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Abstract
We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the
product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the
language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry
of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing
representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their
Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map
processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment,
and it can be implemented efficiently with simple operations on sparse matrices.
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1. Introduction

Three-dimensional acquisition continues to reach new levels of
sophistication and is rapidly being incorporated into commercial
products ranging from the Microsoft Kinect for gaming to LIDAR
for autonomous cars and MRI for medical imaging. An essential
building block for application design in many of these domains
is fast and reliable recovery of 3D shape correspondences. This
problem arises in applications as diverse as character animation,
3D avatars, pose and style transfer, or texture mapping, to mention
a few.

A modern theme in shape correspondence involves the repre-
sentation of a map from one shape to another. Although the most
obvious representation maintains pairs of source and target points,
this is by no means the only option. Our paper is mainly related

to two frameworks developed for establishing correspondence be-
tween shapes: optimization on product manifolds and functional
maps.

The first class of methods represents the correspondence on the
Cartesian product of the two shapes. First methods of this type were
formulated using graph matching [ZWW*10]. Windheuser et al.
optimize in a product space [WSSC11], preserving important dif-
ferential geometric properties. A similar approach was applied in
[LRS*16] for 2D-to-3D matching. In [VLR*17], correspondence
is formulated as kernel density estimation on the product mani-
fold, interpreted as an alternating diffusion-sharpening process in
[VLB*17]. A product between more than two shapes is considered
in [CRA*17], but the resulting optimization problem is restricted to
yield only sparse correspondences.
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Soft maps [SNB*12] represent correspondence between shapes
as a distribution on the product manifold with prescribed marginals
reflecting area preservation. Non-convex objectives can be used
to incorporate metric information into optimization for soft
maps [Mém11, SPKS16], while other objectives on soft maps can
be understood as probabilistic relaxations of classical distortion
measures from differential geometry [SGB13, MCSK*17]. These
methods suffer from high complexity, usually quadratic in the num-
ber of shape vertices.

Functional maps [OCB*17] abandon pointwise correspondence,
instead modelling correspondences as linear operators between
spaces of functions. An approximation of such operators in a pair
of truncated orthogonal bases. One of the key innovations of this
framework is allowing bringing a new set of algebraic methods
into the domain of shape correspondence. Several follow-up works
tried to improve the framework by employing sparsity-based pri-
ors [PBB*13], manifold optimization [KBB*13, KGB16], non-
orthogonal [KBBV15] or localized [CSBK17, MRCB18] bases,
coupled optimization over the forward and inverse maps [ERGB16,
EBC17, HO17], combination of functional maps with metric-based
approaches [ADK16, SK17] and kernelization [WGBS18]. Recent
works of [NO17, NMR*18] considered functional algebra (function
point-wise multiplications together with addition). Generalizations
addressing the settings of multiple shapes [HWG14, KGB16], par-
tial correspondence [RCB*17, LRB*16] and cluttered correspon-
dence [CRM*16] have been proposed as well. Most recently, func-
tional maps have also been used in conjunction with intrinsic deep
learning methods [LRR*17]. For a comprehensive survey of func-
tional maps and related techniques, we refer the reader to [OCB*17].

1.1. Motivation and contribution

In this paper, we advocate posing correspondence—and understand-
ing relationships between the existing representations above—in
terms of functions on the product manifold of the source and target.
A motivating observation is that functional maps approximate a dis-
tribution representing the correspondence in the product space as a
linear combination of separable tensor-product basis functions. This
distribution, however, is supported on a manifold with a dimension
lower than that of the product space: For a pair of two-dimensional
shapes, the distribution is supported on a two-dimensional manifold
embedded in a four-dimensional space. Consequently, most of the
support of the basis functions is wasted on ‘empty’ regions of the
product space. Localized bases on the individual domains improve
this situation, but still most of their support is wasted.

We show how point-to-point maps, functional maps and soft maps
all can be understood as (signed) measures on the product and
how these representations might be converted to one another. More
importantly, this viewpoint suggests new techniques to represent and
approximate mappings directly on the product, e.g. by building a
basis from Eigenfunctions of the product Laplace–Beltrami operator
potentially after filtering undesirable matches.

Our theoretical contributions have practical bearing on the design
of correspondence techniques. After discretizing product manifolds
and their Laplace–Beltrami operators, we consider map design and
processing problems among 2D and 3D shapes. Reasoning about the

product manifold leads to compact, understandable bases for map
design that focus resolution in the part of the product most relevant
to a correspondence task. One of such means is the construction
of inseparable bases. To this end, we propose to compute localized
harmonics on the product manifold, and discuss a numerical scheme
that keeps the complexity of such a computation feasible and, in
particular cases, comparable to that of the construction of a separable
localized basis. We finally showcase our framework applied to the
task of map refinement.

