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Abstract

In this paper, we propose an optimization method for
estimating the parameters that typically appear in graph-
theoretical formulations of the matching problem for object
detection. Although several methods have been proposed to
optimize parameters for graph matching in a way to pro-
mote correct correspondences and to restrict wrong ones,
our approach is novel in the sense that it aims at improving
performance in the more general task of object detection. In
our formulation, similarity functions are adjusted so as to
increase the overall similarity among a reference model and
the observed target, and at the same time reduce the similar-
ity among reference and ”non-target” objects. We evaluate
the proposed method in two challenging scenarios, namely
object detection using data captured with a Kinect sensor
in a real environment, and intrinsic metric learning for de-
formable shapes, demonstrating substantial improvements
in both settings.

1. Introduction

It has been an ultimate objective of computer vision to
realize a system that can see the world as a human being
does. These days, technology has enabled us to take ad-
vantage of rich visual information in our surroundings in
the form of realistic 3D data (as captured, for instance, by
consumer-level depth cameras); however, it remains an ab-
struse problem to make an intelligent system see the world
and to let it know ”what is where” in the real world.

In this paper, we propose an optimization method to de-
sign effective score functions for object detection tasks. For
the detection step we make use of reference shape data of
the target objects, and thereby obtain point-to-point corre-
spondences between reference and real-world observations.
Compared to conventional object detection methods which
employ global features extracted from bounding boxes, this
local approach is more robust to the pose variations and oc-
clusions frequently occurring in a real environment. In or-
der to reduce false local correspondences (mismatches), we
raise the order of the problem and consider pairwise sim-
ilarity terms. The resulting formulation takes the form of

a graph matching problem between the graphs of the refer-
ence and observed shapes.

More formally, let (X, dX) and (Y, dY ) be two (com-
pact) metric spaces with X,Y ⊂ Rm, and let C ⊂ X × Y
be a correspondence set between them. We formulate the
matching problem as a Lp-regularized Quadratic Assign-
ment Problem (QAP),

max
x

xTAx s.t. ‖x‖p = 1 , (1)

where x ∈ [0, 1]|C| represents a (weighted) cluster of
matches and A is a |C| × |C| symmetric matrix represent-
ing pairwise similarity terms between matches. The prob-
lem above aims at maximizing the overall similarity among
the two given metric spaces. The QAP formulation of the
matching problem is rather common in the shape and graph
matching communities, and in particular Lp relaxations to it
have proved beneficial in a variety of settings. For instance,
Leordeanu and Hebert [9] use p = 2 and Rodolà et al. [15]
use p = 1. More recently, mixed norm combinations have
been proposed [19, 17]. Matrix A can be regarded as the
realization of some similarity function π : C × C → [0, 1].
Clearly, many definitions for π are possible depending on
the specific problem at hand. For example, when dealing
with deformable shapes we expect the similarity function
to be as invariant as possible to non-rigid transformations
of the data (e.g., change of pose), and thus define π to take
into account intrinsic shape quantities (such as geodesic dis-
tances) that do not depend on how the shape is embedded in
Euclidean space.

To deal with an object detection task, we need to de-
fine a mechanism according to which the score functions
are to be learned. These functions express how similar an
observed object is to some target object. Here, we attempt
to determine the geometric and visual properties that better
characterize each object, together with their influence on
the detection task. In particular, we expect these properties
to depend on the object class to be matched. To this end,
we propose a learning method that optimizes over a vector
of weight parameters representing combination coefficients
for several similarity functions.

1



2. Related Work
Arguably the most common method for object detection

consists in the adoption of HOG descriptors [7] extracted
from bounding boxes of the objects, followed by a learning
step on their weights by means of a SVM. A recent, now de-
facto standard approach for object detection is Deformable
Part Models (DPM) [8], which also employs a combination
of HOG and linear SVMs in order to determine the model
parameters. Although DPM provides a flexible model for
object detection, it is not sufficiently robust to handle strong
posture variation or occlusions, as it assumes that the de-
scriptor extracted from each bounding box does not change
dramatically across several instances of the same object.

