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Abstract

Phase shift methods have proven to be very robust and accurate for photo-

metric 3D reconstruction. One problem of these approaches is the existence

of ambiguities arising from the periodicity of the fringe patterns. While sev-

eral techniques for disambiguation exist, all of them require the projection of a

significant number of additional patterns. For instance, a global Gray coding

sequence or supplemental sinusoidal patterns of different periods are commonly

used to complement the basic phase shift technique. In this paper we propose

four new coding strategies that encode the index of the projected column using

several phases and that mix the resulting phases into a controllable number

of projected patterns from which the position can be recovered with subpixel

precision. One notable characteristic of the proposed approaches is that we can

allocate the additional number of patterns specifically to improve precision or

provide higher robustness to noise. The proposed approaches are analyzed and

compared with the state of the art, showing their ability to be tuned towards

high precision in low noise conditions or robustness with respect to noise.

1. Introduction

The main challenge for any triangulation-based surface reconstruction tech-

nique is the assignment of reliable correspondences between features observed

by two or more different points of view. Given the central role of this prob-

lem, many and diverse strategies have been proposed in literature over the past
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few decades [1]. When a sparse reconstruction is adequate, correspondences

can be searched and tracked among repeatable features readily present in the

scene, such as corners or edges. Unfortunately, in general it is not possible to

guarantee that the same features are extracted from each image, or that the

feature density is sufficient. Hence, complementary techniques, usually based

on photometric correlation, are used to obtain an approximate reconstruction

of the scene depth map. Other systems overcome these limitations as they do

not rely on natural features, but instead use projected patterns of light in order

to find correspondences that are usually as dense as the pixels of each image [2].

Such techniques can be much more accurate than feature-based approaches and

have received particular attention from scientific and engineering communities

in the fields of optics, metrology and computer science. Further, structured

light approaches can be used almost unchanged in single camera systems, by

calibrating the camera and the projector.

The main idea behind 3D reconstruction based on projected light is that of

assigning unique codes to surface points by modulating the intensity of a light

projected onto the object. These codes are used to extract correspondences be-

tween points in different views, which can then be triangulated to obtain depth

estimates. To this end, several patterns are projected onto the scene in such a

way that each point has a unique sequence of intensity values. These sequences

are then decoded to obtain the point’s identity. The main issue in structured

light approaches is the design of projection schemes that allow for robust and

precise decoding, possibly with subpixel accuracy, using the smallest number of

patterns possible while still guaranteeing reliable measurements. Such an en-

deavor has direct application in scenarios were fast or even real-time acquisition

is needed.

In this work we propose novel coding strategies that encode point location

with subpixel accuracy. To this end we split the encoding and decoding phases

into two steps: the first, called phase coding/decoding, maps the projector co-

ordinate into a vector of values each with limited range, and the second, called

pattern generation encodes the vectorial phase values onto physical quantities of
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Figure 1: Example patterns produced by the four proposed schemes.

the projected patterns. Phase coding strategies map the projector coordinate

u into several wrapped phase values φi(u) ∈ [0; 2π) quantized into λi angular

values. The coding strategy has to be invertible so that the projector coordinate

can be recovered uniquely from the phase vector ~φ(u) = (φ1(u), . . . , φn(u)); fur-

ther, in order to extract correspondences with subpixel precision, the map must

be continuous, i.e., it should be able to encode and uniquely decode non-integral

projector coordinates. On the other hand, the pattern generation step encodes

the phase vector ~φ(u) as observable physical quantities of the time series fu(t)

of the projected light intensity.

The contribution of this paper is twofold. First, we propose and analyze two

novel pattern generation methods (compound and subpattern) that allow to

significantly reduce the number of projected patterns. Both schemes encode the

phase vector as phases in a time-varying sinusoidal pattern: One simply encodes

each coordinate in a separate subsampled sine wave, while the other encodes

the whole vector as phases of the Fourier transform of the time-varying pattern.

The second contribution is the introduction of a novel encoding technique which

adopts a fine-to-coarse strategy allowing for smaller quantization at the fine level

to increase precision, and larger quantization at the coarse level to reduce the

total number of phases to be encoded. With the addition of a coding strategy

derived from [3], we analyze a total of four different encoding schemes. Figure 1

shows examples of the patterns generated with the four schemes. The two

rows show the pattern generation methods, while the columns show the coding

strategies, with Number-theoretic referring to the scheme derived from [3], and

Algebraic the newly proposed scheme.
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The number-theoretic scheme presented in [3] uses period co-primality to

map the phase vector onto a larger linear range. In particular, it projects si-

nusoidal patterns whose wavelengths are mutually co-prime, thereby allowing

to deduce the overall position from the detected remainders. For example, we

can encode 990 projector columns with three sinusoidal patterns of periods

9, 10, and 11 respectively. This way, column 382 will be encoded as phase

382 mod 9 = 4 on the first sinusoid, phase 382 mod 10 = 2 on the second, and

phase 382 mod 11 = 8 on the last sinusoidal wave. The algebraic approach we

are proposing, on the other hand, adopts a hierarchical fine-to-coarse encod-

ing which can selectively assign a larger number of samples to the low order

representation to improve encoding precision. In this scheme we project differ-

ent patterns each encoding one digit of the overall position. Thus, following

the previous example, we can encode 1000 projector columns with three sinu-

soidal patterns each of period 10, and column 382 will be encoded as phase

382 mod 10 = 2 on the first sinusoid, phase 382/10 mod 10 = 8.2 on the second,

and phase 382/100 mod 10 = 3.82 on the last sinusoidal wave. The decimal part

of each digit in the phase vector is maintained to ensure higher precision in the

reconstruction. By changing the range of the phase vectors and the parame-

ters of the pattern generation scheme, we can devise schemes with controllable

number of patterns, either reducing them for fast reconstruction, or increasing

them to either increase precision in low noise conditions or improve robustness

to noise when the signal to noise ratio is low.

In conjunction the two contributions result in a coding strategy that can be

tuned to be either more precise or more robust than the state-of-the-art for any

fixed (small) number of projected patterns.