2. Background

2.1. Manifolds

We model shapes as Riemannian d-manifolds (M, gM) (possibly
with boundary ∂M) equipped with area elements dx induced by the
standard metricgM; we do not restrict our focus to surfaces but rather
allowM andN to have different intrinsic dimensions. We denote by
TxM the tangent plane at x ∈ M, modelling the manifold locally
as a Euclidean space. Given two scalar functions f, g : M → R

belonging to an appropriate functional space F(M), we use the
standard manifold inner product 〈f, g〉M = ∫

M f (x)g(x) dx.

In analogy to the Laplace operator in flat spaces, the posi-
tive semidefinite Laplace–Beltrami (LB) operator �M equips us
with the tools to extend Fourier analysis to manifolds. The man-
ifold Laplacian admits an Eigendecomposition �Mφi = λiφi for
i ≥ 1, with real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . and Eigenfunc-
tions {φi}i≥1 forming an orthonormal basis ofL2(M) = {f : M →
R | 〈f, f 〉M < ∞}. Any function f ∈ L2(M) can thus be repre-
sented via the Fourier-like series expansion

f (x) =
∑
i≥1

〈f, φi〉Mφi(x). (1)

2.2. Product manifolds

Given two Riemannian manifolds (M, gM), (N , gN ) of dimension
dM and dN with metric tensors gM, gN , respectively, their prod-
uct (M × N , gM ⊕ gN ) is a manifold of dimension dM + dN ,

where gM ⊕ gN = (
gM 0
0 gN

) is the direct sum of the individ-

ual metric tensors [GP10], inducing the area element da = dx dy.
By this definition of product, to each point (x, y) ∈ M × N is
attached a tangent space derived by the canonical isomorphism
T(x,y)M × N = TxM × TyN (see [Tu11], ex. 8.7]). For tangent
vectors ξ, η ∈ TxM and ζ, μ ∈ TyN , the inner product 〈·, ·〉 of
(ξ, ζ ), (η,μ) ∈ T(x,y)M × N is given by

〈(ξ, ζ ), (η, μ)〉T(x,y)M×N = 〈ξ, η〉TxM + 〈ζ, μ〉TyN . (2)

Now let f ∈ F(M), g ∈ F(N ) for some functional space F ,
and denote by f ∧ g the outer product of f and g defined by the
mapping

f ∧ g : (x, y) �→ f (x)g(y). (3)
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The LB operator �M×N obeys the (outer) product rule identity
[Cha84]:

�M×N (f ∧ g) = (�Mf ) ∧ g + f ∧ (�Ng). (4)

Given Eigenvectors (φ,ψ) with corresponding Eigenvalues (α, β)
satisfying �Mφ = αφ and �Nψ = βψ , application of the product
rule yields

�M×N (φ ∧ ψ) = (�Mφ) ∧ ψ + φ ∧ (�Nψ)

= (α + β)(φ ∧ ψ). (5)

This observation leads to a characterization of LB Eigenvalues for
product manifolds:

Theorem 1 [BGM71, Proposition A.II.3]. Let ξ be an Eigenfunc-
tion of the product LB operator �M×N with the corresponding
Eigenvalue γ . Then, there exist some Eigenfunctions φ of �M and
ψ of �N with the Eigenvalues α and β, respectively, such that
ξ = φ ∧ ψ and γ = α + β.

It is also easy to check that the set of Eigenfunctions {φi ∧ ψj }i,j
is orthogonal, since:∫

M×N
(φi ∧ ψj )(φk ∧ ψ
) da =

∫
M×N

φi(x)ψj (y)φk(x)ψ
(y) da

=
∫
M
φiφkdx

∫
N
ψjψ
dy (6)

= δikδj
 =
{

1 (i = k) and (j = 
);
0 otherwise,

(7)

where δij is the Kronecker delta.

2.3. Soft maps

A soft map μ̃ : M → Prob(N ) is a function assigning a probability
measure over N to each point in M [SNB*12]. Soft maps can be
equivalently represented by their densities, i.e. non-negative scalar
functions μ : M × N → [0, 1] defined on the product manifold
M × N satisfying μ̃(x)(B) = ∫

B⊆N μ(x, y) dy for all x ∈ M and
all measurable subsets B ⊆ N .

As a particular case, a bijection π̃ : M → N induces a soft map
μ̃ by requiring, for all x ∈ M, that μ̃(x)(B) = 1 if and only if
π̃ (x) ∈ B ⊆ N , i.e. the image μ̃(x) is a unit Dirac mass δπ̃ (x) centred
at π̃(x).

2.4. Functional maps

A functional map T associated to a map π̃ : M → N is a linear
mapping T : F(N ) → F(M) defined as [OBCS*12]:

T (g) = g ◦ π̃ . (8)

Note how this construction allows to move from identifying a map
between manifolds to identifying a linear operator between Hilbert
spaces. The functional map T admits a matrix representation with

(a) (b)

Figure 1: Discretization of the Laplace–Beltrami operator on a
cycle graph (a) and on a triangle mesh (b) for interior (green) and
boundary edges (red). We also show the hat basis function in (a).

respect to orthogonal bases {φi}i≥1, {ψj }j≥1 on F(M) and F(N ),
respectively, with coefficients C = (cij ) determined as follows:

T (g) =
∑
ij≥1

〈ψj , g〉N 〈φi, T (ψj )〉M︸ ︷︷ ︸
cij

φi . (9)

3. Discretization

We show how to discretize the main quantities involved in our
framework on 1D and 2D manifolds, as well as their products.

