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Abstract. Tracking 3D objects from 2D image data often leads to jittery tracking
results. In general, unsmooth motion is a sign of tracking errors, which, in the
worst case, can cause the tracker to loose the tracked object. A straightforward
remedy is to demand temporal consistency and to smooth the result. This is often
done in form of a post-processing. In this paper, we present an approach for online
smoothing in the scope of 3D human motion tracking. To this end, we extend
an energy functional by a term that penalizes deviations from smoothness. It is
shown experimentally that such online smoothing on pose parameters and joint
angles leads to improved results and can even succeed in cases, where tracking
without temporal consistency assumptions fails completely.

1 Introduction

Tracking 3D objects from 2D images is a well known task in computer vision with
various approaches such as edge based techniques [8]], particle filters [7], or region-
based methods [14/1]], just to name a few. Due to ambiguities in the image data, many
tracking algorithms produce jittery results. On the other hand, smoothing assumptions
of the observed motion can be made due to the inertness of the masses of involved
objects. This means, that it is physically unlikely that an object continuously moved by
a robot arm or human hand is rapidly changing the direction or even jittering, unless
there are physiological diseases. Many tracking procedures do not take this property
into account. Hence, the outcome tends to wobble around the true center of the tracked
object. To receive a more appealing outcome, the results are often smoothed in a second
post-processing step. However, jittery results often indicate errors or ambiguities during
tracking. Thus, introducing temporal consistency already during the estimation, can
help to eliminate errors at the root of the problem.

In case of human motion capturing and animation, several approaches exist in the
literature to smooth motions of joints during synthesis. Bruderlin et al. [3] use a multi
target motion interpolation with dynamic time warping in a signal based approach or
Sul et al. [[16] and Ude et al. [17] propose an extended Kalman filter. While these works
have only addressed the smoothing of joint angles, the smoothing of 3D rigid body
motions has been addressed in other works: Chaudhry et al. [6] smooth Euler angles
and translation vectors. Shoemake [15] proposes quaternions for rotation animation
(and interpolation) combined with translation vectors. Park et al. [[12] use a rational
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interpolating scheme for rotations by representing the group with Cayley parameters
and using Euclidean methods in this parameter space. Belta et al. [4] propose a Lie-
group and Lie-algebra representation in terms of an exponential mapping and twists to
interpolate rigid body motions.

All these works concentrate on the synthesis, smoothing, and interpolation of given
motion patterns, whereas in this work we smooth estimated motions online during a
tracking procedure: we use a previously developed markerless motion capture system,
which performs image segmentation and pose tracking of articulated 3D free-form sur-
face models. In complex scenes (e.g. outdoor environments), we frequently observed
the effect of motion jitter as a precursor to tracking failure. Therefore, in this work,
we supplement a penalizer to the existing error functional in order to reduce large jit-
ter effects. Whereas the penalizer term for joint angles (as scalar functions) is pretty
straightforward, the challenging aspect is to formalize penalizers for rigid body mo-
tions. To achieve this, we use exponentials of twists to represent rigid body motions
(RBMs) and a logarithm to determine from a given RBM the generating twist, simi-
lar to the motion representation in [11112]]. The gradient of the penalizer leads to linear
equations, which can easily be integrated in the numerical optimization scheme as addi-
tional constraints. In several experiments in the field of markerless motion capture, we
demonstrate the improvements obtained with the integrated smoothness assumptions.
As we cannot give a complete overview on the vast variety of existing motion capture
systems, we refer to the surveys [9/10].

2 Foundations

In this section, we introduce mathematical foundations needed for the motion penalizer,
in particular the twist representation of a rigid body motion and the conversion from the
twist to the group action as well as vice-versa. Both conversions are needed later in
Section [ for the smoothing of rigid body motions.

