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Abstract

This work deals with modeling and markerless tracking
of athletes interacting with sports gear. In contrast to clas-
sical markerless tracking, the interaction with sports gear
comes along with joint movement restrictions due to ad-
ditional constraints: while humans can generally use all
their joints, interaction with the equipment imposes a cou-
pling between certain joints. A cyclist who performs a cy-
cling pattern is one example: The feet are supposed to stay
on the pedals, which are again restricted to move along a
circular trajectory in 3D-space. In this paper, we present
a markerless motion capture system that takes the lower-
dimensional pose manifold into account by modeling the
motion restrictions via soft constraints during pose opti-
mization. Experiments with two different models, a cyclist
and a snowboarder, demonstrate the applicability of the
method. Moreover, we present motion capture results for
challenging outdoor scenes including shadows and strong
illumination changes.

1. Introduction

Markerless Motion Capture (MoCap) is an active field
of research in computer vision and graphics [15] with ap-
plications in animation (games, avatars), medicine or sports
science. In contrast to commonly used marker based ap-
proaches, the analysis for markerless methods is based on
sensor (usually image) data without special preparation of
the subject. The goal is to determine the position and ori-
entation as well as the joint angles of a human body from
image data. In most approaches, the body parts are modeled
as so-called kinematic chains, which are unconstrained in

Figure 1. Examples of an athlete interacting with sports equip-
ment. Top: cycling on a bike. Bottom: snowboarding (in the
summer).

the sense that each body part has only one parent joint (and
possibly multiple children) [2, 9, 15, 12, 5, §]. In robotics,
this is called an open chain or serial link system. In an open
chain system, each joint position is equally likely. However,
in MoCap it is often of interest to incorporate constraints
on the pose configuration. Such constraints can either be
learned from training data [19, 20, 22], or they can be mod-
eled explicitly, for instance, by imposing fixed joint angle
limits [21, 13] or by modeling the physics of body motion
[3]. In [1] prior knowledge about light sources and shad-
ows is applied to exploit more information about the scene
observed by the cameras.

In the present work we are interested in tracking ath-
letes who interact with sports equipment, for instance a
snowboarder, who has his two feet fixed to his snow-
board. This results in joint restrictions, which are known
as so-called closed chain systems or constrained kinematic
chains. In robotics and controller design, such systems are
well known and subject to intensive investigations in or-




der to find analytic interdependencies of the involved joints
[16, 11, 14,6, 23]. In principle, closed chain systems come
along with limited degrees of freedom. A theoretic work
dealing with reduced equations of robotic systems using Lie
groups can be found in [17]. Figure 1 shows two examples
we will use for our experiments, an athlete riding a bike
and jumping with a snowboard. Both examples are highly
interesting for sports science [4, 7] and challenging from a
mathematical point of view, since in the first case it is nec-
essary to model the kinematics of the pedals, and the second
case requires to model that the feet are rigidly connected to
the snowboard.

The contribution of this paper is to propose a formal-
ism which allows to express such geometric constraints in
a markerless human pose estimation process. Both exam-
ples from Figure 1 can be modeled using conventional kine-
matic chains with additional constraint equations, which ex-
press the motion restrictions during pose estimation. The
constraints are thereby modeled in terms of invariances of
points on the body surface rather than analytical expressions
on the joint interdependencies, as usually done in controller
design. Due to this numerical approach, our framework can
handle much more complex systems and is less involved.
An alternative would be the automatic, implicit modeling of
the interdependencies by learning the subspace of allowed
configurations. However, this requires training data stem-
ming from a marker-based system, which is not required in
our approach.

In experiments we demonstrate the applicability of our
concept by tracking a person in two highly challenging set-
ups, one in a lab with cluttered background and one in
an outdoor scene with strong illumination changes and dy-
namic motion patterns, such as jumps and turns.

The paper is organized as follows: Section 2 recalls
mathematic foundations, pose estimation and region based
tracking. Section 3 deals with constricted kinematic chains,
followed from the experiments in Section 4. Finally, Sec-
tion 5 concludes the paper with a summary.