3.1. 1D shapes (curves)

We model 1D manifolds as closed contours with circular topology
(no boundary), discretized as 2-regular cycle graphs G = (N , E)
with n ≥ 3 nodes N and as many edges E . The LB operator � is
discretized using standard FEM with linear hat functions; in the hat
basis, scalar functions on G are approximated piecewise-linearly on
the edges. The Laplacian takes the form of a n× n sparse matrix
L = S−1W, where:

wij =

⎧⎪⎨
⎪⎩

− 1
‖eij ‖ eij ∈ E

−∑
i �=k wik i = j

0 otherwise

(10)

sij =

⎧⎪⎨
⎪⎩

1
6 ‖eij‖ eij ∈ E
1
3

∑
k∈N (i) ‖eik‖ i = j

0 otherwise

(11)

and the notation is according to Figure 1, with N (i) being the
set of the neighbours of node i. In our tests, we use non-lumped
masses sij ; in applications requiring additional efficiency, lumped
mass matrices diag(ŝii) can be used by setting ŝii = ∑

j sij .

The product of two boundary-free 1D manifolds M,N is a 2D
manifold (a surface)M × N with torus topology. For the discretiza-
tion of the Laplacian on M × N , we appeal to the following:

Theorem 2 (Discrete product Laplacian). Let M, N be 1D man-
ifolds with no boundary, discretized as 2-regular cycle graphs, and
let SM,WM and SN ,WN be the mass and stiffness matrices for�M
and �N , respectively, obtained via FEM with respect to piecewise

c© 2019 The Authors
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linear (hat) basis functions. Then,

SM×N = SM ⊗ SN (12)

WM×N = WM ⊗ SN + SM ⊗ WN (13)

are the mass and stiffness matrices for the product manifold Lapla-
cian �M×N with respect to piecewise bilinear basis functions, de-
fined on a quad meshing of the toric surface M × N . Here, ⊗
denotes the Kronecker product.

Proof. See the Appendix.

Corollary 1. The LB operator �M×N is discretized as:

LM×N = LM ⊗ IN + IM ⊗ LN , (14)

where IM, IN are nM × nM and nN × nN identity matrices.

Proof. See the Appendix.

The discretization of �M×N does not require the explicit con-
struction of a quad mesh embedded in R

3; the toric shapes shown
in these pages only serve visualization purposes. Further, the dis-
cretization (14) is consistent with the spectral decomposition identi-
ties (5); see [Fie73] and [HIK11, Proposition 33.6] for additional dis-
cussion.

3.2. 2D shapes (surfaces)

We model 2D surfaces as manifold triangle meshes (V, E,F) with
n vertices V connected by edges E = Ei ∪ Eb (where Ei and Eb are
interior and boundary edges, respectively) and triangle faces F .
In analogy to the 1D case, the discretization of the LB operator
is obtained using FEM with piecewise linear basis functions on
triangle elements [Duf59], taking the form of an n× n sparse matrix
L = S−1W, where

wij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(cotαij + cotβij )/2 ij ∈ Ei

(cotαij )/2 ij ∈ Eb

− ∑
k �=i wik i = j

0 otherwise, and

(15)

sij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(A(Thij ) + A(Tijk))/12 ij ∈ Ei

A(Tijk)/12 ij ∈ Eb

1
6

∑
k∈N (i) A(Tk) i = j

0 otherwise.

(16)

Here, A(T ) denotes the area of triangle T and N (i) is the set of the
neighbours of vertex i; see Figure 1 for notation.

Given two 2D manifoldsM andN , their product is a 4D manifold
M × N . The LB operator on M × N is discretized similarly to the
lower dimensional case:

Corollary 2. Let M, N be surfaces discretized as triangle meshes,
and let SM,WM and SN ,WN be the mass and stiffness matrices for

(a) (b)

Figure 2: The Cartesian product of two edge elements is a quad
(a), while taking the product of two triangles yields a 4D geometric
structure called a 3-3 (or triangular) duoprism [Cox48] visualized
with a Schlegel diagram [Sch83] (b). Note that all these objects are
polytopes (i.e. they have faces), not simple graphs.

�M and�N . Then, Equations (12)–(14) provide a valid discretiza-
tion of the LB operator �M×N . This discretization is equivalent to
the application of FEM on a 3-3 duoprism tessellation of the 4D
product manifold M × N using multi-linear basis functions.

Proof. See the Appendix.

We emphasize that, as a consequence of the Corollary, the compu-
tation of the product Laplacian�M×N does not require constructing
a high-dimensional embedding for M × N , thus avoiding cumber-
some manipulation of duoprismic product elements (see Figure 2
for an illustration of these elements).