2.1 Rigid Body Motion and Its Exponential Form

Instead of using concatenated Euler angles and translation vectors, we use the twist
representation of rigid body motions, which reads in exponential form [11]:

M= e>q>(6é§)=exp(o3“i1 (V)) ()

where 6¢ is the matrix representation of a twist £ € se(3) = {(v,®)|v € R}, ® € s0(3)},
with so(3) = {A € R¥3|A = —AT}. The Lie algebra so(3) is the tangential space of all
3D rotations. Its elements are (scaled) rotation axes, which can either be represented as
a 3D vector or a skew symmetric matrix:

()] 0 -3 o
0w=0| o |, with|o|p=1 66=0]| w3 0 —w |. 2)
3 - o 0

A twist & contains six parameters and can be scaled to 0& for a unit vector ®. The pa-
rameter 6 € R corresponds to the motion velocity (i.e., the rotation velocity and pitch).
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For varying 6, the motion can be identified as screw motion around an axis in space.
The six twist components can either be represented as a 6D vector or as a 4 X 4 matrix:

0 -3 @ v

_ T _ e _ o 0 —w v
0 = 0(wy, m,®3,v1,v2,03)", oo =1,  65=06 o, 0w ®

0 0 0 0

se(3) to SE(3). To reconstruct a group action M € SE(3) from a given twist, the ex-

ponential function M = exp(@é) = Yo % must be computed. This can be done
efficiently via

exp(6E) = (exp(oecb) (I—exp(Od)))(clc)xv)+a)wTv9) @
and by applying the Rodriguez formula
exp(0®) = I+ @sin(0) + @*(1—cos(8)). 5)

This means, the computation can be achieved by simple matrix operations and sine and
cosine evaluations of real numbers. This property was exploited in [2] to compute the
pose and kinematic chain configuration in an orthographic camera setup.

SE(3) tose(3). In [[11]], a constructive way is given to compute the twist which generates
a given rigid body motion. Let R € SO(3) be a rotation matrix and ¢ € R3 a translation
vector for the rigid body motion
Rt
M= (0 1) : ©)

For the case R = I, the twist is given by
t
]

In all other cases, the motion velocity 8 and the rotation axis @ are given by

0 — cos! trace(R) — 1 o 1 :32 : ;23
- 2 » T 2sin(e) | B

n1—r2

To obtain v, the matrix
A= (I—exp(00))d+ 0w’ 0 ®

obtained from the Rodriguez formula (see Equation (@)) needs to be inverted and mul-
tiplied with the translation vector ¢,

y=A"l4. 9)

This follows from the fact that the two matrices which comprise A have mutually
orthogonal null spaces when 6 # 0. Hence, Av = 0 < v = 0. We call the transformation
from SE(3) to se(3) the logarithm, log(M).
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2.2 Kinematic Chains

Our models of articulated objects, e.g. humans, are represented in terms of free-form
surfaces with embedded kinematic chains. A kinematic chain is modeled as the con-
secutive evaluation of exponential functions, and twists &; are used to model (known)
joint locations [[L1]. The transformation of a mesh point of the surface model is given
as the consecutive application of the local rigid body motions involved in the motion of
a certain limb:

X! = exp(6&)(exp(6,€)) ...exp(6,E,))X;. (10)

For abbreviation, we note a pose configuration by the (6 +n)-D vector y = (£, 0y,...,
0,) = (£,0) consisting of the 6 degrees of freedom for the rigid body motion £ and the
nD vector © comprising the joint angles. In the MoCap-setup, the vector y is unknown
and has to be determined from the image data.

2.3 Pose Estimation from Point Correspondences

Assuming an extracted image contour and the silhouette of the projected surface mesh,
closest point correspondences between both contours can be used to define a set of
corresponding 3D rays and 3D points. Then a 3D point-line based pose estimation al-
gorithm for kinematic chains is applied to minimize the spatial distance between both
contours: for point based pose estimation each line is modeled as a 3D Pliicker line
L; = (n;,m;), with a unit direction n; and moment m; [[L1]. For pose estimation the re-
constructed Pliicker lines are combined with the screw representation for rigid motions.
Incidence of the transformed 3D point X; with the 3D ray L; = (n;,m;) can be expressed
as

(exp(68)Xi)3x1 x nj —m; = 0. (11

Since exp(@é )X; is a 4D vector, the homogeneous component (which is 1) is neglected
to evaluate the cross product with n;. This nonlinear equation system can be linearized in
the unknown twist parameters by using the first two elements of the sum representation
of the exponential function:

exp(08) = 3 %S ~ (1+08), (12)

This approximation is used in and leads to the linear equation system
((1+08)X)31 X i —m; = 0. (13)