2. Twists, kinematic chains and pose estimation

In this section we recall mathematic foundations needed
for modeling kinematic chains. These are essential in or-
der to understand the constraint equations developed later
in Section 3.2. We further introduce the pose estimation
and region based 2D-3D tracking procedure used for the
experiments.

2.1. Twists

A rigid body motion of a 3D point x can be expressed in
homogeneous coordinates as

X' =@ 1)t = MX=M®1)T
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The matrix R is a rotation matrix, R € SO(3) and
t is a translation vector. The set of all matrices of type
M is called the Lie Group SE(3). To every Lie group
there exists an associated Lie algebra, whose underlying
vector space is the tangent space of the Lie group, eval-
uated at its origin [10]. The Lie algebra associated with
SE@3) is se(3) = {(v,w)|lv € R3 w € s0(3)}, with
50(3) := {A € R>*3|A = — A"}, Elements of so(3)
and se(3) can be written as vectors w = (wy,ws,ws3)?,
¢ = (w1,w2,ws, v1,v2,v3)T or matrices
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It is further common to scale the twists ¢ with respect
tow, ie. 0 = |lw|, w:= %and v := ¥ We de-
note a scaled twist as #¢. To reconstruct a group action
M € SE(3) from a given twist, the exponential function
M = exp(6€) = 30, % must be computed. This can
be done efficiently by applying the Rodriguez formula [16].
Note, that for varying 6, the one-parametric Lie-subgroup
My = exp(@é ) yields a screw motion around an axis in
space. A degenerate screw (without pitch component) will
be used to model joints [2].

2.2. Kinematic chains

A kinematic chain is modeled as the consecutive evalu-
ation of exponential functions of twists &; [2]. A point at
an end effector, additionally transformed by a rigid body
motion is given as

X| = exp(0€)(exp(61£1) . . . exp(0n&n)) X 3)

In the remainder of this paper we will note a pose configu-
ration by the (6 4+ n)D vector

X = (67917"'79?1):(67@)7 (4)
consisting of the 6 degrees of freedom for the rigid body
motion £ and the joint angle vector ©. In our setup, the vec-
tor y is unknown and has to be determined from the image
data. In this work, the angles O are further constricted and,
therefore, depend on each other.



2.3. Pose estimation

A 3D point-line based pose estimation algorithm for
kinematic chains is applied to minimize the spatial dis-
tance between given 2D image and 3D model point corre-
spondences: therefore, each image point is reconstructed
to a 3D line. The line is modeled as a 3D Pliicker line
L; = (n;,m;), see [16]. For pose estimation the recon-
structed Pliicker lines are combined with the twist represen-
tation for rigid motions: incidence of the transformed 3D
point X; with the 3D ray L; = (n;, m;) can be expressed
as

(exp(0€)X ;) x ny —m; = 0. (5)

Since exp(#€) X, is a 4D vector, the function 7 denotes the
projection of the homogeneous 4D vector to a 3D vector by
neglecting the homogeneous component.

For the case of kinematic chains, we exploit the property
that joints are expressed as special twists with no pitch of
the form 9j£j with known «f} (the location of the rotation
axes is part of the model) and unknown joint angle 6;. The
constraint equation of an ith point on a jth joint has the form

(exp(0€) exp(61&1) ... exp(0;6,)Xi)x X ni —mi = 0.
(6)

To minimize for all correspondences in a least squares
sense, we optimize

2
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The function J (z; ) denotes the ordered set of joints that af-
fect the point x;. Linearization of the exponential function
by approximating exp(6<) with exp(0¢) ~ I + ¢ leads to
three linear equations with 6 4-n unknowns, the six pose pa-
rameters and n joint angles. Collecting enough correspon-
dences yields an over-determined linear system of equations
and allows to solve for these unknowns in the least squares
sense. Then the Rodrigues formula is applied to reconstruct
the group action and the process is iterated for the trans-
formed points until convergence.

This pose estimation procedure requires known corre-
spondences between 2D points (3D lines) and 3D points. To
generate a set of correspondences for a given surface mesh
and calibrated images, image region statistics are analyzed,
as explained in the next section.