Finally, scalar functions on a manifold M are represented by
n-dimensional vectors f = (f (x1), . . . , f (xn))�, where x1, . . . , xn
denote graph nodes and mesh vertices in the 1D and 2D case, re-
spectively. Inner products 〈f, g〉M are discretized as f�Sg, where
S is the mass matrix. On product manifolds, scalar functions are
represented as nM × nN matrices F, usually deriving from an outer
product f ∧ g discretized as fg�; inner products are computed as
vec(F)�S vec(G) (vec(F) stacks the columns of F into a vector).

4. Map Representation on the Product Manifold

4.1. Soft functional maps

It will be instrumental for our purposes to introduce a ‘soft’ general-
ization of functional maps. For soft maps μ̃ : M → Prob(N ) with
associated density μ ∈ L1(M × N ), we define a soft functional
map Tμ : F(N ) → F(M) as the expectation

Tμ(g)(x) =
∫
N
g(y)μ(x, y) dy. (17)

It is easy to check that Tμ is linear in g, hence admitting a matrix
representation with coefficients defined as in (9); in particular, in
the standard basis one obtains a stochastic matrix with each row
summing to 1. If the densityμ encodes a non-soft map (i.e. whenever
μ(x, ·) is concentrated at one point), the definition (17) boils down
to the original definition (8), T (g)(x) = ∫

N g(y) δπ̃ (x)(y) dy = (g ◦
π̃ )(x), where the last equivalence stems from the sampling property
of Dirac deltas.

We begin our discussion by deriving a connection between
functional map matrices and expanding soft map measures in the
Laplace–Beltrami basis:

c© 2019 The Authors
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Theorem 3 (Equivalence). Let Tμ : F(N ) → F(M) be a soft func-
tional map (17) with underlying density μ ∈ L1(M × N ). Further,
let cij = 〈φi, Tμ(ψj )〉M be the matrix coefficients of Tμ in the or-
thogonal bases {φi}i≥1, {ψj }j≥1, and let pij = 〈φi ∧ ψj , μ〉M×N be
the expansion coefficients of μ in the product basis {φi ∧ ψj }i,j ,
such that μ = ∑

ij (φi ∧ ψj )pij . Then, cij = pij for all i, j .

Proof. The functional map matrix coefficients are computed
as:

cij = 〈φi, Tμ(ψj )〉M =
∫
M
φi(x)Tμ(ψj )(x) dx (18)

=
∫
M
φi(x)

∫
N
ψj (y)μ(x, y) dy dx (19)

=
∫
M×N

φi(x)ψj (y)μ(x, y) da, (20)

while the expansion coefficients of μ are given by

pij = 〈φi ∧ ψj , μ〉M×N =
∫
M×N

φi(x)ψj (y)μ(x, y) da. (21)

Comparing Equations (20) and (21), we see that cij = pij for any
choice of i, j ≥ 1. �

Note that Theorem 3 applies to any choice of orthogonal bases
{φi}i≥1 ∈ F(M), {ψj }j≥1 ∈ F(N ).

4.2. Spectral representation

Consider the order-k, band-limited approximation of μ:

μ ≈
k∑

=1

ξ
p
, (22)

where each ξ
 is an Eigenfunction of �M×N , which uniquely iden-
tifies, via (5), a pair of Eigenfunctions φi, ψj on M and N , respec-
tively. According to Theorem 3, the expansion coefficients p
 are
exactly those appearing in the functional map matrix C, when this
is expressed in the Laplacian Eigenbases of M and N as originally
proposed by Ovsjanikov et al. [OBCS*12]. There is, however, a
crucial difference in the way the two sets of coefficients are stored.
We come to the following observation:

4.3. Truncation

The product Eigenfunctions ξ
 appearing in the summation (22) are
associated to the product Eigenvalues αi + βj , which are ordered
non-decreasingly. In contrast, in [OBCS*12] it was proposed to trun-
cate the two summations in (9) to i = 1, . . . , kM and j = 1, . . . , kN ,
where indices i and j follow the non-decreasing order of the Eigen-
value sequences αi and βj separately.

We see that, due to the different ordering, the Eigenfunc-
tions φi, ψj involved in the approximation (22) of μ are not

(a) (b) (c)

Figure 3: The ground truth map (here the identity) between two
shapes approximated according to (a) the standard functional map
representation, (b) the (separable) LB Eigenfunctions of the product
manifold, ordered according to the product Eigenvalues and (c) the
(inseparable) localized harmonics on the product manifold. All three
cases use the same amount of coefficients. The black curve in each
matrix represents the maximum value for each row. In this example,
the product manifold is a flat torus, represented in the parametric
domain in (a), (b) and (c).

necessarily all those involved in the construction of C (9), assum-
ing k = kMkN . In the former case, we operate with a reduced ba-
sis directly on M × N , while in the latter case we consider two
reduced bases on M and N independently. This has direct impli-
cations on the quality of the approximated maps, as illustrated in
Figure 3.