The rest of the paper is organized as follows: the next Section presents a

review of the literature of range measurement by projected light; Section 3 in-

troduces and analyzes the pattern generation strategies requiring a controllable

number of projected patterns; following, Section 4 introduces a novel encoding

scheme and Section 5 presents some experimental evaluation of the proposed

coding schemes. Finally, Section 6 draws some conclusions.
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2. Related Work

Among the most significant light-based approaches to 3D sensing, interfer-

ometry has certainly played a major role. Interferometric techniques for surface

profiling are based on the superposition of multiple coherent electromagnetic

wave-fronts resulting in an interferogram (or fringe pattern). The intensity dis-

tribution of the pattern varies as a function of the diffuse surface on which it is

projected, and therefore can be utilized to undertake surface measurements. The

relative height of the surface with respect to a reference plane can be retrieved

from the analysis of an image of the modulated fringe by means of processing

algorithms, among which Fourier transform profilometry (FTP) [4] has been by

far the most widely studied.

Other widely adopted reconstruction techniques include structured light and

phase-shifting methods. The simplest of these techniques is binary coding [5];

the method assigns to every pixel a codeword retrieved from the digitized se-

quence over time of projected black and white stripes, requiring log2(n) pattern

images to generate n code strings. Robustness of binary codes is improved by us-

ing Gray codes, where adjacent codes differ only in one bit. Both the techniques

generate unique codes along each scanline, but at the same time are limited by

their low resolution due to the inherently discrete nature of the coding. Also,

the large number of projected patterns does not lead to an increased accuracy.

Other structured light approaches make use of color-coded and grid-like patterns

[5, 6].

Phase-shifting methods are based on the projection of periodic patterns with

a given spatial period. Each projected pattern is obtained by spatially shift-

ing the preceding one of a fraction of the period, and then captured by one

or more cameras. The images are elaborated and the phase information at

each pixel determined by means of M-step relationships [7]. Since the phase

is distributed continuously within its period, phase-shifting techniques provide

subpixel accuracy and achieve high measurement spatial resolution. Further-

more, the intensity change at each pixel for subsequent patterns is relative to
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the underlying color and reflectance, which makes phase shift locally insensi-

tive to texture variance to a certain degree. Again, in its basic formulation,

phase-shifted structured light renders only relative phase values and thus it is

ambiguous. When both an extended measuring range and a high resolution

are required, a combined approach proves to be very powerful: the integration

of Gray code and phase shift [8, 9] is an effective technique bringing together

the advantages of both, providing disambiguation and high resolution, but the

number of patterns to be projected increases considerably, and each strategy

introduces a source of error [3].

A prevailing drawback within the phase shift class is related to an arbitrary

shifting error [10] caused by the analog nature of the projecting device, which

can influence the final evaluation of the phase values if proper compensation is

not carried out. Nevertheless, the introduction of highly flexible digital video

projection (DVP) technologies (namely LCD and DLP), and also by virtue of

their availability and relatively low cost, lead to the complete avoidance of this

kind of errors. However, this also resulted in geometrically less precise signals,

and in addition for better visual effect usually both the light source and the

imaging device generalize as nonlinear devices in such a way that the captured

patterns deviate from the ideal sinusoid. This makes it problematic for the

phase extraction step to yield accurate values, which ultimately leads to erro-

neous depth measurements [11, 12]. In [13] Pan et al. perform a theoretical

analysis of the phase error induced by the non-sinusoidal waveforms and devise

an iterative compensation algorithm taking into account the non-linearity due

to the whole system, rather than the DVP effect alone. In general though, accu-

racy depends on the projector characteristics as a whole, as discussed in [14]. It

has been demonstrated [7] that these errors can be somewhat alleviated by using

a larger number of fringe patterns, however for dynamic applications requiring

fast reconstruction (such as FTP and 3-step or 4-step profilometry [15, 16])

the non-sinusoidal phase error is considered as the dominant error source. As

a matter of fact, non-linearity of the video projector is mainly due to gamma

correction for image enhancement which inevitably decreases the accuracy and
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resolution of the measurement. This problem has also been extensively studied

[17, 18]. A common and simple schema is to gamma encode the patterns be-

fore projection; other approaches include iterative gamma-correction techniques

based on statistical analysis of the captured fringes [19].

Recently, attention has shifted back to number-theoretical methods, whereas

simpler strategies have been proposed. Lilienblum and Michaelis presented a

simple and robust multi-period phase shift algorithm, which allows for very

accurate and stable reconstructions [3]. In [20] a modification is given to the

original Gushov-Solodkin algorithm; in their work, the relative phase values

are checked and corrected before the unwrapping procedure takes place. The

method is claimed to be faster and not influenced by inaccuracies in relative

phase computation, however more importantly it is suited toward a simple im-

plementation with off-the-shelf components and its parameters need fine-tuning

in some measure.

The big advantages of the multi-period method presented in [3] is its relative

simplicity and high efficiency. The phase-coded images can be directly employed

in general stereo reconstruction systems, ensuring high quality and density of the

code. Specifically, the lack of surface points in the final model is mainly due to

occlusions and camera disparity, and measurement errors are very low thanks to

the averaging and validation procedures implicit to the approach, that exclude

a large percentage of errors and outliers before the actual surface reconstruction

takes place. The main drawback lies in the fact that, typically, three or more

phase-shift sequences are needed to entirely cover the projector range (typical

values are 800 or 1024 projector pixels). This requires the projection of as

many as three times more patterns than required with classical phase-shifting.

Further, at least in the original formulation of Lilienblum and Michaelis, the

phase increment in time and in space are correlated, requiring a larger number

of patterns as the resolution of the projector increases.

In order to address the latter issue, and reduce the number of pattern re-

quired, in [21] a new compound phase-coding approach was presented. The

main idea behind the Compound Phase Coding strategy was to project several
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fringe patterns in a single spatio-temporal pattern, by encoding the phases of

the fringe vector as phases of a Fourier term at different frequencies. This ef-

fectively decouples the spatial phase increments with the temporal increments

used to create the patterns. However, the reduction in the dynamic range avail-

able to each frequency slot increases the noise of the estimated phase, and the

Fourier composition forces the number of patterns projected to be an integral

multiple of 2 ∗ (k + 1) where k is the number of phase fringes used for coding.

3. Phase Coding and Pattern Generation

When adopting multiple phase coding strategies, the process of going from

projector coordinates to the projected patterns can be divided into two main

steps. The first step is that of phase coding and the dual step of phase de-

coding. Phase coding strategies map the projector coordinate u into several

wrapped phase values φi(u) ∈ [0; 2π) quantized into λi angular values. The

coding strategy has to be invertible so that the projector coordinate can be

recovered uniquely from the phase vector ~φ(u) = (φ1(u), . . . , φn(u)); further,

in order to extract correspondences with subpixel precision, the map must be

continuous, i.e., it should be able to encode and uniquely decode non-integral

projector coordinates. The second step is that of pattern generation and its dual

phase estimation. The pattern generation step encodes the phase vector ~φ(u)

as observable physical quantities of the time series fu(t).

