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Abstract

Feature-based image matching relies on the assump-
tion that the features contained in the model are dis-
tinctive enough. When both model and data present a
sizeable amount of clutter, the signal-to-noise ratio falls
and the detection becomes more challenging. If such
clutter exhibits a coherent structure, as it is the case for
textured background, matching becomes even harder. In
fact, the large amount of repeatable features extracted
from the texture dims the strength of the relatively few
interesting points of the object itself. In this paper we
introduce a game-theoretic approach that allows to dis-
tinguish foreground features from background ones. In
addition the same technique can be used to deal with the
object matching itself. The whole procedure is validated
by applying it to a practical scenario and by comparing
it with a standard point-pattern matching technique.

1. Introduction

Given its central role in many computer vision tasks,
image matching and registration is a widely investigated
topic in literature. Several approaches exploit global
properties of the images, ranging from the many tech-
niques based on cross-correlation [6] to those that work
in the frequency domain [4] or adopt the mutual infor-
mation as a similarity measure [10]. While successful
in many scenarios, the global nature of those techniques
makes them little robust to changes in illumination and
to the presence of clutter. Feature-based approaches
partially solve those problems. Attributed feature points
are extracted from images using detectors [8, 9, 7] and
descriptors [5, 2] that are locally invariant to illumina-
tion, scale and rotation. Usually, the model features are
matched with those obtained from the target image by
means of some RANSAC-based approach that can ex-
ploit the prior given by the descriptors [3]. Critical to

the success of this kind of technique is of course the
distinctiveness of the extracted features. Unfortunately,
when dealing with textured clutter, this distinctiveness
comes short and the number of very repeatable but ir-
relevant features overshadows those coming from the
foreground object. To avoid false matches it is manda-
tory to recognize and ignore the background. In this
paper we cope with both the filtering of the background
features and the recognition task by tailoring the match-
ing framework introduced in [1]. Specifically we model
the filtering step as a self-matching game, where fea-
tures that show high mutual similarity in the same image
are deemed not distinctive enough and thus screened
away. By converse, the recognition step is performed as
a matching game between the model and a data image,
where a set of highly coherent pairs of corresponding
features is seeked.

2. The Matching Game

Evolutionary game theory [11] considers an ideal-
ized scenario where pairs of individuals are repeatedly
drawn at random from a large population to play a two-
player game. Each player obtains a payoff that depends
only on the strategies played by him and its opponent.
Players are not supposed to behave rationally, but rather
they act according to a pre-programmed behavior, or
mixed strategy. It is supposed that some selection pro-
cess operates over time on the distribution of behaviors
favoring players that receive larger payoffs. More for-
mally, let O = {1,-- -, n} be the set of available strate-
gies (pure strategies in the language of game theory)
and C = (c¢;;) be a matrix specifying the payoff that
an individual playing strategy ¢ receives against some-
one playing strategy j. A mixed strategy is a probabil-
ity distribution x = (1,...,2,)7 over the available
strategies O.

Being probability distributions, mixed strategies are
constrained to lie in the n-dimensional standard simplex
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Figure 1. Examples of the two evolutionary matching games proposed

A" ={xeR" :Viel...nz; >0, > z; =1}.
The support of a mixed strategy x € A, denoted by
o(x), is defined as the set of elements chosen with non-
zero probability: o(x) = {i € O|x; > 0}. The ex-
pected payoff received by a player choosing element ¢
when playing against a player adopting a mixed strat-
egy x is (Cx); = >_; cijz;, hence the expected payoff
received by adopting the mixed strategy y against X is
y 7 Cx. The best replies against mixed strategy x is the
set of mixed strategies

Bx)={yeA|y'Ox= mzax(zTCx)}.

A strategy x is said to be a Nash equilibrium if it is the
best reply to itself, ie., Vy € A, x"Cx > yT'Cx.
This implies that Vi € o(x) we have (Cx); = xT Cx;
that is, the payoff of every strategy in the support of x
is constant. A strategy x is said to be an evolutionary
stable strategy (ESS) if it is a Nash equilibrium and

Vye A xICcx=yTCx=xTCy >ylCy.