4.4. Relation to finite sections

The functional map representation was originally introduced in
[OBCS*12] as a convenient language for solving map inference
problems of the type [OCB*17]:

CA = B, (23)

where matrices B = (〈φi, fj 〉M),A = (〈ψi, gj 〉N ) contain Fourier
coefficients of a given set of corresponding ‘probe’ functions
fj , gj , j = 1, . . . , q on M and N , respectively (typically, descrip-
tors are used). In the problem above, one is asked to estimate the
functional map C.

By truncating the matrix C to the left upper kM × kN submatrix
(as in [OBCS*12]), one obtains a finite-dimensional approximation
of the infinite linear system (23). This procedure, known as the finite
section method [GRS10], does not always guarantee convergence,
and a series of remedies using rectangular sections (kM �= kN ) have
been proposed in the literature (see [GO17] for a discussion pertain-
ing to functional maps).

Recall that, according to Theorem 3, the matrix elements cij
correspond to the expansion coefficients pij appearing in (22).
Thus, due to the different ordering of the pij ’s, the approxima-
tion carried out in (22) can be regarded as an ‘irregular’ finite
section (see Figure 4, right); in contrast with purely algebraic ap-
proaches considering general systems of linear equations such as
(23), our approach carries now a geometric meaning in that the
shape of the section is determined by the geometry of the product
manifold.

c© 2019 The Authors
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Figure 4: Left: The k = 100 frequencies involved in the construc-
tion of a 10 × 10 functional map matrix C correspond to an irregular
sampling of the Laplacian spectrum of the product manifold. Right:
In turn, only some of the coefficients cij of matrix C appear among
the first k expansion coefficients pij of the map in the product Eigen-
basis. Here C is framed in black, while the blue dots identify the
first k coefficients pij .

5. Spectral Map Processing

In this paper, we consider curves and surfaces as our shapes. Despite
their different intrinsic dimensions, our framework applies to both
without specific adjustment.

5.1. Localized spectral encoding

Theorem 3 establishes the equivalence between the soft functional
map Tμ representation coefficients cij in the bases {φi}i≥1 ⊆ F(M)
and {ψj }j≥1 ⊆ F(N ) and the coefficients p
 of the underlying den-
sityμ Fourier series (22) in the Eigenbasis {ξ
}
≥1 ⊆ F(M × N ) of
the product manifold Laplacian �M×N . This equivalence directly
stems from ξ
’s having the separable form φi ∧ ψj , by virtue of
Theorem 1. It may be advantageous, however, to consider different
orthonormal bases on M × N that are not necessarily separable.
In particular, we observe that μ tends to be localized on the prod-
uct manifold M × N (see Figure 3), and thus the standard outer
product basis is extremely wasteful as it is supported on the entire
M × N .

A better alternative is the use of localized manifold harmonics
[CSBK17, MRCB18]. Assume that we are given a rough indication

of the support of μ (for example, coming from a shape matching
algorithm) in the form of a step potential function

V (x, y) =
{
ν μ(x, y) ≈ 0;
0 otherwise.

(24)

where ν ≥ 1. Then, the variational problem

min
ξ1,...,ξk

k∑

=1

∫
M×N

(‖∇M×N ξ
‖2
gM⊕gN + V ξ 2




)
da

s.t. 〈ξ
, ξ
′ 〉M×N = δ
,
′ (25)

produces a set of orthonormal functions denoted by ξ̂1, . . . , ξ̂k that,
for a sufficiently large value of ν, are also localized in the support
of V . Note that this new basis {ξ̂
}k
=1 is no longer separable, i.e.
the functions ξ̂ are not in general expressible as outer products of
functions defined on the originating domains. See Figures 5 and 6
for an illustration, and Figures 7 and 8 for practical examples.

The basis {ξ̂
}k
=1 turns out to be the Eigenbasis of the Hamilto-
nian operator [CSBK17] H = �M×N + V and can be computed
by the Eigendecomposition of the product Laplacian matrix with
the addition of diagonal potential. The size of such problem can be
huge (if the shapes are discretized with n ∼ 103 points, the product
Laplacian matrix has size n2 × n2 = 106 × 106; see Theorem 2),
and despite its extreme sparsity, computationally expensive.

As an alternative, we consider a patch P ⊂ M × N of the prod-
uct manifold with boundary ∂P corresponding to μ(x, y) > 0, and
define the Eigenproblem

�P ξ̄
(x, y) = γ
ξ̄
(x, y) (x, y) ∈ int(P)
ξ̄
(x, y) = 0 (x, y) ∈ ∂P (26)

of the product patch Laplacian �P with homogeneous Dirichlet
boundary conditions. In practice, this is implemented by construct-
ing the stiffness and mass matrices Wint(P),Sint(P) by selecting the
rows and columns of WM×N , SM×N that correspond to the ver-
tices in int(P). A generalized Eigenproblem using Wint(P), Sint(P)

is solved, yielding Eigenfunctions ξ̄int(P) defined on int(P); the fi-
nal Eigenfunctions ξ̄ on the entire patch P are obtained by setting
ξ̄ (x) = ξint(P) for x ∈ int(P) and ξ̄ (x) = 0 for x ∈ ∂P .