2.4. Region based pose tracking

Many contour-based pose estimation algorithms expect
an explicit contour to establish correspondences between
contour points and points on the model surface. This in-
volves matching the projected surface and the previously
computed contour. In [ 18], an approach has been suggested

Figure 2. Example forces acting on the contour of the projected
surface mesh. Vectors in cyan point outwards, those in red point
inwards. For visualization, the force vectors have been enlarged.

that avoids explicit computations of contours and contour
matching. It rather adapts the pose parameters for the pro-
jections of the surface to optimally split all images into
homogeneously distributed object and background regions.
This approach is briefly reviewed.

2.4.1 Energy model

The partitioning of the image domain €2 can be expressed as
minimization of the energy function

B(x) = - / (POva)logpi + (1 — P(x,0)) logps)da,  (8)

where the function P : R x Q 3 (x,q) — {0,1}
is 1 if and only if the surface of the 3-D model with pose
projects to the point ¢ in the image plane. P can be regarded
as the projection of the model surface with the current pose
x and splits the image domain into the object region and
its background. Hence, the energy function enforces adapt-
ing the pose parameters in a way that the foreground and
background regions are as homogeneous as possible. Ho-
mogenity is modelled by the probability density functions
p1 and po estimated in the two regions by using the color
distributions in the CIELab color space.

2.4.2 Minimization

For minimization of the above, highly nonlinear energy, an
iterative procedure approximating a gradient descent is ap-
plied. The fact that there is no analytic expression of how
P(x) depends on x rules out an exact gradient descent. The
gradient is approximated by creating 2D-3D point corre-
spondences (g;, x;). To this end, surface points x; are pro-
jected to the image plane using the current pose y. The
points ¢; that generate the silhouette in the image are col-
lected for computing a pose update. Those points g; that
better fit to the object region — i.e. those points for which
p1(g;) is greater than po(g;) — are shifted in outward normal
direction to a new point ¢} (cyan in Figure 2). Points where
p1(q;) < p2(gi) are shifted into the opposite direction to
q;, respectively (red in Figure 2). Figure 2 visualizes some
example forces acting on a pose for the bike scene.




The 2D-3D point correspondences (¢, x;) obtained this
way are used in the point based pose estimation algorithm
explained in Section 2.3 to get a new pose. Computation of
shift vectors and pose estimation are iterated until the force
vectors mutually cancel each other and the pose does not
change any longer. We stop iterating when the average pose
change after up to three iterations is smaller than a small e.

3. Constricted kinematic chains

The focus of this paper is on tracking closed chain sys-
tems, which have reduced degrees of freedom due to inter-
dependencies between the involved joints. In order to deter-
mine the degrees of freedom of a closed chain manipulator,
Grueblers formula can be applied [16]. Let N be the num-
ber of links in the mechanism, g the number of joints, and
fi the degrees of freedom for the ith joint. The number of
degrees of freedom of the mechanism is

F =

) + Zfl ©)

For planar motions, the scalar 6 needs to be replaced with
3.

The key idea in the present work is to use open chain
models, as the one reviewed in the previous section, and
to add constraint equations in the pose optimization pro-
cedure to enforce their configuration as a constricted kine-
matic chain. These further constraints will automatically re-
sult in equations of rank g — F', with the degrees of freedom
of the mechanism as the remaining unknowns. An alterna-
tive would be the analytic derivation of the joint restrictions.
However, the next subsection demonstrates by means of an
example that this approach very quickly gets very complex
and is in fact impracticable for complex systems.

6N — Z(G_ft)—

3.1. Analytic derivation of joint restrictions

Let us consider a simple pedal model for the 2D case,
see Figure 3. In this toy example we compute the redun-
dancies explicitly, to show their increasing complexity (of
higher order trigonometric functions) and to justify that this
approach is impracticable for more complex systems, hard
to generalize to other models, and very hard to optimize
within the pose estimation context. Section 3.2 will later
show that the numerical modeling of the restrictions as soft
constraint is much more simple and practicable.

The simplified planar model of a leg on a pedal is vi-
sualized in Figure 3 and consists of 2 joints (black bullets).
One joint is located at the origin (0, 0) with angle #; and the
other one is at j = (0, 3) with angle 65. The end effector
(green bullet) is given at p = (0, 5). Furthermore, we want
to restrict the movements of the end effector to stay on the
dashed circle (with center C' = (0, 4) and radius 1), so that

6,00)

6, j=(0.3)

00

Figure 3. 2D example for a simplified leg model performing a cy-
cling pattern.

the end effector only performs a circular trajectory, similar
to a foot on a pedal during cycling.