This condition guarantees that any deviation from the
stable strategies does not pay. The search for a stable
state is performed by simulating the evolution of a nat-
ural selection process. Under very loose conditions, any
dynamics that respect the payoffs is guaranteed to con-
verge to Nash equilibria [11] and (hopefully) to ESS’s;
for this reason, the choice of an actual selection process
is not crucial and can be driven mostly by considera-
tions of efficiency and simplicity. We chose to use the
replicator dynamics, a well-known formalization of the
selection process governed by the following equation

xi(t+1) = x (t)xggsfgl)&)

where x; is the i-th element of the population and C' the
payoff matrix. Once the population has reached a lo-

cal maximum, all the non-extincted pure strategies (i.e.,
o(x)) can be considered selected by the game.

2.1. Filtering a Textured Background

When dealing with textures, we can expect a large
number of features that exhibit very similar descriptors.
This is a very unfortunate condition for matching: in
fact, this high level of conguence can easily distract
any matcher from the foreground object. Paradoxically
we use this property to screen out background features.
Following [1], we model each feature as a strategy in a
matching game where the payoff matrix is defined by:

C(ij) = e~ (1)

where d; and d; are the descriptor vectors associated to
features ¢ and j, and « is a parameter that controls the
level of selectivity. Clearly, features that are similar will
get a large mutual payoff and thus are more likely to be
selected by the evolutive process. A simplified (but nu-
merically correct) example of such evolution is shown
in the first row of Fig. 1. Here, six descriptors of dimen-
sionality 2 are labeled from a to f. Vectors b,c and d
get high values in the payoff matrix since they are close
in the descriptor space. Other descriptors get lower mu-
tual payoffs, according to their respective distances. We
start the replicator dynamics (7' = 0) near the barycen-
ter of AS, which is sligthly perturbed to help avoiding
local minima. After just one iteration (I' = 1), strate-
gies b,c and d get a significant evolutionary boost over
the others, and after ten iterations (7' = 10) they are the
only strategies left in the support. We can then classify
those features as background and filter them out.

2.2. Matching Model and Data

In order to match model and data points we need to
define a slightly different matching game. In this con-



Figure 2. Background filtering and feature matching (best viewed in color)

text, each strategy models a pair of features (a1, as)
that belong respectively to the model and the data. We
define a payoff among strategies that is proportional
to the compatibility of the affine transformation esti-
mated by the descriptor used (for instance, SIFT [5] or
SUREF [2]). Specifically, we are able to associate to each
strategy (a1, az) an affine transformation, which we call
T(al, ag).

When this is applied to a; it produces the point as,
but when it is applied to the model point b; it will give
a point b} that is near to by if T'(a1,as) is similar to
T(b1,b2). Given two strategies (a1, az) and (b1, bs)
and their associated transformations 7'(aj,a2) and
T'(b1,b2) we calculate their reciprocal reprojected vir-
tual points as: ab, = T'(b1,b2)a; and by, = T'(ay,az)b;.
Given virtual points a/, and b}, we are finally able to de-
fine the payoff between (a1, as) and (by, by) as:

C((ar,a2), (b, b)) = e~ Pmavllaa=aslba=ba) ()

where (3 is a selectivity parameter that allows to oper-
ate a more or less selective matching game. Clearly,
large groups of point pairs that are coherent with re-
spect to an affine transformation will receive a large
payoff and thus an evolutive advantage. In the second
row of Fig. 1 we show an example of this matching
game. Here, coherent strategies exhibit high payoff val-
ues (i.e., C((a1, az2), (b1,b2)) = 1), while less compat-
ible pairs get lower scores (i.e., C((a1, a2), (c1,c2)) =
0.1). Note that strategies that share the same model or
data point get payoff 0 to avoid one-to-many match-
ing. Initially, the population is set to a slightly per-
turbed barycenter of A®. After one iteration, (cj,bs)
and (cq, ¢a) have lost a significant amount of support,
while (dy, ¢2) and (dy, d2) are still played by a sizeable
amount of population, despite being mutually exclusive.
After ten iterations, (di,ds) has finally prevailed over
(d1, c2) and the final support has emerged.