Figure 5: Basis functions on the product manifold (here visualized as a torus embedded in R
3) of two 1D shapes. We plot a few standard LB

Eigenfunctions (top row) and localized manifold harmonics (bottom row). Here and in the following, we use the present colour scheme (blue
denotes small values, red large values, white is zero).
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Figure 6: Projecting the basis functions on the product manifold
of horse and elephant back onto the factor shapes (here only the
horse projection is visualized). Top row: Projection of three product
LB Eigenfunctions, which correspond exactly to three standard LB
Eigenfunctions on the horse shape. Bottom row: Projection of three
localized harmonics; these projections do not correspond to any
LB Eigenfunction on the horse. Still, note how they capture the
geometric features of the underlying shape.

If the patch is selected in such a way that its size scales as
O(n) rather than O(n2) in the size of the shapes (in practice,
this can be achieved by taking a fixed-size band around the ini-
tial correspondence), the computation of the localized basis {ξ̄
}k
=1

has the same complexity as Eigendecomposition of the individual
Laplacians �M,�N . An example application of this construction
is described next.

Despite the computational gains of working with patches P ⊂
M × N , computing the Eigendecomposition of the full Hamilto-
nian�M×N + V may still be useful in certain settings. Note, in par-
ticular, that one may define a soft potential V (x, y) = 1 − μ(x, y)
[MRCB18] by directly reflecting the reliability of the under-
lying map in terms of its density. Further, it is also possible
to define a patch Hamiltonian �P + V |P with soft potential if
desired.

5.2. Example: Map refinement

As an illustrative application of our framework, we propose a sim-
ple procedure for map refinement: Given some initial, possibly
sparse and noisy correspondence, the task is to produce a dense,
denoised map.

We follow an iterative approach. In each iteration k, the
map is represented as a density μ(k) : M × N → [0, 1]. This
density is interpreted as a heat distribution throughout the
iterations.

At the k-th iteration, a diffusion process is initialized with
u

(k)
t=0 := μ(k) and solved for a given diffusion time T (k) on a patch

P (k). The initial patch can be given or be the entire product mani-
fold. The diffusion process has the effect of spreading correct corre-
spondence information and therefore suppress mismatches, result-
ing in an effective map denoising approach akin to diffusion-based
smoothing from image processing [Wit83, PM90]. The final heat
distribution u(k)

T is thresholded to define a patch P (k) ⊂ M × N ,
where the correct correspondence is likely to be contained, with
likelihood expressed in terms of the diffused density. We then re-
cover a bijective (non-soft) density μ(k+1) from u

(k)
T by solving a

linear assignment problem [Ber98] restricted to region P (k), and use
it to initialize the next iteration.

These blur-and-sharpen steps are iterated until convergence while
decreasing T (k), resulting in a sequence P (0) ⊇ · · · ⊇ P (k) ⊇ P (k+1).
In practice, we decrease T (k) logarithmically across iterations. At
k = 0, the density u(0) is the given input, e.g. a mixture of Dirac
deltas or a soft map.

The diffusion step in each iteration is realized via the spectral
decomposition of the product patch Laplacian �P with Dirichlet
boundary conditions on P = P (k) (26); for p, q ∈ M × N :

uT (p) =
∫
M×N

hT (p, q)u0(q)dq (27)

hT (p, q) =
∑

≥0

e−T γ
 ξ̄
(p)ξ̄
(q), (28)

Figure 7: Product space approximation of the correspondence between one-dimensional shapes with k = 100 basis functions. Bases con-
structed on bands of different size (1%, 5%, 25% and 90% of the total product manifold area) around the true correspondence are shown.
Separable basis (FM) is shown as a reference. Left: accuracy of the correspondence increases as the product space basis becomes more
localized. Right (top row): image of a delta function by the functional maps. Right (bottom row): True correspondence (curve) and its
approximation in inseparable product space bases with a varying degree of localization. The product manifold is depicted as a torus.
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Figure 8: Map approximation between surfaces with k = 500 basis
functions on bands of different size (10% and 15% of the total 4D
product manifold area) around the true correspondence. We also
show images on the horse of delta functions supported at three
points (red, green, blue) on the elephant. Here, the functional map
(FM) was calculated using 30 × 30 = 900 basis functions.

where hT is the heat kernel at time T on the product manifold
M × N . Throughout the iterations we keep the number of Eigen-
functions for the approximation (28) constant.

The refinement process described above simultaneously improves
the correspondence and reduces the support of the density around
the most likely bijective map. This is similar in spirit to the kernel
matching approaches of [VLR*17, VLB*17], however, with the
additional step of ‘carving out’ the relevant portion P ⊂ M × N
throughout the iterations.

Illustrative results are reported qualitatively in Figure 9 and quan-
titatively in Figure 10.