For example, the phase coding of the appraoch in [3] maps the projector co-

ordinates onto a vector of remainders modulo mutually co-prime numbers, while

the pattern generation simply maps each element on the vector onto the phase

of a fixed-frequency and fixed-amplitude sinusoidal signal. The separation of the

encoding process into phase coding and pattern generation is rather general and

can be applied to approaches that are not limited to multiple phase shift. Gray

codes in [8] fit perfectly the schema as they can be interpreted as dyadic angu-

lar quantizations (i.e., λi = 2), where phases are encoded using standard Gray

codes and patterns are generated using the amplitude of Haar basis functions

as the observable quantity rather than the phase of Fourier basis.
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In this paper we propose two novel pattern generation/phase estimation

methods that allow to significantly reduce the number of projected patterns.

The first approach is a direct generalization of multi-period [3], which decou-

ples spatial phase quantization with the temporal periods of the projected pat-

terns, while the second approach encodes the m coordinates of the phase vector

as the phases of the first m harmonics of the Fourier-transformed signal. In

both cases, the decoupling of spatial and temporal periods allows us to choose

where to invest in a larger number of projected patterns or signaling band to

reduce the phase estimation error. Second, we introduce a novel algebraic en-

coding/decoding technique which adopts a fine-to-coarse strategy allowing for

smaller quantization at the fine level to increase precision, and larger quantiza-

tion at the coarse level to reduce the total number of phases to be encoded (and

thus patterns to be projected). Compounded with the ability of the proposed

pattern generation strategies of allocating extra patterns to specific phases, this

results in a coding strategy that is both more precise and more robust than

the state-of-the-art for any fixed (small) number of projected patterns. The

combination of the two presented pattern generation strategies with the pro-

posed algebraic encoding and the number-theoretical encoding of Lilienblum

and Michaelis gives us four structured light coding strategies which will be an-

alyzed for performance and robustness.

3.1. Phase Coding

In [3] the authors suggest to map projector coordinate u to the phase vector

~φ(u) = (φ1(u), . . . , φn(u)) with φi(u) =
2π

λi
(umodλi) , (1)

where umodλi is the remainder of the division of u by λi. In addition, the

fringes of a pattern are assigned sequential natural numbers ηi(u) ∈ N, which

represent a simple counting of the fringes from left to right. A projector coor-

dinate can then be directly obtained, for all i = 1, 2, ..., n, from a fringe number

and a phase value:

u = (ηi(u) + φi(u))λi . (2)
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Since the only available values during decoding are λ and φ, the system of equa-

tions becomes ambiguous as the same value of u can be obtained for different

values of ηi. This happens when two different projector coordinates ũ 6= ˜̃u yield

the same phase values for all i. Under such conditions, the following derivation

holds [3]:

ũ− ˜̃u = (ηi(ũ)− ηi(˜̃u))λi, (3)

and then, for some positive integers x1, x2, ..., xn:

|∆u| = x1λ1 = x2λ2 = ... = xnλn. (4)

Therefore, a general condition is identified for generating unambiguous pattern

sequences, by defining a maximum projector coordinate umax up to which am-

biguity can be excluded. Such a coordinate is the least common multiple of

relatively prime periods λi, which for practical advantage shall entirely cover

the projector range.

An efficient method is then given to calculate the fringe numbers from the

ambiguous phase values at each pixel, taking advantage of a simple relationship

between them. Given any pair of pattern sequences, for each image pixel it

holds:

λiφi(u)− λjφj(u) = λjηj(u)− λiηi(u) . (5)

This makes it possible to construct a theoretical phase difference vector before-

hand, and then use it to retrieve the fringe numbers when real phase measure-

ments become available. In addition to providing an efficient way to obtain

the fringe numbers, this method allows to assign each point a reliability value

related to the deviation between measured and expected values. The use of

theoretical phase difference vectors makes for a powerful test, which allows to

identify erroneous or weak measurements (such as mixed phase values) caused,

for instance, by sharp edges, involuntary object movements and light reflections.

Once the unknown fringe numbers are calculated, projector coordinates can be

easily retrieved for each pattern sequence with equation 2. Further, the inde-

pendent measurements can be averaged to obtain the unwrapped phase at every

pixel in an efficient way, leading to an increase in measurement accuracy.
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3.2. Pattern Generation

Phase-shift based strategies use the phase of sinusoidal waves as quantities

that can be recovered through the imaging process, but other approaches are

possible; for example Gray codes use the amplitude of the signal as information

carrier.

According to multi-period phase shift, the m coordinates of the phase vector

~φ(u) are projected as m separate subseries f iu(t), each of length λi, where each

time series is a sinusoid of period λi:

f iu(j) = cos(2πj/λi + φi(u)) . (6)

The final pattern fu is then the juxtaposition of the patterns f iu, scaled and

shifted to the projector intensity range (usually [0; 255]). Note that the shift

only affects the level of the DC component and the amplitude of the higher

frequency carriers, leaving the phase values unchanged.

3.3. Time-Decoupled Subpatterns

In the original formulation presented in [3] the periods λi represent both the

phase increments as we move spatially through the projector coordinates and

the time increments as we move along the pattern. This enforces a very strong

requirement on the number of projected fringes which have to be
∑
i λi, where

the λi must be co-prime and large enough that their product covers the whole

projector range. Note, however, that the space and time increments are not

really related and one can sample a full period of the sinusoidal pattern using

any number of time-steps greater than 2. In general, we can encode the phase

value φi(u) with ki patterns as

f iu(j) = cos

(
2π

j

ki
+ φi(u)

)
with i = 0, . . . , ki − 1 . (7)

The sine and cosine of phase can then be simply estimated from the observed
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temporal series f̄ iu through Fourier analysis:

ρ cos
(
φ̂i(u)

)
= < f̄ iu| cos >=

1

ki

ki−1∑
j=0

f̄ iu(j) cos

(
−2π

j

ki

)
(8)

ρ sin
(
φ̂i(u)

)
= < f̄ iu| sin >=

1

ki

ki−1∑
j=0

f̄ iu(j) sin

(
−2π

j

ki

)
, (9)

from which we get the estimate

φ̂i(u) = arg
(
ρ cos

(
φ̂i(u)

)
, ρ sin

(
φ̂i(u)

))
, (10)

where arg(x, y) is the argument of complex number x + iy and is in the range

[0; 2π).