A second approach to object detection is given by
matching-based methods. Extracting a set of correspon-
dences among sets of features is a fundamental problem
in object detection. In general, the correspondence set ob-
tained by mere comparison of local descriptors includes nu-
merous false corresponding points. Various methods con-
sidering the overall consistency of the solution have been
proposed to eliminate these false matches, with derivations
of the QAP taking the lion’s share.

These formulations typically differ in the way the poten-
tials (composing matrix A in Eq. (1)) are defined, suggest-
ing that combinations of several similarity functions might
lead to different results depending on how each similarity
term is weighted relative to the others. In this view, there
has recently been some interest in learning the optimal set
of weights for the similarity functions [5, 10, 12, 14]. Cae-
tano et al. [5] optimized these parameters by minimizing
the Hamming loss between a ground-truth assignment vec-
tor x and an estimated assignment vector x̂. Leordeanu et
al. [10] took a similar view and ran the optimization pro-
cess based on a smoothed version of the objective function,
leading to an increase of performance. While these methods
require ground-truth correspondence sets, an unsupervised
learning method [12] was recently proposed that makes use
of a binarized assignment vector x, obtained as a solution
to a L2-regularized QAP, in place of the ground-truth as-
signment vector. This approach, which adopts the estimated
correspondence sets as ”teaching signals”, notably allows to
achieve equivalent performance to the ground-truth case.

A common feature of the methods mentioned above is
that they specifically attempt to improve matching perfor-
mance by promoting correct matches, while at the same
time restricting incorrect matches. Nevertheless, it is im-
portant to note that the obtained parameters do not nec-
essarily lead to superior performance in object detection
tasks. Although a few methods attempt indeed to “learn
the graph matching” for the classification task [11, 1], they
do not do so by directly minimizing the classification error.
In [11], for instance, the parameters used for matching are
learned independently of the object class (thus ignoring the

difference in scores across all classes), given positive (cor-
rect) correspondences and negative (incorrect) correspon-
dences in input. Brendel and Todorovic [1] learn the graph
structures themselves rather than their matching parameters,
whereas the similarity values of the nodes of given training
graphs are fixed.

In our work, we focus on learning the similarity func-
tions for pairwise potentials in graph matching. Intuitively,
the similarity functions tell us how important each feature
used in graph matching is to detect each target object. No
prior information on the weight parameters of the similarity
functions is given to the learning process. To detect ob-
jects, we obtain correspondence sets between points on ref-
erence shape data of target objects and observed shape data.
Differently from the other methods, we place a high value
on achieving proper similarity scores for each target object,
rather than improving the accuracy of each correspondence
set separately.

3. Method
Our objective is to learn the parameters of a score func-

tion g : X × Y → R representing the similarity value be-
tween an observed object X and a target object Y . Our
approach is based on the adoption of an online learning
method that, presuming target and non-target objects exist
in the scene, updates the model parameters by observing
training object samples one after another. Parameters are
updated in such a way to make the score of the correct ob-
ject higher than those of non-target objects. In the follow-
ing, we describe how the training samples are obtained, the
definition of the score function g, and the parameter learn-
ing step for the score function.

3.1. Training samples

In this paper, we consider generalized similarity func-
tions π defined by the composition:

π(ci, cj) = exp [−s (ci, cj)] , (2)

where s : C × C → R is a (not necessarily positive) func-
tion expressing the degree of compatibility of two candidate
matches ci and cj .

For the training process, we prepare a reference shape
model R for each target object, together with a collection
of observed shape data of the same object, which we de-
note by {O(pos)

i }i=1,...,N , and observed shape data of dif-
ferent objects, which make up the set {O(neg)

j }j=1,...,N ′ .
The process then proceeds as follows. A set of K points are
sampled from each reference shape R, and local descrip-
tors computed at each point. Then, for each observation
O

(pos)
i and O

(neg)
j we search the knn nearest neighbors (in

descriptor space) to each sample point in R; by doing so,
we obtain knnK candidate matches for each pair of shapes