The position p’ of the end effector in terms of 61 and 0
can be written as

o= ()
(ot i) Yo=n+5)ao

( —2sin(fy + 01) — 3sin(6;) ) an

2cos(fz + 01) — 3 cos(6q)

The requirement for p’ to stay on the dashed circle can
be expressed as

1) -CL)?+ '@ -C@2)* = 1. 12

Solving this equation in 65 yields two solutions (dependent

on a sign) from which one is selected as

0 = —0; + atan(—(18sin(fy)cos(h;) — 6(—6 +

15 cos(61) —9 cos?(61))(H/2) cos(0;) —21 sin(6; ) +8(—6+

15cos(61) — 9cos?(0,))/2)) /(24 cos(0;) — 25).
Resubstitution in Equation (11) leads to

/ — p’l ]
D <p,2> (13)

—(36sin(61) cos(61) + 12(—6 + 15cos(61) —

with
Py =
9 cos?(01))1/?) cos(61)—33 sin(6;)—16(—6+15 cos(#;) —
9005 (01))(1/2)) /(24 cos(61) — 25) and

—(—36cos?(61) — 15cos(f1) + 12sin(6;)(—6 +
15 005(91) —9cos?(6,))1/?) 4 56) /(24 cos(6,) — 25).
So, instead of expressing the end effector with two expo-
nential functions as proposed in Equation (3):

P’ = (exp(6:1&1) exp(B262))p, (14)



with &; being respective 2 X 2 matrices, a higher order non-
linear term is the price to model the inherent restrictions.
For more complex kinematic chains (e.g. containing 8 or
more involved joints), this method is not suitable and re-
quires a detailed analysis of each model in advance to the
pose computations. Hence, we propose to model the kine-
matic chains as open chain systems and to add the involved
restrictions as additional constraints acting on 3D points
rather than the joint angles. This is described in the next
section.

3.2. Soft-constraints for constricted Kinematic
chains

Figure 4. The used snowboard model: One foot is rigidly con-
nected to the snowboard and the other foot is allowed to move
freely in space. Extra forces (marked in red) enforce the second

foot to stay on the snowboard.

Figure 5. The used cycling model: One foot is rigidly connected
to the pedal and the other foot is allowed to move freely in space.
Forces (marked in red) constrain the second foot to stay on the
second pedal (encircled) and the middle of the pedal axis on the
virtual bike. The hands are further enforced to stay on the handle
bar. The picture on the right shows the wireframe model, the joint
axis (shown as red lines) and the pedals are part of the model.
The red squares indicate the invariant positions of the pedal axis
to enforce a cycling trajectory.

A snowboarder standing on a snowboard has to fulfill the
property that both legs are rigidly connected on a 3D plane
(the snowboard). To achieve modeling of a snowboarder
standing on a snowboard, we firstly generate a model of an
athlete and the snowboard, see Figure 4. The model is de-
signed in a way that one of the legs is rigidly connected
to the snowboard binding and the other one is allowed to
move freely in space. Now we add forces (depicted with red
lines), which enforce the second foot to stay on the snow-
board binding.

We define P} as a set of 3D points on the snowboard
binding, which correspond to a set of points P on the right
snowboard boot. Since the corresponding points belong to
different parts of the kinematic chain (note, the snowboard
is part of the left leg, whereas the points on the boot belong
to the right leg), we express incidence in terms of

Vi : P—P’=0. (15)

Since P? and P} are parts of kinematic chains, they can be
expressed as

P = exp(@é) H eXP(Qjéj)pf (16)
JET (PF)

P! = exp(#€) H exp(0;€;)p! a7
JeT (b)

and we can generate two sets of equations forcing the trans-
formed point p$ to stay close to P and the transformed
point p? to stay close to Py:

exp(0€) [] exp(0;6)pi—P" = 0, (18
JET ()

exp(0S) [ exp(0;6)pi—P> = 0. (19
JET(P?)