To study the angular accuracy in the phase estimation, assume that the

observed temporal series was subjected to a constant shift and rescaling and

independent observation errors ε0, . . . , εk−1 of zero mean and constant standard

deviation σ, i.e., f̄ iu(j) = c+ af iu(j) + εj . From this we have

E [ρ] =
a

2
(11)

Var
(
ρφ̂i(u)

)
≈ Var

(
ρ cos

(
φ̂i(u)

))
= Var

(
ρ sin

(
φ̂i(u)

))
=

=
σ2

k2
i

ki−1∑
j=0

cos2

(
−2π

j

ki

)
=

σ2

2ki
(12)

Var(φ̂i(u)) ≈
Var

(
ρφ̂i(u)

)
Var(ρ)

=
2σ2

kia2
. (13)

Thus, the angular error σφi = σ
a

√
2
ki

is inversely proportional to the signal-to-

noise ratio a/σ and to the square root of the number of samples ki. In this

respect, using a number of samples proportional to the period cannot even be

justified by the requirement that the phase error be the same for all subpatterns,

as that would happen for a number of samples proportional to the square of the

periods.
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Figure 2: The composition of k fringe patterns, plus one unknown shift signal will produce a
total of 2(k + 1) image patterns that will be projected onto the surface to be reconstructed.
The shift pattern (projector scaling) accounts for the unknown value of the albedo of the
surface.

2K+2 Images

Camera

DFT

phase images
from 1 to K unambiguous coded image

Coding

illuminated objects

Figure 3: A total of 2k+2 images of illuminated objects are captured and single phase values
are calculated for each composed fringe signal. Those values are subsequently used to get an
unambiguous coding. Note that the intensity profile of each projected pattern is not sinusoidal.

3.4. Compound Pattern Generation

The compound phase coding approach was introduced in [21]1. It encodes

the m coordinates of the phase vector as the phases of the first m frequencies

of the Fourier transform of the signal. Given a phase code ~φ ∈ [0, 1)k, we create

a (k + 1)-dimensional complex vector ~x ∈ Ck+1, where

xj =

0 , if j = 0 ,

eqje
−2πiφj , if 1 ≤ j ≤ k .

(14)

Here, i =
√
−1 and ~eq = (eq1, . . . , eqk) with

∑k
j=1 eqj = 1 is an equalization

vector that indicates the relative strength of each multiplexed phase signal. Note

that given xj we can compute the phase as φj = arg(<(xj),=(xj))), where <(z),

=(z) are the real and imaginary parts of the complex number z ∈ C, respectively.

1Note that equations (14), (15), and (16) as well as Figures 2 and 3 are taken from [21].
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Each complex number xj represents the amplitude and phase of a sinusoidal

component with frequency j
k+1 cycles per sample. Hence we can reconstruct the

intensity sequence of that coordinate by computing the Inverse Discrete Fourier

Transform of ~x, obtaining the temporal pattern

f(n) =
1

k + 1

k∑
j=0

xje
2πi j

k+1n , n = 0, . . . , k . (15)

We can then project separately the real and imaginary part of this vector as

two time sequences obtaining a single set of 2(k + 1) patterns to be projected

to uniquely encode the phase vector ~φ (see Figure 2).

The acquisition process introduces an additional linear deformation on the

time series fu, which depends on the physical properties of the object being

scanned and which does not affect the phases. Let f̂u(t) be the acquired gray-

scale values and let ~y ∈ Ck+1 be its representation into a complex vector. The

phase code ~φ is finally recovered from ~y by computing the Discrete Fourier

Transform, namely

xj =

k+1∑
n=0

yne
−2πi n

k+1 j , (16)

and by extracting the argument from the resulting vector ~x ∈ Ck+1 (see Figure

3).

This process allows to recover the phase code for each projector coordinate

by taking only 2(k+ 1) measurements, where k is the number of signal periods.

Nevertheless, one can also force a larger number of samples in order to increase

accuracy, by appending null components to ~x. More precisely, with M null

components we need 2(M + k + 1) measurements in order to recall the phase

code ~φ.

It should be noted that a drawback of this approach is that encoding mul-

tiple signals in a single pattern reduces the effective projector intensity range

available to encode each phase, increasing the effects of the discretization error

and observation noise. Applying the same error analysis as the one performed

for the time-decoupled subpatterns generation strategy, we see that the angular
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error in the estimation of phase φi is

σφi =
σ

a eqi

√
2

k
, (17)

where a is the total signal, eqi is the equalization level assigned to phase φi

and k is the total number of patterns projected. Hence, an m-wise increase in

patterns assigned to each phase cannot balance the m-wise reduction in dynamic

range available to each pattern. On the other hand, this coding strategy can

encode m phases with as few as 2m+ 1 patterns, versus the minimum of 3m of

the subpattern strategy.

4. Algebraic Coding

In the phase encoding strategy we adopt a fine-to-coarse approach where

the first phases have short spatial periods, while subsequent phases have larger

periods; the last one has a spatial period larger than the maximum projector

coordinate. Let λ1, . . . , λm be phase quantizations with the only requirement

that
∏m
i=1 λi ≥M , with M ≤ umax the maximum projector coordinate. We en-

code the projector coordinate u into the phase vector ~φ(u) = (φ1(u), . . . , φm(u))

where

φi(u) = 2π frac

(
u∏i
j=1 λi

)
(18)

where frac(x) = x − bxc is the fractional part of x ≥ 0. The name algebraic

coding derives from the fact that the encoding is constructed in a similar man-

ner to the way integers are represented using the standard positional notation.

Assume that phase φi is divided into λi angular bins, and assume that the pro-

jector coordinate u is represented in positional notation as the sequence of digits

d1, . . . , dm, where position i uses base λi, i.e., di is in the range 0, . . . , λi − 1.

Then the digit di indicates the angular bin in which φi falls, and the integral

coordinate u can be recovered by u =
∑m
i=1 di

∏i
j=1 λi. Thus, using this alge-

braic representation, we can reconstruct the integral coordinate by looking at

the angular bucket in which the phase estimation falls. In practice, the projec-

tor coordinate is estimated with subpixel precision, but the fractional part of
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the location is extracted only from the first phase, which is localized with the

highest precision.

