reward functions using deep
neural networks. However, most of these approaches are limited to small state spaces that cannot
fully describe real-world driving scenarios. One of the main reasons is the difficulty of applying the
Reinforcement Learning (RL) step in large state spaces. While solving the RL has been effectively
addressed by Mnih et al using Deep Q-Networks (DQN) [[14], to the best of our knowledge, it has not
been used in IRL methods before.

In this paper, we address the exploding state space problem and build upon the projection-based
IRL method by [9] using DQN. We implemented a highway driving simulator and evaluated the
performance of our approach by analyzing the extracted rewards. The evaluation is presented in the
Section[3l

2 Problem Formulation

A Markov Decision Process (MDP) is defined as the tuple (S, A, T',~y, R), where S and A are the state
and action spaces, T is the transition matrix, v € [0, 1] is the discount factorand R : S x A — IR
is the reward function. A policy m : S — A maps a state to an action. It can also be seen as a
probability distribution over actions at each state. A value or state-value function V™ (sg) is defined
as the expected discounted future reward if we start from initial state sy and act according to policy 7:

V™(s0) = E[£7' R(s)|7] (1)

The discount factor applies the amount of uncertainty that we have about the future rewards. The
action-value function () represents the value that we can gain if we start from state s and take action
a, thereby applying policy 7:

Q(s0,a) = B[Sy R(sy) |, a] 2)
The motion planning problem can be formulated as a Markov Decision Process, in which finding the
optimal action-value function is the goal. However, similar to many other real-world applications,
the transition probabilities and the reward function are unknown. Given expert demonstrations, IRL
methods have been shown to effectively find the underlying reward function and consequently, the
action-value function. In order to apply such approaches to large state spaces, we propose using
DQN [14] as the Reinforcement Learning step in the inner loop. Previously, using neural networks
to approximate the Q-function has been shown to cause instabilities or divergence[15]]. In order to
address these problems, Mnih et al proposed two key ideas [14]. First, to randomly sample training
data from the sequence of past experiences (“experience replay”). Second, to separately train a copy
of the Q-network using predictions of the original network and only periodically replace the original
network with the copy. Here, we apply this approach to the projection-based IRL method [9] but
other IRL techniques can also benefit from it.

Given expert demonstrations, we want to generate policies m whose values are close to the value of
the expert policies 7x:

[V (s0) = V™= (s0)] < € 3)
Every state s; is spanned by d-dimensional feature vectors ¢(s;) such as speed, acceleration, sensor
readings, etc. The reward function is defined as a weighted linear combination of these features:

R(si) = w- ¢(si) , 4)
where w € IRY is the weight vector and ||w| < 1. Plugging (@) into (), we get
V™ (s0) = w - E[X¢v'é(s¢)|7] 3)
Furthermore, feature expectations are defined as:
() = B[Sy é(se)|] . (6)

Thus, the problem is reduced to generating trajectories whose feature expectations are similar to
those of the expert. Abbeel & Ng proposed an iterative projection-based method to solve it [9]. In
this paper, we propose to use DQN in the RL step of their algorithm. The details of our method are
given in Algorithm

Algorithm 1: Projection-based IRL using DQN

1. Randomly initialize the parameters of DQN and some policy 7(°), compute or approximate its
features expectations (*), and set w® = pp — p(@, 70 = ;) and i = 2.

i (i W=D _pG=2\T (), o (i—2) . (i

3. Setw® = pg — gV and tO) = ||w]..

4. 1t (9 < ¢, terminate

5. Update the DQN using R = (w?)T ¢ and compute the optimal policy 7(*).
6. Compute or estimate features expectations 1) of the newly extracted policy.