Note that P? and P} are treated as constant vectors, so
that the only unknowns are the pose and kinematic chain co-
efficients. This can be done similarly with the kinematics of
the bike, see Figure 5. Here, some more invariances can be
exploited: The hands have to be on the handle of the bike,
the feet on the pedals and the pedals have to spin around
an axis. To achieve the circular trajectory of the feet on
the pedals, the right foot is forced to stay on the pedals (as
shown in Figure 5) and the pedal axis is forced to stay on an
invariant (relative) position, as shown with the red squares
in Figure 5, right. In this case we gain four additional con-
straints for the hands and three constraints for the feet. It
results in seven point-point correspondences. Note: The
pedals introduce one additional joint to the human model.

Note that the unknowns are the same as for Equation (7),
the unknown pose parameters. Only the point-line con-
straints are replaced with simpler point-point constraints,
which express the involved geometric invariances which



Figure 6. Seven synchronized color-VGA cameras are used for recording the snowboard sequences (one time-frame is shown).

occur during the interaction of the athlete with his sports
equipment. The matrix of gathered linear equations is at-
tached to the one presented in Section 2.3. Its effect is to
regularize the equations and to constrain the solution to a
desired subspace of possible joint configurations. The struc-
ture of the generated linear system is Ax = b, with A and
b containing three attached matrices/vectors generated from
the linearized equations (6), (18) and (19).

The system is optimized in a least squares sense, similar
to Equation (7). Since the additional equations act as soft
constraints, it can still happen during minimization that the
property of the system is broken due to ambiguities in the
image data. These are reduced by adding a strong weighting
factor to Equations (18) and (19). In our experiments, the
pose of the kinematic chain system had a deviation of less
then 5 mm to an explicitly modeled constrained kinematic
chain. For many applications in tracking, this accuracy is
fully sufficient.

4. Experiments

In this section we present experimental results of con-
strained kinematic chains we track in different set-ups. We
present experiments with a cyclist and a snowboarder.

4.1. The cyclist

As mentioned in Section 3 our cyclist model consists of a
human person and the involved pedals and pedal axes. The

Figure 7. Pose results overlaid with one of the four used cam-
eras. The pose is visualized by projecting the surface mesh onto
the image plane (images are cropped). The subject is sitting and
standing.

soft-constraints enforce the hands to stay on top of the han-
dle bar and the feet on the pedals. Furthermore, the pedals
are constrained to move along the trajectory of a circle by
forcing the endpoints of the pedal axes to be on a constant
position on the bike. In a lab environment we placed four

Figure 8. Simulation results of the cyclist in a virtual environment.

Figure 9. Close up of pedals and feet during tracking. Top:
With soft-constraints, slight deviations can occur during tracking.
Nonetheless, the cycling pattern is maintained. Bottom: Without
soft-constraints, the first frames are still stable, but after a couple
of frames, the tracking is instable and erroneous.

Jleft pedal —— left pedal ——
right pedal — right pedal -

Figure 10. 3D-Trajectories of the feet during tracking from two
perspective views. The circular path is clearly visible (units are in
millimeter).

cameras around a fitness bike and captured a sequence with
100 frames per second (fps). Figure 7 shows some pose re-
sults by projecting the surface mesh onto the image planes
(one of the four used cameras is shown). The bike is not



explicitly modeled in this set-up and though it causes prob-
lems during tracking, these ambiguities are overruled by the
given geometric prior constraints and the visible parts of the
legs. Therefore, tracking is successful. Figure 8 shows sim-
ulation results of the cyclist in a virtual environment from
another view-point than the used cameras.

Figure 9 shows close ups of the pedals and feet during
tracking, with (top) and without (bottom) the proposed soft-
constraints. Obviously, without soft-constraints the tracking
is unstable. The unsmoothed 3D-trajectories of the feet dur-
ing (successful) tracking are shown in Figure 10 from two
perspective views. The circular path is clearly visible.