In particular, the decoding phase is as follows: first we get the low-order

digit with subpixel precision d1 = φ̂1
λi
2π and set the current estimate at h1 = d1.

Then the estimate is refined adding the other phases according to the following

recurrence:

di+1 = round

(
φ̂i+1

λi+1

2π
− hi∏i

j=1 λi

)
(19)

hi+1 = di+1

i∏
j=1

λi + hi . (20)

The final estimate hm is the estimated projector coordinate.

This coding strategy allows us to completely decouple the quantization levels

λi, which can be any value as long as their product is larger than the maximum

coordinate. Further, since the information about subpixel localization is ex-

tracted only from the low-order bit, we can invest in it both by reducing the

number of quantization bins, and by increasing the number of samples or the

equalization level assigned to the first phase. This separates it from other hi-

erarchical methods such as Gray coding since this equalization can reduce the

effect of noise on the final subpixel precision. In addition, the continuity of high-

order bins eliminates the noise due to the spatial quantization effect. Figure 1

shows an example set of patterns obtained using the proposed pattern genera-

tion strategies in conjunction with the number-theoretic and algebraic coding

schemes.

4.1. Phase Correction

Phase shift methods achieve subpixel accuracy assuming that by integrating

the contribution of adjacent projector pixels one obtains a phase that is a linear

combination of the phases projected at the two projector locations. Specifically,

the assumption is that if a camera pixel integrates projector pixel u for a pro-

portion α and projector pixel u + 1 for a proportion 1 − α, then the observed

phase is φ̂ ≈ αφ(u) + (1 − α)φ(u + 1). However, the reconstruction obtained
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Figure 4: The linear interpolation of the phase/amplitude vectors at adjacent quantized angles
does not result in a linear interpolation of the angles. This requires a correction for the
fractional part of the phase.

from the superposition of the signals interpolates linearly the phase/amplitude

vectors, which does not result in a linear interpolation of phase angles (see Fig-

ure 4.a). This results in an estimation error of the subpixel part of the code

that is more severe as the phase quantization is coarser. This source of error

is usually not a problem with the number-theoretical multi-phase shift method

as, in practice, for common projectors the phases are quantized in 9 or more

levels, and thus errors incurred with the linear approximation are limited. In

our case, however, we aim at reducing the low-order quantization as much as

possible in order to increase subpixel precision of the algebraic coding, resulting

in severe linearization errors. We avoid this by correcting the estimated phase

taking into account the non-linearity of the angular interpolation. Let

φint = b φ
2π
λc2π

λ
(21)

φf = frac

(
φ

2π
λ

)
2π

λ
(22)

be the integral and fractional part of the quantization of phase φ into λ angular

bins, and let a be the signal amplitude at this location. It is worth reminding
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that one of the main assumptions is that the projected signal amplitude is

constant, while the received signal amplitude depends on the surface orientation

and albedo, but it is constant at any given location. The reconstructed phase

amplitude vector is

(1− α)aeiφint + αaei(φint+
2π
λ ) = aeiφint

(
(1− α) + αei

2π
λ

)
= aeiφintbeiφf , (23)

where b is an amplitude correction term due to the amplitude reduction caused

by the linear interpolation. Note that this reduction in the amplitude of the

coding frequencies means that at low quantization level we are trading signal

strength for angular discrimination, and this could be counterproductive on low

signal conditions.

From equation (23) we obtain beiφf = (1 − α) + αei
2π
λ , normalizing the

phase/amplitude vector and looking at its real part, we get the following relation

for the observed fractional part of the phase:

cos(φf ) =
(1− α) + α cos

(
2π
λ

)√(
(1− α) + α cos

(
2π
λ

) )2
+ α2 sin2

(
2π
λ

) (24)

Solving for α and applying the recovered interpolation proportion to the

quantization angles, we obtain the corrected phase:

φcorrected = φint + α
2π

λ
= φint +

sin(φf )

sin(φf )− sin
(
φf − 2π

λ

) 2π

λ
(25)

Figure 4.b plots the effect, for small angular quantizations, of applying the

phase correction to the fractional part of the phase.

5. Experimental Results

In order to validate the proposed techniques we performed both synthetic

and real world experiments. In the first set we assessed the effect of noise,

using different coding strategies and parameters, against a ground-truth value

for the reconstructed projector coordinates. In the second set we compared the

codes obtained with the proposed approach on a test rig for structured light

techniques that has been internally developed in our lab. Here we did not have
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ground-truth, so we compared our measurements with those given by the Multi-

Period Phase Shift proposed in [3], where the time dimension was significantly

up-sampled to reduce the effects of noise. In particular, a total of 90 patterns

were projected, as compared to the minimum possible with this strategy of 9

patterns. The choice of projecting 90 patterns was driven by the assumption

that by increasing the number of patterns by an order of magnitude, the errors

in the reconstruction of the (subpixel) phase values and thus of the final column

code will be similarly reduced to a level much smaller than the decoding error

incurred with the schemes under analysis.
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Figure 5: Precision and robustness to noise of the number-theoretical encoding strategy in
conjunction with the subpattern generation strategy. Left: code RMS as a function of the
standard deviation of the noise. Right: percentage of outliers (codes with error grater than
1 projector pixel) as a function of the standard deviation of the noise. Same color represents
same coding scheme.

5.1. Synthetic Experiments

To assess the robustness of the coding strategies with respect to noise, we

performed a set of synthetic experiments, where an increasing amount of ran-

dom additive noise was added to the patterns before decoding, and then the
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error between the exact and the estimated coordinate was computed. The pat-

terns for non-integral location u were generated by linearly mixing the patterns

obtained at locations buc and due. For each approach we applied a selection of

quantization values corresponding to various levels of the quality/speed trade-

off. For the number-theoretical (NT) approaches we used periods 7, 10, 11 and

9, 11, 13 which are common values satisfying the constraint of relative primal-

ity, that offer similar quantization errors for all phases, and provide a sufficient

number of distinct codes for a normal projector (770 codes the first, 1287 the

second). For the algebraic coding we used periods 8, 10, 10 and 5, 13, 13. the first

provides 800 codes with almost equal quantization error for low and high bits,

while the second provides 845 codes with a much coarser quantization for the

lowest bits, which should result is higher subpixel accuracy. For the approaches

using the subpattern generation strategy, we used an increasing number of time

samples evenly distributed among the phases, namely 9, 15, 21, and 27. Fur-

ther, for the algebraic coding we tested the advantage of unevenly distributing

the samples assigning more to the low-order phase. To this end we tested the

sample distributions (3, 3, 3), (7, 4, 4), (11, 5, 5), and (15, 6, 6), ranging from the

lowest possible number of patterns, to a very high number of patterns combined

with a large up-sampling of the low-order phase. Clearly there is no guarantee

for the optimality of these values but they do provide a set of reasonable values

spanning the range of the quality/speed tradeoff. Table 1 shows the projected

patterns corresponding to this selection of parameters.