(R,O
(pos)
i ) and (R,O

(neg)
j ). Since in this step we are only

looking at similarity of the descriptors, the correspondence
sets C(pos)

i , C
(neg)
j ⊂ X × Y obtained in this manner may

certainly include wrong matches. These wrong correspon-
dences are filtered out by solving problem (1); in particu-
lar, since density of the correspondence is not a concern at
this point, we take the point of view of inlier selection and
adopt the L1-regularized relaxation of the QAP (p = 1) as
proposed in [15], which allows to obtain an accurate (yet
sparse) solution to the resulting QAP in an efficient manner.
The solution vector x ∈ [0, 1] is then binarized in {0, 1} by
hard-thresholding. The result of this process is a collection
of filtered correspondence sets between the model R and
O

(pos)
i for i = 1, . . . , N , and between R and O

(neg)
j for

j = 1, . . . , N ′.
Note that the generality of the process allows the com-

patibility function s to be defined as desired. For rigid
object detection tasks we adopt the Euclidean distance
dE(a, b) of the pair (a, b) ∈ X ×X and define

sr((a, a
′), (b, b′)) ≡ |dE(a, b)− dE(a

′, b′)| , (3)

where (a, a′), (b, b′) ∈ C. Since rigid motions preserve
Euclidean distances, we expect a correct correspondence
to attain a value of zero under the function above. Simi-
larly, for non-rigid object detection tasks we employ intrin-
sic (i.e., isometry invariant) quantities. Namely, we con-
sider the multi-scale diffusion (MD) metric [16] dM (a, b)
and the commute-time (CT) metric [3] dC(a, b), to define

sn((a, a
′),(b, b′))≡ sM ((a, a′), (b, b′))+sC ((a, a′), (b, b′))

2
,

where sM and sC are defined as in (3), with the appropriate
metrics.

3.2. Score function

In the specific case in which the composite function of
Eq. (2) is directly replaced by the local measure of dis-
tortion |dX(a, b) − dY (a

′, b′)|, the quadratic form xTAx
encodes a notion of proximity between metric spaces X
and Y , namely their Gromov-Wasserstein distance [16, 13].
In particular, the two shapes are isomorphic (i.e., measure-
preserving isometric) if their Gromov-Wasserstein distance
equals zero. While in our current setting we replace the lo-
cal distortion criterion with a similarity potential, it makes
sense to regard the value attained by xTAx for each cor-
respondence set between R and each O

(pos)
i , O(neg)

j as the
similarity of the corresponding underlying metric spaces.
In particular, since we can only obtain a local optimum for
each (relaxed) QAP, different pairs of shapes will have lo-
cally optimal correspondences of different sizes; we thus
normalize the similarity values xTAx by dividing them by
the corresponding number of matches, which we denote by

M . The baseline score g<base> between two objects can
thus be defined as:

g<base> ≡ 2

M(M − 1)

M∑
i=1

M∑
j=i+1

exp [−s (ci, cj)] . (4)

The function above, which uniformly integrates the pair-
wise similarity over all correspondences, can be improved
by taking into account additional properties (e.g., color) to
help distinguishing and give an informed weighting of the
correspondences. Alternatively, it is possible to integrate
different similarity functions s with proper weights to de-
fine the total score function. The following subsections will
describe the design of the proposed score functions for rigid
and non-rigid object detection.

3.2.1 Rigid object detection (RGBD)

As noted in the previous sections, Eq. (3) is probably the
most direct way to encode a similarity criterion between
objects transforming in a rigid manner. However, with the
recent surge in availability of consumer-level 3D scanning
devices, there has been a growing interest in providing addi-
tional data together with the reconstructed geometry. Color
information, when available, can be employed to drastically
improve recognition results.

In Figure 1 we show a conceptual diagram of our ap-
proach for rigid object detection with RGBD data. Specifi-
cally, we operate in a quantized HSV space in which we dis-
cretize the hue value into k bins; we then define hi ∈ [0, 1]k

to be an indicator vector for the point in the reference shape
corresponding to the i-th candidate match, specifying to
which bin this point belongs to. Given two matches i and j,
we may then compute a matrix H for the corresponding hue
values as hih

T
j , and then compute a matrix H ′ where the

non-diagonal element H ′
mn = Hmn + Hnm(m �= n) and

the diagonal element H ′
nn = Hnn. Let qij ∈ [0, 1]k(k+1)/2

denote a vector which consists of the elements of the up-
per triangular portion (including diagonal components) of
H ′. Our objective here is to optimize the weight vector
w ∈ [0, 1]k(k+1)/2 for qij with respect to each target ob-
ject.