4.2. The snowboarder

In this section, we will show results of a tracked snow-
boarder. Snowboarders have the property that both legs
are rigidly connected to a plane (the snowboard). Tracking
snowboarders and computing the forces acting on the joints
requires an explicit modeling of this special situation. To
achieve tracking of a snowboarder, we first generate a model
of an athlete and the snowboard, see Figure 4. The model
is designed as explained in Section 3. It is used for mark-
erless motion capture in an outdoor environment. Seven
VGA-color cameras are used to capture a multi-view image
stream with 100 frames per second, see Figure 6. Due to
summer during the experiments, the subject was standing
on a table-cloth and jumping around. The strong sun lead to
heavy shadows and the changing illumination made back-
ground subtraction methods unfeasible. The jumping and
turning patterns further lead to motion blur during tracking.

Figure 11. Pose results shown in one out of seven camera views.
The pose is visualized by projecting the surface mesh onto the
image plane.

Figure 11 shows some pose results in one camera. As
can be seen, the algorithm is able to capture the movements,
despite some inaccuracies in estimating the arm or hand po-
sitions.

Figure 12 demonstrates the impact of the proposed con-
straints. Without the constraints, the right boot is not prop-
erly placed on the snowboard and the tracking is more in-
stable (see top, left picture and the red curve on the right).

Figure 12. Impact of the proposed constraints: Left, top: without
additional constraints, the boot is not in the snowboard binding.
Left, bottom: with additional constraints, the boot is accurately
fitted on the snowboard. Right: Distance between boot and bind-
ing without constraints (red) and with constraints (black).

Figure 13. Simulation results in a virtual environment. For ani-
mation a slope and a time-dependent translation was added to syn-
thesize an appealing action sequence.

With the additional constraints, the fitting is much more ac-
curate (see bottom, left picture and the black curve). As er-
ror measure, the distance between the right boot and snow-
board binding is used.

Figure 13 shows some tracking results in a virtual envi-
ronment. Here a slope of 30 degrees is added and a trans-
lation during movement. The synthesized movement looks
remarkably realistic and allows to generate highly dynamic
action sequences, though the athlete was not really moving
in the MoCap setup.

S. Summary

In this paper we presented an approach for markerless
tracking of athletes interacting with sports equipment. We
analyzed two examples, namely a cyclist and a snowboarder
and showed that it is possible to restrict the degrees of free-
dom for the joint configurations on desired subspaces. The
movement restrictions are driven by geometric prior knowl-
edge on the sports gear and allow, e.g., to keep the feet fixed
on a snowboard or to maintain a cycling trajectory with the
feet. Instead of modeling the joint restrictions analytically,
as is often done in robotics, or by using a learning stage, as



often done in human motion tracking, we propose to model
these geometric restrictions via numerical constraints. This
allows us to drive the solution towards the desired subspace
without changing the basic, open chain pose estimation
algorithm used for markerless tracking of unconstrained
movements. The additional equations act as soft constraints
and guarantee a robust tracking for both, smooth motion
patterns (cycling) and patterns with fast contact (jumping).
The presented approach is not limited to snowboarding or
cycling. Extensions to many kinds of sporting activities in-
cluding equipment, e.g. rowing, golfing or weight lifting,
are straightforward within the proposed framework. Future
work will concentrate on a more flexible model for joint re-
strictions, e.g. by optimizing an unknown but fixed distance
or angle between the snowboard boots.

Acknowledgments

The authors would like to thank the reviewers and the
area chair for their valuable comments and hints. The re-
search was funded by the German Research Foundation
(DFG), the Max Planck Center VCC and the Cluster of Ex-
cellence on Multimodal Computing and Interaction M2C1.

References

[1] A. Balan, L. Sigal, M. Black, and H. Haussecker. Shining a
light on human pose: On shadows, shading and the estima-
tion of pose and shape. In Proc. International Conference on
Computer Vision, 2007. 1

[2] C. Bregler, J. Malik, and K. Pullen. Twist based acquisition
and tracking of animal and human kinetics. International
Journal of Computer Vision, 56(3):179-194, 2004. 1, 2

[3] M. Brubaker, D. J. Fleet, and A. Hertzmann. Physics-
based person tracking using simplified lower-body dynam-
ics. In Conference of Computer Vision and Pattern Recog-
nition (CVPR), Minnesota, 2007. IEEE Computer Society
Press. 1