Gathering a sufficient amount of point correspondences and appending the single equa-

tion systems, leads to an overdetermined linear system of equations in the unknown
pose parameters 6. The least squares solution is used for reconstruction of the rigid
body motion using Equation (@) and (3). Then the model points are transformed and a
new linear system is built and solved until convergence. The final pose is given as the
consecutive evaluation of all rigid body motions during iteration.
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Since joints are expressed as special screws with no pitch of the form Gjé ;i with

known é j (the location of the rotation axes is part of the model) and unknown joint
angle 6;. The constraint equation of an ith point on a jth joint has the form

(exp(0&)exp(61€))...exp(0;€,)Xi)3x1 X ni—m; = 0 (14)

which is linearized in the same way as the rigid body motion itself. It leads to three
linear equations with the six unknown twist parameters and j unknown joint angles.

3 Markerless Motion Capture

The motion capturing model we use in this work can be described by an energy func-
tional, which is sought to be minimized [[13]. It comprises a level set based segmenta-
tion, similar to the Chan-Vese model [3]], and a shape term that states the pose estimation
task:

E(®,p1,p2,%) = 7/9 (H(®)logpi + (1 —H(®))log py + V|VH(D)|) dx

segmentation

+2 /Q(@f ®y(x)) dx (15)

shape error

The function @ € 2 — R serves as an implicit contour representation. It splits the
image domain Q into two regions 2 and £, with @(x) > 0 if x € Q; and @(x) < 0 if
x € £,. Those two regions are accessible via the step function H(s), i.e., H(®(x)) =1
if x € Q) and H(®(x)) = 0 otherwise. Probability densities p; and p, measure the
fit of an intensity value I(x) to the corresponding region. They are modeled by local
Gaussian distributions [14]. The length term weighted by v > 0 ensures the smoothness
of the extracted contour.

By means of the contour @, the contour extraction and pose estimation problems are
coupled. In particular, the projected surface model @ acts as a shape prior to support
the segmentation [14]. The influence of the shape prior on the segmentation is steered
by the parameter A = 0.05.

Due to the nonlinearity of the optimization problem, an iterative minimization scheme
is chosen: first the pose parameters ) are kept constant, while the functional is mini-
mized with respect to the partitioning. Then the contour is kept constant, while the pose
parameters are determined to fit the surface mesh to the silhouettes (Section 2.3)).

4 Penalizing Motion Jitter

To avoid motion jitter, the idea is to extend the energy functional in by an additional
error term that penalizes deviations of the estimated pose from a smooth prediction
generated from the poses of previous frames.

Such a prediction y = (&,0) (as global pose) can be computed by means of the joint
angle derivatives,

Q:@ts+a@S:@ts+(QIS* ts—l)a (16)
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and the twist that represents the predicted position,

A

& = 1og (exp(&)exp(&-1) " exp(é)) am
see Section 2.1l The deviation of the estimate y = (&,©) from the prediction can now
be measured by

Esmoorn = |log (exp(é) exp(é)fl) +le-0p (18)

Notice that the deviation of the rigid body motion is modeled by the minimal geodesics
between the current and predicted pose.

This error value is motivated from the exponential form of rigid body motions: since
we linearize the pose, see (13), we have to do exactly the same here. The derivative of
the joint angles is simply given by © — ©@. To compute the motion derivative we can
apply the logarithm from Section 2] to get a linearized geodesic [11]]. This follows
from the fact that the spatial velocity corresponding to a rigid motion generated by a
screw action is precisely the velocity generated by the screw itself. To see this, we first
set

exp(’) == exp(§)exp(§) ", (19)
with &’ = log(exp(é) exp(€)~1). Let g(0) € R? be a point transformed to
8(6) = exp(£'6)5(0). (20)
The spatial velocity of the point is given by [[L1]
V=2¢(6)g"(6). (21)
Since, p
7 (exp(§10)) = &/0exp(£'0), (22)
we have
V=2¢(6)g'(6) (23)
= &'0exp(£'0)g(0)g'(6) (24)
=£'65(0)g7'(6) = £'6. (25)

After setting & = 1 (6 = ¢), the linearized penalizer term acts as additional linear
equation to the pose constraints which further regularize the equations,

st (log(exp(&)exp(&) 1,0~ ©)" =0. 26)

Equation yields an additional constraint for each parameter that draws the so-

lution towards the prediction. Note that we do not perform an offline smoothing in a

second processing step. Instead, the motion jitter is penalized online in the estimation

procedure, which does not only improve the smoothness of the result, but also stabilizes
the tracking.
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5 Experiments

The experiments are subdivided into indoor and outdoor experiments. The indoor
experiments allow for a controlled environment. The outdoor experiments demonstrate
the applicability of our method to quite a tough task: markerless motion capture of
highly dynamic sporting activities with non-controlled background, changing lighting
conditions and full body models.