6. Discussion and Conclusions

We introduced a novel perspective on map representation and pro-
cessing, where pointwise, functional and soft maps can be under-
stood as densities on the product of the input shapes. We showed how
to discretize the Laplace-Beltrami operator on the product manifold
and proposed the adoption of (inseparable) localized harmonics for
compactly encoding correspondences while ensuring minimal en-
ergy dispersion, i.e. the resulting harmonics are not ‘wasted’ on
portions of the product manifold that carry no information on the
map to be encoded. Our theoretical and applied contributions sug-
gest a new perspective on properties of the correspondence manifold
as well as new ways to pose algorithmic design for map inference
and processing.

6.1. Limitations

Perhaps the main limitation of our framework lies in the scalabil-
ity of our current numerical scheme. While we showed that one
can reduce the computational complexity to O(n) by appropriately

Figure 9: Example of map refinement. We show the input sparse
correspondence above and the recovered dense map below. The
heatmap on the bottom right encodes geodesic error of the recovered
correspondence.

selecting a localization region, in practical applications involving
very noisy maps where the localization region tends to be spread
out across the entire product manifold, the advantage might be less
evident. For this reason, considering as a possible extension higher
dimensional products to encode cycle-consistent maps in shape col-
lections may soon become prohibitive. With the current approach
we trade off scalability for accuracy: Maps are encoded much more
precisely in the localized basis, but this requires the explicit com-
putation of inseparable basis functions that do not admit an efficient
representation in terms of outer products. As a possible remedy, an
efficient solution to the Eigenproblem might be sought via approx-
imation methods similar to [NBH18]. A second limitation is in our
map refinement scheme, which has limited resilience to particularly
noisy input. We presented our algorithm as an illustrative tool for
map denoising, but more effective schemes operating on the product
manifold are likely possible.

6.2. Future work

From an investigative standpoint, it might be worth considering a
notion of optimal transport between maps as a means of exploring
the space of maps between given shapes, a natural choice given our
modelling of maps as measures on a manifold. Related constructions
could extend distortion measures like the Dirichlet energy [Bre03,
SGB13, Lav17] to the functional regime.

Another particularly interesting direction will be to consider gen-
eral graphs (as opposed to manifolds) and their products in the
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Figure 10: Sensitivity of map refinement to heat diffusion times and
noisy input. The legend reports diffusion time ranges (tmax, tmin);
within each range, time is decreased logarithmically over itera-
tions. Left: The input is a sparse correspondence of 10% of correct
matches. We see that high diffusion times are detrimental due to
the excessive spread of correspondence information. Right: The in-
put sparse correspondence is further corrupted with 30% random
mismatches.

context of network analysis, machine learning and applications.
While many of our results may be directly translated to graphs,
the lack of differentiable structure poses new theoretical challenges
and at the same time provides a richer spectrum of possibilities; for
example, several different notions of product exist between graphs
[HIK11].

Finally, a promising direction is the introduction of product spaces
within geometric deep learning [BBL*17] pipelines, where the data
is in the form of signals defined on top of a manifold. Our proposed
discretization of the (product) Laplace–Beltrami operator, as well
as its spectral decomposition, can be directly employed in such
pipelines, enabling new forms of structured prediction in a range of
challenging problems in vision and graphics.
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Appendix A: Proofs

We provide proofs for the main propositions of the paper.

Proof of Theorem 2. Following standard FEM, we discretize the
Poisson equation �M×Nf = g via the weak formulation

〈�M×Nf,Hj 〉 = 〈g,Hj 〉, (A.1)

where functions are expressed in the hat basis {Hj : M × N → R},
and are thus approximated piecewise-linearly via the expansion
f (x) ≈ ∑n

i=1 f (vi)hi(x). The left-hand side of (A.1) can be written
as

〈�f,Hj 〉 = −〈∇f,∇Hj 〉 = −
∑
i

f (vi) 〈∇Hi,∇Hj 〉︸ ︷︷ ︸
wij

, (A.2)

where wij are elements of the stiffness matrix W. The right-hand
side of (A.1) can be written as

〈g,Hj 〉 =
〈∑

i

g(vi)Hi(x), Hj

〉
=

∑
i

g(vi) 〈Hi,Hj 〉︸ ︷︷ ︸
sij

, (A.3)

where sij are elements of the mass matrix S.