The final score function gr(w) for rigid object detection
is defined as follows:

gr(w) ≡ 2

M(M−1)

M∑
i=1

M∑
j=i+1

(
1−exp

[−α ·w · qij
sr(ci, cj)+ε

])
,

(5)
where α > 0 controls the shape of the exponential func-
tion, and ε is a small number preventing the denominator
from being 0. In our experiments, we set α = 10−3 and
ε = 10−20.



Figure 1. Conceptual diagram of the proposed learning method in a RGBD object detection scenario. Our method learns the weights for a
pair of matches distinguished by color so that the total score of a correct correspondence set is higher than a wrong one. In this example,
there are three different types of corresponding pairs: white-green, white-white, and green-green.

3.2.2 Non-rigid object detection

A common problem in the metric approach to match-
ing is represented by the appropriate choice of a metric
function that be invariant to a given class of deforma-
tions [13]. For example, geodesic distances are invariant to
nearly-isometric deformations but are extremely sensitive
to topological changes in the mesh, whereas commute-time
metrics [3] are more robust to topology and global scale
changes but less accurate on a local scale. In this set of ex-
periments, we are interested in learning the best choice for
an intrinsic metric (or combinations thereof) given different
types of deformations of a shape. In particular, we con-
sider two such distance functions in the definition of pair-
wise similarity: the multi-scale diffusion (MD) metric [16]
and the commute-time (CT) metric.

Letting w ≡ [wM wC ]
T ∈ R2 be a vector of weights

and s(ci, cj) ≡ [sM (ci, cj) sC(ci, cj)]
T ∈ R2, we define

the score function gn(w) for non-rigid object detection as:

gn(w) ≡ 2

M(M−1)

M∑
i=1

M∑
j=i+1

exp[−w · s(ci, cj)] . (6)

3.3. Learning of parameters

The method we propose in this subsection allows to ob-
tain the optimal w (appearing in Eqs. (5) and (6)) by com-
puting a separating hyperplane on the training samples.
This is similar in spirit to conventional methods such as
SVM, in that we optimize w so that the value of g(w) for a
positive sample is high and the value attained by a negative
sample is low. We do so by minimizing a quantity called
hinge loss (Eq. (8) below), which represents the penalty in-
curred by training samples for being within the margin of
the separating hyperplane.

Within this framework, the score function that outputs
how similar an observed object is to the target object must

range from −∞ to +∞. Therefore, we define the score
function f used for training as follows:

f(w, b) ≡ logit (g(w)) + b,

= log(g(w))− log(1− g(w)) + b, (7)

where b is an offset value that is optimized together with
w. Letting the label of a correct (positive) set of correspon-
dences be y = 1 and the label of a wrong (negative) set of
correspondences be y = −1, the hinge loss is defined as

l(w, b; (f, y)) =

{
0 yf(w, b) ≥ 1 ,

1− yf(w, b) otherwise .
(8)

We initialize w as w0 = (ε′, . . . , ε′), ε′ ∼ 0, and b as
b0 = 0. Each time a training correspondence set is ob-
served, these two parameters are updated accordingly. Let-
ting wt and bt be the parameters obtained after the t-th up-
date, the solutions at successive time steps are obtained by
solving the projection problem

{wt+1, bt+1}=arg min
w,b

1

2

(‖w −wt‖2+‖b− bt‖2
)

(9)

s.t. l(w, b; (ft, yt)) = 0. (10)

This problem can be solved in closed-form. In particular,
when ytft(wt, bt) ≥ 1, we have the steady states wt+1 =
wt and bt+1 = bt. Therefore, we can just consider the case
in which ytft(wt, bt) < 1. In this case, the Lagrangian
takes the form:

L(wt, bt, λ) =
1

2
‖wt+1 −wt‖2 + 1

2
‖bt+1 − bt‖2

+λ(1− ytft(wt, bt)). (11)

Differentiating with respect to wt and bt and setting the
derivatives to zero provides the following:

wt+1 = wt − λyt
∂ft(wt, bt)

∂wt
, (12)

bt+1 = bt − λyt. (13)



Therein, ∂
∂bt

ft(wt, bt) = 1. Plugging the above back into
(11) yields

L(λ) =
1

2
λ2

∥∥∥∥∂ft(wt, bt)

∂wt

∥∥∥∥
2

+
1

2
λ2+λ(1−ytft(wt, bt)).