Frame
0 200

Angle (Rad)

Fig. 1. Left: Example frames of a knee bending sequence. Right: Quantization of outcome: Red:
without penalizer, blue: with penalizer. The Penalizer function is suited to penalize rapid move-
ment changes during tracking, not the smaller ones.

5.1 Indoor Experiments

For indoor experiments we use a parameterized mesh model of legs, represented as
free-form surface patches.

Figure [1] shows in the left several consecutive example frames of a knee-bending
scene in the lab environment. The smaller images in the first row show 4 example feet
positions without a smoothness assumption and the last row shows feet positions with
such an assumption. The motion jitter in these four consecutive frames is suppressed.
The effect is quantified in the right of Figure[Tl Here we have overlaid knee angles. The
red values indicate the result of the system without the jitter penalizer and the blue one
is the outcome with the incorporated penalizer. As can be seen, the penalizer decreases
rapid motion changes, but maintains the smaller ones. The red peak around frame 50 is
due to a corrupted frame, similar to the one in Figure[3

5.2 Outdoor Experiments

In our outdoor experiments we use two full body models of a male and female person
with 26 degrees of freedom. Different sequences were captured in a four-camera setup
(60 fps) with Basler gray-scale cameras. Here we report on a running trial and a coupled
cartwheel flick-flack sequence, due to their high dynamics and complexity.

Figure [2| summarizes results of the running trial: all images have been disturbed
by 15% uncorrelated noise and random rectangles of random color and size. Tracking
is successful in both cases, with the smoothness assumption and without it. However,
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Fig.2. Running trial of a male person. Top: The images have been disturbed with uncorrelated
noise of 15% and random rectangles of random color and size. Bottom: Comparison of (some)
joint angles: Red: Without jitter penalizer, black: with jitter penalizer. The curves reveal, that with
the jitter penalizer the motion is much smoother.

Fig. 3. Tracking in an outdoor environment: corrupted frames can cause larger errors, which are
avoided by adding the penalizer function

the diagram reveals that the curves with a smoothness constraint are much smoother.
A comparison with a hand-labeled marker-based tracking system revealed an average
error of 5.8 degrees between our result and the marker-based result. More importantly,
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Fig.4. Red: Tracking fails, Blue: Tracking is successful

Fig. 5. Example frames of the (successful tracked) Cartwheel-Flick-Flack sequence in a virtual
environment. The small images show one of the four used cameras.

the variance between our method and the marker-based method has been reduced from
12 degrees to 5 degrees by using the jitter penalizer.

Another impact of our approach is shown in Figure Bt when grabbing images of a
combined cartwheel and flick-flack, some frames were stored completely wrong, re-
sulting in leg crossings and self intersections. Due to the smoothness term, the rapid leg
movement is reduced and self-intersection avoided. Because of such noise effects, the
tracking fails in the latter part of the sequence, see Figure[d] whereas it is successful with
the integrated smoothness constraint. This shows that the smoothness assumption can
make the difference between a successful tracking and an unsuccessful one. Figure [3]
shows key frames of the successfully tracked sequence.

6 Summary

In this work, we have presented an extension of a previously developed markerless
motion capture system by integration of a smoothness constraint, which suppresses 3D
motion jitter during tracking. In various experiments we have shown that the outcome
is smoother and more realistic. There is no need for a second processing step to post-
smooth the data. We have further shown that the additional penalizer can be decisive
for successful tracking. It also acts as a regularizer that prevents singular systems of
equations. In natural scenes, such as human motion tracking or 3D rigid object tracking,
the results are generally improved, since an assumption of smooth motion is reasonably
due to the involved inertness of masses.
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