[4] G. Caldwell, J. Hagberg, S. McCole, and L. Li. Lower ex-
tremity joint moments during uphill cycling. Journal of Ap-
plied Biomechanics, (15):166-181, 1999. 2

[5] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Seidel.
Free-viewpoint video of human actors. In Proc. SIGGRAPH
2003, pages 569-577, 2003. 1

[6] H. Cheng and Y. Yiu. Dynamics and control of redun-
dantly actuated parallel manipulators. Trans. on Mechatron-
ics, 8(4):483-491, 2003. 2

[7]1 S. Delorme, S. Tavoularis, and M. Lamontagne. Kinemat-
ics of the ankle joint complex in snowboarding. Journal of
Applied Biomechanics, 21(4):394—403, 2005. 2

[8] D. A. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, and D. Ra-
manan. Computational studies of human motion: part 1,
tracking and motion synthesis. Found. Trends. Comput.
Graph. Vis., 1(2-3):77-254, 2005. 1

[9] P.Fua, R. Plankers, and D. Thalmann. Tracking and model-
ing people in video sequences. Computer Vision and Image
Understanding, 81(3):285-302, 2001. 1

[10] J. Gallier. Geometric Methods and Applications For Com-
puter Science and Engineering. Springer-Verlag, New York
Inc., 2001. 2

[11] X. Gao, D. Dawson, and Z. Qu. On the robust control of two
manipulators holding a rigid object. Journal of Intelligent
and Robotic Systems, 8:107-119, 1992. 2

[12] D. Gavrila. The visual analysis of human movement: A sur-
vey. Computer Vision and Image Understanding, 73(1):82—
92,1999. 1

[13] L. Herda, R. Urtasun, and P. Fua. Implicit surface joint lim-
its to constrain video-based motion capture. In T. Pajdla and
J. Matas, editors, Proc. 8th European Conference on Com-
puter Vision, volume 3022 of Lecture Notes in Computer Sci-
ence, pages 405-418, Prague, 2004. Springer. 1

[14] D.Kim,J. Kang, and K. Lee. Robust tracking control design
for a 6 dof parallel manipulator. Journal of Robotics Systems,
17(10):527-547, 2000. 2

[15] T. B. Moeslund, A. Hilton, and V. Kriiger. A survey of ad-
vances in vision-based human motion capture and analysis.
Computer Vision and Image Understanding, 104(2):90-126,
2006. 1

[16] R. Murray, Z. Li, and S. Sastry. Mathematical Introduction
to Robotic Manipulation. CRC Press, Baton Rouge, 1994. 2,
3,4

[17] J. Ostrowski. Computing reduced equations for robotic sys-
tems with constraints and symmetries. Trans. on Robotics
and Automation, 15(1):111-123, 1999. 2

[18] C. Schmaltz, B. Rosenhahn, T. Brox, D. Cremers, J. Weick-
ert, L. Wietzke, and G. Sommer. Region-based pose tracking.
InJ. Marti, J. M. Benedi, A. M. Mendonga, and J. Serrat, ed-
itors, Pattern Recognition and Image Analysis, volume 4478
of LNCS, pages 56-63, Girona, Spain, June 2007. Springer.
3

[19] H. Sidenbladh, M. J. Black, and L. Sigal. Implicit proba-
bilistic models of human motion for synthesis and tracking.
In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, edi-
tors, Proc. European Conference on Computer Vision, vol-
ume 2353 of LNCS, pages 784-800. Springer, 2002. 1

[20] C. Sminchisescu and A. Jepson. Generative modeling for
continuous non-linearly embedded visual inference. In
Proc. International Conference on Machine Learning, 2004.
1

[21] C. Sminchisescu and B. Triggs. Estimating articulated hu-
man motion with covariance scaled sampling. International
Journal of Robotics Research, 22(6):371-391, 2003. 1

[22] R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with
Gaussian process dynamical models. In Proc. International
Conference on Computer Vision and Pattern Recognition,
pages 238-245. IEEE Computer Society Press, 2006. 1

[23] Y. Zweiri, L. Senevirante, and K. Althoefer. Modelling of
closed-chain manipulators on an excavator vehicle. Math-
ematical and Computer Modeling of Dynamical Systems,
12(4):329-345, 2003. 2