(14)
Taking now the derivative of L(λ) with respect to λ and
setting it to zero gives us the following closed-form solution
for the optimal λ:

λ =
ytft(wt, bt)− 1∥∥∥∂ft(wt,bt)

∂wt

∥∥∥2 + 1
. (15)

Finally, wt+1 and bt+1 are obtained by the iterative equa-
tions:

wt+1 = wt +
(yt − ft(wt, bt))∥∥∥∂ft(wt,bt)

∂wt

∥∥∥2 + 1
· ∂ft(wt, bt)

∂wt
, (16)

bt+1 = bt +
(yt − ft(wt, bt))∥∥∥∂ft(wt,bt)

∂wt

∥∥∥2 + 1
, (17)

where the gradient of f is computed as:

∂f(w, b)

∂w
=

∂

∂w
(log(g(w))− log(1− g(w)))

=
1

g(w)(1− g(w))

∂g(w)

∂w
. (18)

Note that the gradient of gr(w) is given by

2

M(M−1)

M∑
i=1

M∑
j=i+1

(
α · qij

sE(ci, cj)+ε
· exp

[−α ·w · qij
sE(ci, cj)+ε

])
,

(19)
whereas the gradient of gn(w) becomes

− 2

M(M − 1)

M∑
i=1

M∑
j=i+1

s(ci, cj) · exp [−w · s(ci, cj)] .

(20)
The derivation of the gradient of gr(w) and gn(w) are omit-
ted for space reasons.

Discussion

It is particularly interesting to note that the proposed up-
date rule for the parameters shares a connection with the
Passive–Aggressive (PA) [6] online learning method of lin-
ear classifiers. Letting x be the descriptor of a training
sample, PA computes the gradient of the score function
f(x) = w · x + b to minimize the hinge loss, and it up-
dates the parameters with the constraint of minimizing the
L2 distance from the current parameters. The algorithm we

employ can be regarded as an extension to PA, obtained by
replacing the score function f(x) with Eq. (7). Note that
our approach is more general than PA as we allow any dif-
ferentiable score function to be adopted, whereas only lin-
ear scores can be employed with the PA method.

4. Results
4.1. Rigid object detection (RGBD)

Our first experiment is aimed at evaluating the proposed
method in a rigid setting, using data captured with a Kinect
sensor in a real-world environment. The captured data con-
sists of 3D point clouds, where each point is endowed with
a color attribute. The training set is composed of 10 target
objects, each coming with a reference model and nine ob-
servations from as many view points (see Fig. 2). Negative
samples for the non-target objects were prepared by captur-
ing 70 scenes containing none of the target objects, and then
by attempting to match each target model with these scenes
(see Fig. 3 (a)). We search the knn = 5 nearest neighbors in
RGB space1 to 2,000 sample points in a reference model to
obtain the candidate correspondence sets. For comparison,
we extracted SIFT keypoints from color images and per-
formed brute-force matching, i.e., nearest neighbors in de-
scriptor space. Then we solved the QAP problem via [15] to
obtain final (sparse) correspondence sets. We set the quan-
tization number of hue values to k = 3. Experiments with
other values for k led to substantially similar results. We

1

2

3

4

5

6

7

8

9

10

Figure 2. Target objects used in the training dataset for similarity
weight learning. Reference models of the target objects are shown
in the leftmost column.

1Depth information is only used to obtain 3D coordinates of each point.



Figure 3. Exemplar correspondences between the reference model
of the target object #1 and observed objects. (a) Positive corre-
spondences in training data. (b) Correct correspondences in testing
data. (c) Wrong correspondences in testing data.

terminate the learning process if the sum of the hinge loss
becomes sufficiently small before γ = 100 iterations.