7. Seti =14+ 1 and go to step 2.

3 Evaluation

In this section, we present the evaluation results of the proposed approach. We considered the driving
scenario in a highway and implemented a simulator for collecting expert trajectories and testing. The
simulating environment was programmed in Python. The user interface is shown in Figure[2]on the
right side. The red car is the agent being trained to drive. The dynamics of this car are implemented
based on the single track model [16], with three degrees of freedom. The Deep Q-network architecture
used in our approach is shown in Figure[T] It consists of an input layer of features, 2 fully connected
hidden layers with 160 units each and rectifying nonlinear units, followed by a fully connected output
layer to the actions.

Obstacle| | 0 = ¢4

04}@52

0—¢1

Figure 1: The architecture of the proposed Deep Q-Network. The input is the set of features and the
output layer consists of three possible actions to steer left, steer right or not steer.

In these experiments we used 13 sensors. The sensors had a maximum sensing radius 64% of the
environment length, discretized to 16 bins of equal size. Each feature ¢, indicated whether or not
there was an obstacle in the interval of each bin. If the sensor was not sensing any obstacles, the
maximum possible reading distance was assigned to it. Therefore, we had a total of 208 binary
features which gave rise to 252 possible states.

In the driving experiments by [9]], the car could only have discrete transitions to the lane on its left

or right. However, in our experiments, we allowed steering with three different angles (0, 75, —75)

giving rise to more realistic, continuous transitions. For simplification in our experiments we set the

acceleration to zero. The highway in our experiments had 3 lanes and at most two other cars could
appear in front of the agent. For training, we collected 90 expert demonstrations from this setup.

The algorithm achieved satisfactory results after only 6 IRL iterations with 3000 inner loop iterations
each. Since we did not have access to the true reward function of driving, we evaluated our proposed
algorithm in the following ways:

a. Analyzing the extracted weights: The extracted weights for features from 7 sensors are plotted
in Figure[2] The color-code guide of each sensor is shown in the upper right corner. As shown in
this figure, there is a nonlinear relationship between readings of the same sensor and their extracted
weights. This means that if the sensor readings had not been discretized into binary features, the
algorithm would not have been able to capture the weights correctly. We have represented the

0.5

0.3

o
N

Reward Weights
o
=

0.0

0% 2 4 6 8 10 12 14 16

Distance Measure

Figure 2: Weights extracted using the IRL algorithm plotted for features of 7 sensors. Each sensor
has been assigned a color which is shown in the right corner.

maximum weight of features for each sensor with blue dots. As one can see, for Sensor 0 (blue), the
higher the reading is, the larger the weight is. Meaning, the agent learns to keep as far away from
the obstacles as possible. In the optimal state, where the car stays as far away from all obstacles and
walls, the sensor readings form an ellipse. Therefore, as the angle of the sensor from the vertical axis
increases, the reward weights peak at a smaller distance.

Another notable observation is that Sensor 6 (side sensor), gets the highest weight when reading the
smallest distance from the obstacles. The explanation is that at this distance, the car is placed next to
a highway wall. This has been the expert’s preference in the demonstrations. This reward weight
immediately drops when the reading is increased, which perfectly explains that staying in the lanes is
preferable to driving between the lanes. The same can be observed for most of the other sensors. Note
that some of the distances were never read by the sensors during the experiments and the extracted
weights for these cases is 0. For example Sensors 5 and 6 never see obstacles in distances higher than
the width of the highway.

b. Comparing feature expectation values of the expert to the trained agent: We trained the
DQN using the rewards computed by the final weights. Then, we let the agent drive for several
scenarios, acting according to the policy of the trained network. The mean difference over feature
expectations in these scenarios was computed. Part of these values are presented in Table|[I]

c. Evaluating using classical motion planning objectives: Classical motion planning methods are
evaluated based on their performance in obstacle avoidance, jerk optimality, driving in the lanes, etc.
In our experiments, similar to the expert, the agent avoided the walls and obstacles in 100% of the
scenarios, while maintaining its position in the lane except during obstacle avoidance. Jerk values
were also found to be close to the expert’s. Figure 3| demonstrates the agent’s planned motion based
on the rewards extracted at different stages of the training phase.