For each test we drew 500 locations in the range [0; 100] and computed the

root mean square (RMS) error between the location and its estimation after the

encoding/decoding process.

Figures 5 and 6 plot the results using the number-theoretical and the alge-

braic encoding respectively. The plots on the left show the RMS as a function of

the standard deviation of the noise assuming a unit signal amplitude. The RMS

was computed among locations that decoded within one projector pixel. Larger

errors are caused by a phase estimation outside of the correct bin and should

be considered as outliers. The plots on the right show the percentage of outliers
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Compound

NT 7,10,13

NT 9,11,13

Alg 5,13,13

Alg 8,10,10

Subpattern

NT 9 samples

NT 27 samples

Alg 3,3,3 samples

Alg 15,6,6 samples

Alg 21,3,3 samples

Table 1: Actual sequences of patterns projected accordingly to the tested compound and
subpattern coding strategies.
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Figure 6: Precision and robustness to noise of the algebraic encoding strategy in conjunction
with the subpattern generation strategy. Left: code RMS as a function of the standard
deviation of the noise. Right: percentage of outliers (codes with error grater than 1 projector
pixel) as a function of the standard deviation of the noise. Same color represents same coding
scheme.
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Figure 7: Precision and robustness to noise of the encoding strategies under study in conjunc-
tion with the compound pattern generation strategy. Left: code RMS as a function of the
standard deviation of the noise. Right: percentage of outliers (codes with error grater than
1 projector pixel) as a function of the standard deviation of the noise. Same color represents
same coding scheme.
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and assess the robustness of the coding scheme. From the plots we can see that

in all cases a larger number of samples imply higher precision and robustness.

Further, we see that with the number-theoretical encoding the RMS grows at a

faster rate than using the algebraic coding, while still exhibiting similar robust-

ness. This suggests that the increase in angular discrimination provided by the

low quantization of the low-order phase of the algebraic coding results in higher

subpixel precision even in the presence of noise, without resulting in a higher

number of outliers. As for the effect of varying the quantization level or redis-

tributing the samples in algebraic coding, as expected a smaller quantization or

a redistribution of samples in favor of the low-order phase reduce the RMS but

also increase the number of outliers.

Figure 7 plots the RMS obtained using the compound pattern generation

strategy. Here various sampling levels were obtained by up-sampling the time-

series by a factor of 2 and 3, resulting in 8, 16 and 24 projected patterns. The

algebraic coding confirms the better scaling with respect to noise, but it also

results in a smaller rate of outliers, at least for small noise levels.

5.2. Real World Experiments

All the following experiments have been run on a test rig for structured light

techniques that has been internally developed in our lab. The rig is made up

of a motorized plate for object positioning, four cameras and an illumination

source mounted on a motorized liftable platform. Specifically the cameras are

equipped with a 1/2 inch CMOS sensor which offers a full 1280x1024 resolution.

The cameras are monochrome, thus no Bayer filters are placed over the sensor.

While four cameras are available, in this experiment set we use only one to test

the codes. The illumination source is a 800x600 color DLP projector which

we use to project the monochromatic patterns. The system is controlled by a

standard PC housed into the base of the rig. This PC is a 2.8 GHz AMD quad

core system with 2 Gigabytes of ram.

In Table 2 we show the performance of different compound coding strate-

gies when dealing with a set of real-world objects that exhibit wide variations
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Compound

Strategy Points Error max Displacement max

NT 7,10,13 55571 0.302 ± 10.409 559.9 0.042 ± 0.027 0.662
NT 9,11,13 55585 0.519 ± 17.734 935.8 0.042 ± 0.027 0.642
Alg 5,13,13 55617 0.070 ± 0.985 65.1 0.039 ± 0.025 0.785
Alg 8,10,10 55652 0.036 ± 0.065 8.156 0.038 ± 0.025 0.723

NT 7,10,13 70984 4.327 ± 42.956 650.5 0.061 ± 0.039 3.981
NT 9,11,13 71112 7.842 ± 73.689 1143.7 0.063 ± 0.037 1.256
Alg 5,13,13 70993 0.207 ± 2.970 65.2 0.055 ± 0.032 0.504
Alg 8,10,10 71465 0.079 ± 0.061 0.464 0.081 ± 0.045 0.534

NT 7,10,13 17495 4.753 ± 47.132 650.6 0.054 ± 0.038 0.436
NT 9,11,13 17504 5.546 ± 59.863 935.6 0.056 ± 0.040 0.496
Alg 5,13,13 17553 0.217 ± 3.252 65.1 0.043 ± 0.029 0.327
Alg 8,10,10 17667 0.066 ± 0.053 0.559 0.069 ± 0.046 0.556

NT 7,10,13 11705 0.402 ± 11.209 350.4 0.038 ± 0.027 0.561
NT 9,11,13 11721 0.873 ± 20.246 792.2 0.037 ± 0.028 0.752
Alg 5,13,13 11814 0.054 ± 0.074 4.890 0.041 ± 0.029 0.477
Alg 8,10,10 11792 0.046 ± 0.755 80.1 0.033 ± 0.025 0.439

NT 7,10,13 8072 54.511 ± 152.075 819.5 0.126 ± 0.192 6.424
NT 9,11,13 9107 71.647 ± 217.477 1143.8 0.130 ± 0.190 4.166
Alg 5,13,13 8363 13.417 ± 91.544 785.1 0.094 ± 0.162 4.452
Alg 8,10,10 12046 0.419 ± 10.076 720.1 0.084 ± 0.095 3.774

NT 7,10,13 41652 0.922 ± 20.998 559.9 0.035 ± 0.024 0.261
NT 9,11,13 41674 0.984 ± 21.214 494.8 0.035 ± 0.024 0.416
Alg 5,13,13 41799 0.079 ± 0.212 5.206 0.051 ± 0.033 0.499
Alg 8,10,10 41806 0.061 ± 0.048 0.529 0.050 ± 0.033 0.516

Table 2: Coding performance of the compound pattern generation strategy on objects with
different albedo. The values are coding errors and thus are expressed in (dimensionless) coding
units.