Quantitative evaluation was performed by capturing 120
scenes in a different environment and then computing the
correspondence sets of all target objects on each of them
(see Fig. 3 (a) and Fig. 3 (b)). The Precision-Recall curves
and average precision values are shown in Fig. 4. The blue
lines represent the results with SIFT keypoints and the base-
line score function (Eq. (4)), the green lines represent the
results with RGB nearest neighbor search and the baseline
score function (Eq. (4)), and the red lines represent the re-
sults with RGB nearest neighbor search and the proposed
score function (Eq. (5)). SIFT keypoints do not bring any
clear advantage except for target objects 1 and 5, which con-
tain textured planes. RGB nearest neighbor search with the
proposed score function outperformed the baseline score in
all the cases except for target object 4. The average val-
ues of precision are 0.13 with SIFT keypoints, 0.27 with
RGB nearest search and the baseline score function, and
0.31 with RGB nearest search and the proposed score func-
tion.

4.2. Non-rigid object detection

In the second set of experiments we evaluate the im-
provements gained by adopting the proposed learning
method in a non-rigid matching scenario. This setting is
considerably more challenging than the previous case as
the shapes are allowed to undergo non-rigid deformations.
Recent attempts at introducing domain knowledge into this
family of problems include [18], where the authors trained a
random forest with an intrinsic shape descriptor to directly
estimate dense correspondences between complete (i.e., no
partiality is allowed), previously unseen shapes. Differently
from [18], in this section we demonstrate the applicabil-
ity of our approach to learn an optimal weighting of met-
ric functions for each class of shapes; the learned weights
can then be employed within a QAP formulation to match
partial, deformable shapes as in [16].

For this set of experiments we make use of the

human dog horse

Model Shapes

Transformed

Shape Samples

5 levels

Figure 5. Datasets used in the non-rigid recognition experiments.

Figure 6. Examples of positive (left) and negative (right) corre-
spondence sets.

SHREC’10 correspondence benchmark [2]. This dataset
consists of three classes, namely “human”, “dog”, and
“horse”; each class consists of one reference shape model
and several data shapes transformed with nine different de-
formations (see Fig. 5), each coming in 5 intensities. We
used one class among “human”, “dog”, and “horse” as the
target class and used the samples in the other classes as neg-
ative samples. In each experiment, we used the samples of
one type among all the 9 types of deformation.

In order to keep the problem more tractable, each shape
was sampled at 200 points via Farthest Point Sampling
(FPS) [3] using the extrinsic Euclidean metric (this choice is
more robust to topology and partiality deformations than us-
ing an intrinsic metric). We applied FPS 10 times per shape
starting from different seeds, obtaining 10 point sets per
shape, and for each point in the sample sets we computed
an intrinsic local descriptor, namely its Scale-Invariant Heat
Kernel Signature (SI-HKS) [4]. The “positive” set of corre-
spondences was formed by manually selecting 200 ground-
truth pairs among each deformed shape O

(pos)
i and the cor-

responding model R. The “negative” sets (i.e., sets of
matches between a deformed shape from one class and
the reference model from another class) were formed by
seeking the 5 nearest points in descriptor space for all the
200 sampled points on each reference shape, thus obtaining
1,000 candidate matches per set. Exemplary positive and
negative correspondence sets are shown in Fig. 6.

The “human”, “dog”, and “horse” shapes were respec-



Figure 4. Precision-Recall curves and average precision values (below each Precision-Recall curve). The results of target objects from
No. 1 to No. 10 are shown from the top left to the bottom right. The blue lines represent the results with SIFT keypoints and the baseline
score function (Eq. (4)), the green lines represent the results with RGB nearest neighbor search and the baseline score function (Eq. (4)),
and the red lines represent the results with RGB nearest neighbor search and the proposed score function (Eq. (5)).

tively used as a target object, and shapes not belonging to
the target class were used as the negative samples. We then
ran an experiment for each type of deformation. Specifi-
cally, for each experiment we constructed the training set
by randomly selecting one positive and negative samples
out of the 10 sets of FPS samples per shape, and we did
this at deformation strengths 1, 3, and 5 (for a total of 3
positive samples and 6 negative samples in the training set).
The test set was then formed by selecting all 10 sets of FPS
samples per shape; we did this at the remaining deformation
strengths 2 and 4, for a total of 2×10 = 20 positive samples
and 2×2×10 = 40 negative samples in the test set. We set
the maximum number of learning iterations to γ = 10, 000.