(a) (b) (©) (d)
(e) (63) (8) (h)
®)))
Figure 3: The agent’s motion when facing four particular scenarios during training. The top row

depicts the planned motion after the first IRL iteration (with 3000 DQN inner iterations), the middle
row after four and the bottom row after six IRL iterations.

Sensor
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6
0.000 | 0.000 | 0.000 | 0.004 | 0.158 | 0.005 | 0.011
0.000 | 0.001 | 0.005 | 0.136 | 0.209 | 0.110 | 0.167
0.001 | 0.004 | 0.006 | 0.173 | 0.079 | 0.126 | 0.085
0.003 | 0.004 | 0.016 | 0.116 | 0.121 | 0.158 | 0.026
0.002 | 0.016 | 0.094 | 0.096 | 0.004 | 0.039 | 0.030
0.001 | 0.041 | 0.095 | 0.000 | 0.176 | 0.045 | 0.038
0.001 | 0.039 | 0.057 | 0.046 | 0.017 | 0.000 | 0.000
0.006 | 0.075 | 0.002 | 0.156 | 0.016 | 0.000 | 0.000

liE — fial
0O ~JON N AN~ WN—

Table 1: The absolute differences between the trained and expert mean feature expectations. Each
column refers to one of the first 7 sensors and each row refers to one of the first 8 distance bins.

4 Conclusion

In this paper we proposed using Deep Q-Networks as the refinement step in Inverse Reinforcement
Learning approaches. This enabled us to extract the rewards in scenarios with large state spaces such
as driving, given expert demonstrations. The aim of this work was to extend the general approach to
IRL. Exploring more advanced methods like Maximum Entropy IRL and the support for nonlinear
reward functions is currently under investigation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

(14]

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation: A survey,” Robotics
and Autonomous Systems, vol. 61, no. 12, pp. 1726-1743, 2013.

R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila, M. Chetouani, D. Cremers, V. Evers,
M. Fiore, et al., “Spencer: A socially aware service robot for passenger guidance and help in busy airports,”
in Field and Service Robotics. Springer, 2016, pp. 607-622.

B. Okal and K. O. Arras, “Learning socially normative robot navigation behaviors with bayesian inverse
reinforcement learning,” 2016.

M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for dynamic street
scenarios in a frenet frame,” in Robotics and Automation (ICRA), 2010 IEEE International Conference on.
IEEE, 2010, pp. 987-993.

H. Tehrani, K. Muto, K. Yoneda, and S. Mita, “Evaluating human & computer for expressway lane
changing,” in 2014 IEEE Intelligent Vehicles Symposium Proceedings. 1EEE, 2014, pp. 382-387.

H. Tehrani, Q. H. Do, M. Egawa, K. Muto, K. Yoneda, and S. Mita, “General behavior and motion
model for automated lane change,” in 2015 IEEFE Intelligent Vehicles Symposium (IV). 1EEE, 2015, pp.
1154-1159.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

A.Y.Ng, S.J. Russell, et al., “Algorithms for inverse reinforcement learning.” in Icml, 2000, pp. 663-670.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in Proceedings of
the twenty-first international conference on Machine learning. ACM, 2004, p. 1.

D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learning,” Urbana, vol. 51, no. 61801, pp.
1-4, 2007.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement
learning.” in AAAI 2008, pp. 1433-1438.

N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin planning,” in Proceedings of the
23rd international conference on Machine learning. ACM, 2006, pp. 729-736.

M. Wulfmeier, P. Ondruska, and I. Posner, “Deep inverse reinforcement learning,” arXiv preprint
arXiv:1507.04888, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529-533, 2015.

[15] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with function approximation,”
IEEE transactions on automatic control, vol. 42, no. 5, pp. 674-690, 1997.

[16] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

	1 Introduction
	2 Problem Formulation
	3 Evaluation
	4 Conclusion