both in albedo and shape. Specifically, we used two algebraic and two number-

theoretical pattern sequences. As in the synthetic experiments, we chose period

sets of length 7,10,13 and 9,11,13 respectively for the number-theoretical tests

and two quantizations of 5,13,13 and 8,10,10 for the algebraic coding. For each

experimental condition we projected both horizontal and vertical pattern se-

quences, thus obtaining a bi-dimensional code for each image pixel. This code

is used to compute two measures of deviation from the ground-truth. The first

measure is the difference between the code obtained at a particular image pixel

with respect to the ground-truth code obtained projecting 90 patterns; we call

this quantity code error. The second measure used is the code displacement,

i.e., the Euclidean distance between a point in the ground-truth image and

the subpixel location containing the same code by bilinear interpolation in the
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Subpattern

Strategy Points Error max Displacement max

NT 9 samples 56030 0.035 ± 0.027 0.351 0.033 ± 0.023 0.820
NT 27 samples 56015 0.012 ± 0.010 0.189 0.016 ± 0.012 0.443
Alg 3,3,3 samples 56317 0.040 ± 0.029 0.318 0.041 ± 0.025 0.544
Alg 15,6,6 samples 56278 0.015 ± 0.011 0.132 0.017 ± 0.011 0.293
Alg 21,3,3 samples 56313 0.013 ± 0.010 0.105 0.018 ± 0.011 0.316

NT 9 samples 72515 0.128 ± 6.563 792.2 0.041 ± 0.024 0.354
NT 27 samples 72504 0.019 ± 0.014 0.140 0.022 ± 0.013 0.193
Alg 3,3,3 samples 72658 0.052 ± 0.040 0.396 0.044 ± 0.030 0.301
Alg 15,6,6 samples 72646 0.026 ± 0.019 0.139 0.027 ± 0.015 0.183
Alg 21,3,3 samples 72660 0.018 ± 0.014 0.127 0.023 ± 0.013 0.166

NT 9 samples 17936 0.233 ± 9.810 494.8 0.050 ± 0.025 0.247
NT 27 samples 17935 0.017 ± 0.014 0.118 0.023 ± 0.016 0.150
Alg 3,3,3 samples 17996 0.049 ± 0.038 0.301 0.050 ± 0.032 0.277
Alg 15,6,6 samples 17986 0.022 ± 0.016 0.148 0.023 ± 0.017 0.191
Alg 21,3,3 samples 17992 0.015 ± 0.012 0.126 0.021 ± 0.015 0.166

NT 9 samples 11982 0.075 ± 4.557 494.8 0.042 ± 0.021 0.451
NT 27 samples 11981 0.011 ± 0.010 0.108 0.016 ± 0.013 0.235
Alg 3,3,3 samples 12031 0.046 ± 0.033 0.353 0.042 ± 0.027 0.290
Alg 15,6,6 samples 12027 0.028 ± 0.014 0.155 0.016 ± 0.014 0.221
Alg 21,3,3 samples 12031 0.020 ± 0.014 0.133 0.016 ± 0.013 0.199

NT 9 samples 41958 0.194 ± 7.925 494.7 0.026 ± 0.018 0.322
NT 27 samples 41958 0.022 ± 0.010 0.116 0.012 ± 0.009 0.102
Alg 3,3,3 samples 42073 0.040 ± 0.031 0.266 0.035 ± 0.022 0.271
Alg 15,6,6 samples 42073 0.024 ± 0.016 0.158 0.015 ± 0.011 0.217
Alg 21,3,3 samples 42077 0.025 ± 0.015 0.120 0.014 ± 0.011 0.168

NT 9 samples 26300 6.339 ± 65.952 743.6 0.065 ± 0.039 0.419
NT 27 samples 26248 0.029 ± 0.023 0.151 0.036 ± 0.021 0.155
Alg 3,3,3 samples 27500 0.080 ± 0.062 0.403 0.082 ± 0.046 0.315
Alg 15,6,6 samples 27516 0.036 ± 0.027 0.176 0.041 ± 0.024 0.207
Alg 21,3,3 samples 27474 0.028 ± 0.022 0.163 0.038 ± 0.022 0.186

Table 3: Coding performance of the subpattern generation strategy on objects with different
albedo. The values are coding errors and thus are expressed in (dimensionless) coding units.

experimental image. We can regard this quantity as the displacement error

that would be committed when the coding is used in matching or stereo cor-

respondence applications. In the columns of Table 2 we show the object used

for the measurements, the number of successfully coded points, and finally the

average, standard deviation, and maximum value of both the code error and dis-

placement. As expected, compound coding works more reliably with smooth,

uniform objects and Lambertian surfaces, such as the rectangular plastic strip,

the white wooden sphere and, to some level, the white lamp. With those ob-

jects the performance obtained with the number-theoretical strategy is worse
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than that obtained adopting the algebraic coding. This is due to the completely

wrong coding retrieved from difficult boundary points, as can be noticed by

looking at the large maximal errors. The coding error is even more dramatic

with more complex or darker objects, such as the pair of batteries and the small

statue. This is due to the decrease in dynamic range produced by the compound

approach, and affects both the number-theoretical strategy and the proposed

algebraic coding. However we can see that, despite using the same low number

of patterns, algebraic coding exhibits far better performance and is able to cope

with the most difficult objects exhibiting only a limited reduction in accuracy.

We repeated the same set of experiments with separately projected patterns.

The sequences of patterns used and the results obtained are shown respectively

in Table 1 and in Table 3. It is immediate to see that the overall error obtained

is significantly lower than the one obtained with the compound strategies. The

only gross coding errors happen with the number-theoretical approach when

using only 9 patterns (three for each period). When using 27 samples the results

are about one order of magnitude more accurate and we observe no mis-codings

at all. It should be noted that the algebraic coding technique does not incur

in any coding error even when using only 9 patterns. Furthermore, the ability

to selectively redistribute the additional patterns to the low-order phase allows

for a significant improvement in precision without incurring the risk of serious

mis-codings.

In Figure 8 the multi-object scene used for the experimental validation is

shown alongside some examples of the coding obtained with each strategy pre-

sented in this paper. The first two columns show the compound techniques. The

number-theoretical one (first column) is able to recover correctly only a limited

portion of the overall illuminated points and the algebraic technique allows to

assign a valid code to a few more. However, by looking at the zoomed area, we

can see that the former suffers more from gross coding outliers. By converse, the

non-compound approaches offer a significantly higher number of coded points.