3. Experimental Evaluation

We tested our game-theoretic approach by applying
it to the detection of hand-written markers placed on
textured fabric. This is a typical scenario for batch
tracking in the textile industry, where barcodes or RFID
tags are not viable solutions due to the harsh cloth pro-
cessing conditions that would destroy them. The first
three frames of Fig. 2 show the background filtering
performance of our method. The first frame contains
all the original SIFT features extracted, the second one
shows those survived after applying our filter with se-
lectivity parameter « = 10~%. By using o = 1073
all the background is screened in the third frame. We
observed that a larger value of v does not affect much
the result, as foreground features are quite disjointed.
The matcher performance has been evaluated by com-
paring its precision-recall curve with those obtained by
using an optimized RANSAC-based technique. Specif-
ically, we implemented a PROSAC [3] variant by using
descriptor vectors as hints for the selection of transfor-
mation candidates in an affine point-pattern matching.
In order to assess the effect of the background elimi-
nation step, we applied this RANSAC schema to both
filtered and unfiltered frames.
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Figure 3. Comparison with RANSAC

The trade-off between precision and recall was ad-
justed respectively by means of parameter 5 and by us-
ing different thresholds for the consensus. Tests were
performed with 20 markers and 15 different fabric pat-
terns. The markers were present in 59 frames of a



30.000 frames long video sequence. Given the constant
presence of a textured background, the poor results ob-
tained with RANSAC and the unfiltered video were ex-
pected. Indeed, we were unable to reach a full recall
without a complete loss of precision, and even when
accepting a low recall most of the detected frames were
false positives due to background matching. RANSAC
performance increases dramatically after application of
the filter. Nevertheless, it is not possible to obtain a
high level of recall without losing precision. This is
due to the presence of features that do not belong to
the foreground marker and neither are part of a texture.
This happens, for instance, with sewings, seams or dirt
present in the fabric. In the right half of Fig. 2 we show
an instance where our method obtains the correct match,
while RANSAC is distracted by a junction in the fab-
ric. The game-theoretic matcher (applied over filtered
frames) obtains by far the best results. In fact, a per-
fect recall is obtained with a precision value above 0.8
(8 = 1073) and, by using a more selective parameter
(8 = 1072) all the false positives are avoided while still
obtaining a recall just slightly below 0.7. In some prac-
tical applications it is more important to guarantee a re-
call of 1 since a moderate number of false positives can
be tolerated (and filtered bottomward in the pipeline),
while a miss in the detection is not allowed. To measure
the loss in precision with respect to noise, we corrupted
both data and model with additive Gaussian noise. At
each noise level (expressed with the standard deviation
in Fig. 4) we tuned /3 to maintain a recall of 1 and mea-
sured the precision. While it was always possible to ob-
tain a complete recall, we observed a linear decay of the
precision. This is not a failure of the matcher itself, but
an impaired effectiveness of the background filter due to
the reduced similarity among the extracted descriptors.
It should be noted, however, that in this experimental
setup a precision of 0.3 with a recall of 1 corresponds to
a fall-out of 0.006 (about 180 false positives over 30.000
tests).
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Figure 4. Effect of image noise

4. Conclusions

We presented a game-theoretic approach that allows
to perform a robust feature-based matching even when
the foreground is absorbed in a highly textured back-
ground. This is done by playing two different non-
cooperative games: a filter game, that separates fore-
ground from background, and a matching game, that
performs the actual point-pattern matching. An exper-
imental validation shows that both the steps concur to
the improvement of the whole matching task and the
obtained results outperform in terms of precision and
recall an optimized RANSAC-based approach.
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