The Cartesian product of the two graphs discretizing M and
N has grid topology, as illustrated in Figure A1, and the resulting
bilinear hat basis functions are expressed via the outer productHe =
hj ∧ hq . We can then compute the mass values (refer to the Figure
for the color notation):

see = 〈He,He〉 = 〈hj ∧ hq, hj ∧ hq〉

=
∫
Qabde∪Qbcef ∪Qdegh∪Qefhi

hj (x)hq (y)hj (x)hq (y)dxdy

=
∫
Eijk

hj (x)hj (x)dx
∫
Epqr

hq (y)hq (y)dy

= sjjsqq (A.4)

Figure A1: Left: The product of two closed contours discretized as
cycle graphs (in blue and red) is a quad mesh with toric topology
(in grey). Uniform edge lengths are used for illustration purposes.
Right: Two overlapping bilinear hats He and Hf . On the quad
element Qefhi (marked in red), there is non-zero overlap, hence it
contributes to the computation of mass and stiffness values.
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sae = 〈Ha,He〉 = 〈hi ∧ hr, hj ∧ hq〉

=
∫
Qabde

hi(x)hr (y)hj (x)hq (y)dxdy

=
∫
Eij

hi(x)hj (x)dx
∫
Eqr

hr (y)hq (y)dy

= sij sqr (A.5)

sde = 〈Hd,He〉 = 〈hi ∧ hq, hj ∧ hq〉

=
∫
Qabde∪Qdegh

hi(x)hq (y)hj (x)hq (y)dxdy

=
∫
Eij

hi(x)hj (x)dx
∫
Epqr

hq (y)hq (y)dy.

= sijsqq (A.6)

Similarly, the stiffness integrals read:

wee = 〈∇He,∇He〉 = 〈∇hj ∧ hq,∇hj ∧ hq〉
= 〈∇hjhq,∇hjhq〉 + 2〈hj∇hq,∇hjhq〉 + 〈hj∇hq, hj∇hq〉

=
∫
Qabde∪Qbcef ∪Qdegh∪Qefhi

〈∇hj (x)hq (y),∇hj (x)hq (y)〉dxdy

+ · · · =
∫
Qabde∪Qbcef ∪Qdegh∪Qefhi

hq (y)hq (y)〈∇hj (x),∇hj (x)〉

× dxdy + · · · =
∫
Eijk

〈∇hj (x),∇hj (x)〉dx
∫
Epqr

hq (y)

×hq (y)dy + · · · + · · · = wjjsqq + sjjwqq (A.7)

wae = 〈∇Ha,∇He〉 = 〈∇hi ∧ hr,∇hj ∧ hq〉
= 〈∇hihr ,∇hjhq〉 + 〈hi∇hr, hj∇hq〉
= wijsqr + sijwqr (A.8)

wde = 〈∇Hd,∇He〉 = 〈∇hi ∧ hq,∇hj ∧ hq〉
= 〈∇hihq,∇hjhq〉 + 〈hi∇hq, hj∇hq〉
= wijsqq + sijwqq, (A.9)

where we applied the outer product rule for the gradient operator,
and used the fact that 〈∇f ,∇g〉 = 0 for any pair of functions on the
two cycle graphs. Note the integrals sae and wae are non-zero even
if nodes a and e are not connected in the product graph.

In matrix notation, formulas (A.4)–(A.9) can be succinctly written
as:

S = S ⊗ S

W = W ⊗ S + S ⊗ W,

completing the proof. �

Proof of Corollary 1. The proof is straightforward and follows
from substituting the expressions (12), (13) into the general formula
L = S−1W:

LM×N = S−1
M×N WM×N

= (SM ⊗ SN )−1(WM ⊗ SN + SM ⊗ WN )

= (S−1
M ⊗ S−1

N )(WM ⊗ SN ) + (S−1
M ⊗ S−1

N )(SM ⊗ WN )

= (S−1
MWM) ⊗ (S−1

N SN ) + (S−1
MSM) ⊗ (S−1

N WN )

= LM ⊗ IN + IM ⊗ LN . �

Proof of Corollary 2. Since triangular (3-3) duoprisms are, by
definition, the Cartesian product of two triangles, we can define
a multi-linear basis function on the product complex as the outer
product of two standard hats defined on triangle meshes. We are now
in the same setting as the lower dimensional case, and in particular
Equations (A.4)–(A.9) remain valid. �
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[LRB*16] LITANY O., RODOLÀ E., BRONSTEIN A. M., BRONSTEIN M.
M., CREMERS D.: Non-rigid puzzles. Computer Graphics Forum
35, 5 (2016), 135–143.

[LRR*17] LITANY O., REMEZ T., RODOLÀ E., BRONSTEIN A. M.,
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E. Rodolà et al. / Functional Maps Representation on Product Manifolds 689

[Sch83] SCHLEGEL V.: Theorie der homogen zusammengesetzten
Raumgebilde. Nova Acta, Ksl. Leop.-Carol. Deutsche Akademie
der Naturforscher, Band XLIV, Nr. 4, Druck von E. Blochmann
und Sohn, Dresden, 1883.

[SGB13] SOLOMON J., GUIBAS L., BUTSCHER A.: Dirichlet energy for
analysis and synthesis of soft maps. Computer Graphics Forum
32, 5 (2013), 197–206.

[SK17] SHAMAI G., KIMMEL R.: Geodesic distance descriptors. In
Proceedings/CVPR (Honolulu, 2017), IEEE.

[SNB*12] SOLOMON J., NGUYEN A., BUTSCHER A., BEN-CHEN M.,
GUIBAS L.: Soft maps between surfaces. Computer Graphics Fo-
rum 31, 5 (2012), 1617–1626.
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