In particular, the algebraic coding (fourth column) does not contain any outlier,

while the number-theoretical strategy (third column) allows some to slip in. In
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NT compound Alg compound NT subpattern Alg subpattern

Figure 8: Test scene and example code images with respective close-ups for the number-
theoretical and algebraic coding. Grey levels represent the detected code, from 0 (black) to
800 (white). Uncoded pixels are black.

the following we will explore these phenomena further.

In Figure 9 we show the effects of different coding parameterizations on the

average and maximum code difference. In the first row we analyze the compound

pattern generation techniques. In these experiments we test several levels of up-

sampling ranging from no up-sampling (U1), to twice the number of patterns

(U2) to three times the number of patterns (U3).

For each level we show the number-theoretical technique (NT), which obtains

always the worst results regardless of the up-sampling level, and the algebraic

coding scheme. The latter is tested with different equalization profiles: specif-

ically level Eq1 assigns equal signal to all the digits, while Eq2 and Eq3 give

respectively more signal to the high-order and low-order phases. Equalization

does not affect the results much, although assigning more weight to the more
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Figure 9: Accuracy of the coding with respect to different parameterizations of the coding
schemes.

significant digits seems to result in a less accurate coding. In the second row

we test the techniques based on separate subpatterns. Here we executed both

the number-theoretical and the algebraic coding strategies with a number of

patterns ranging from 9 to 27 samples. While it is apparent that the accuracy

of the number-theoretical scheme improves with an increasing number of pro-

jected patterns, it should be noted that the algebraic coding scheme allows to

obtain reasonable results even with just 9 patterns. When using more patterns

we test three different assignments of the additional samples: with distribution

d1 all the patterns are evenly divided for each phase period, while distributions

d2 and d3 are progressively more biased toward the low-order phase. While the

influence is not very strong, it is clear that giving more signal to the low-order

phase leads to improved accuracy. Overall, these experiments show that the NT
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technique does not works well with the compound pattern generation strategy,

in addition, even with the subpattern strategy it perform poorly when the num-

ber of projected patterns is close to the Nyquist limit. Conversely it performs

marginally better than the algebraic method in most situations when used with

the subpattern strategy and a large number of patterns.

5.3. Surface Reconstruction

The previous set of experiments gives an extensive quantitative analysis

of the robustness and accuracy of the coding strategies proposed. However,

it is difficult to relate such numerical data to their actual influence on the

quality of reconstructed surfaces. For this reason we also produced a set of 3D

range images that provide qualitative evaluation of the influence of the coding

scheme to the reconstruction process. Specifically, we used our test rig to obtain

range images from two subjects that pose the most significant hurdles to the

reconstruction process: The first is the light bulb, that exhibits reflections and

partial transparency; the second is the Ganesha figurine, which has a very low

albedo and presents several self-occlusions.

In Fig. 10 we show the reconstructions obtained from the light bulb. In the

first row the surface obtained with the “Ground Truth” method is shown, i.e.,

the reference method also used for the quantitative experiments: the Number

Theoretical technique with a very large number of projected patterns. For each

method we also present two zoomed area (indicated with red boxes) that high-

light a boundary zone and a flat area respectively. This is meant to evaluate the

behavior of the techniques around the edges of the objects and their smoothness.

With the light bulb there is no significant difference in the number of trian-

gulated points among the various methods. This is probably due to the high

albedo of the subject and thus to the good level of signal received by the cam-

eras. However, the Algebraic compound technique seems to loose a few points

on the fluorescent tubes. In general, the subpattern methods allow to triangu-

late more points in the screw part of the bulb, which is mostly reflective. It

is interesting to note that the Number Theoretical method used with the sub-
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Figure 10: Qualitative analysis of the surfaces obtained from the light bulb subject.
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Figure 11: Qualitative analysis of the surfaces obtained from the light bulb subject.
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pattern strategy produces some artifacts (elongated triangles) on the boundary

zones. This could be related to the aliasing effect between the bright surface of

the bulb and the black background that produces slightly shifted codes which in

turn introduce errors in the estimation of the depth of the points. Such artifacts,

however, have little influence with respect to the previous quantitative exper-

iments, since they affect only a very limited number of points. Nevertheless,

their effect is very significant from a qualitative point of view since such errors

stand out very much on the final reconstruction. Finally, the smoothness of the

surface increases with the number of patterns, as the effect of the random noise

is reduced. Interestingly, with a comparable number of patterns the Algebraic

technique seems to give slightly smoother results.

In Fig. 11 we show the results obtained with the Ganesha figurine. It is

immediately obvious that both compound methods allow to triangulate much

fewer points than the equivalent techniques paired with the subpattern strat-

egy. While the Algebraic coding strategy still gives slightly better results, we

can conclude that the subpattern strategy is to be preferred when the object

to capture is dark and we can expect a low signal strength. Obviously the

subpattern techniques work better with an high number of patterns, with the

Algebraic coding being able to reconstruct a few more points. In contrast to the

light bulb test, the Algebraic coding schema seems to produce a slightly rougher

surface. This could suggest that this method is noisier when dealing with lower

signal strength.

6. Conclusions

We have proposed a new fine-to-coarse phase encoding strategy that allows

us to achieve high precision and noise robustness with a small number of patterns

by applying a coarser angular quantization at the finest level and a finer one at

higher levels, and provide a robust estimation approach allowing to recover the

projector coordinate with subpixel precision. Further, we have introduced two

novel pattern generation strategies that encode multiple phases with a small

number of projected patterns and allow to selectively invest more patterns of
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signaling band to more critical phases. The proposed approaches have been

analyzed and compared with the state-of-the-art, showing that they are at the

same time more precise and robust with a high level of noise, not having any sig-

nificant drawback for low noise levels. In particular, the experiments show that

the number-theoretic approach in conjunction with the subpattern generation

strategy should be preferred when using a large number of patterns, while the

same number-theoretic approach does not perform very well with the compound

pattern as proposed in [21] suffers from a relatively high sensitivity to noise. By

contrast, the algebraic technique can be used effectively even when projecting a

number of patterns close to the Nyquist limit, allowing for a strong reduction in

reconstruction time. While the subpattern strategy is still the most robust of the

proposed pattern generation strategies, the compound strategy still works rela-

tively well with the algebraic technique in conditions with high signal-to-noise

ratio, allowing for good reconstructions with the minimal number of projected

patterns.
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