The resulting average precision values are presented in
Table 1. From left to right we report the average pre-
cision values obtained by using MD only (“MD”), CT
only (“CT”), uniform weights {0.5, 0.5} (“baseline”), and
learned weights (“learned”). Average precision over the
whole dataset is reported in the last row; the proposed
method (“learned”) gave the best overall results when com-
pared with “MD”, “CT”, and “baseline” alone.

Figure 7 shows the learned weights for similarity func-
tions (MD and CT) in the deformation class “scale” and
“shotnoise”. Note that in the case of “scale” samples, the
average precision values obtained with the CT metric are
higher than those obtained with MD; likewise, the learned

weight for the CT term is higher than MD. This is easily
explained since CT is a fully scale-invariant metric whereas
MD is only invariant to limited scale ranges. Similarly, the
learned weight for the MD term is higher than CT in the
case of “shotnoise” samples, whereas the average precision
values obtained with the MD metric are higher than those
obtained with CT. This implies, in particular, that a proper
selection of the metrics could be achieved when the “scale”
samples and “shotnoise” samples are used.

5. Conclusion
In this paper we proposed an optimization method for

estimating the parameters that typically appear in graph-
theoretical formulations of the matching problem. In par-
ticular, we restricted our attention to the object detection
scenario. We formulated our method in an online learning
framework, and evaluated the approach on two challeng-
ing problems, namely object detection of color 3D point
clouds in a real environment, and intrinsic metric learning
for deformable 3D shapes. The learning process improved
the performance of object detection in both the considered
scenarios. Our method can be easily extended and accom-
modated by considering different definitions of similarity.
In particular, considering higher-order potentials and hyper-
graph matching scenarios are important future directions of
research.



Table 1. Average precision in a non-rigid object detection task.

Average Precision
Deform. Target MD CT baseline learned

holes human 1.00 0.94 1.00 1.00
holes dog 0.69 0.94 0.75 1.00
holes horse 1.00 0.96 1.00 1.00

isometry human 1.00 1.00 1.00 1.00
isometry dog 1.00 1.00 1.00 1.00
isometry horse 1.00 1.00 1.00 1.00

microholes human 1.00 1.00 1.00 1.00
microholes dog 1.00 1.00 1.00 1.00
microholes horse 1.00 1.00 1.00 1.00

noise human 0.33 0.82 0.33 1.00
noise dog 0.33 0.82 0.33 0.75
noise horse 0.85 1.00 0.85 1.00

localscale human 0.33 0.69 0.33 1.00
localscale dog 0.33 0.52 0.36 1.00
localscale horse 1.00 1.00 1.00 1.00
topology human 0.33 0.55 0.34 1.00
topology dog 0.68 1.00 0.82 1.00
topology horse 1.00 1.00 1.00 1.00
sampling human 1.00 1.00 1.00 1.00
sampling dog 0.66 1.00 0.78 1.00
sampling horse 1.00 1.00 1.00 1.00

scale human 0.33 1.00 0.33 0.74
scale dog 0.33 1.00 0.33 1.00
scale horse 0.33 1.00 0.33 1.00

shotnoise human 1.00 0.77 1.00 0.96
shotnoise dog 0.85 0.75 0.77 1.00
shotnoise horse 1.00 1.00 1.00 1.00

Average 0.76 0.92 0.77 0.98
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Figure 7. Learned weights for similarity functions (MD and CT)
in the deformation class “scale” (top) and “shotnoise” (bottom).

References
[1] W. Brendel and S. Todorovic. Learning spatiotemporal

graphs of human activities. In Proc. IEEE ICCV, 2011. 2

[2] A. M. Bronstein, M. M. Bronstein, U. Castellani, A. Dubrov-
ina, et al. Shrec 2010: robust correspondence benchmark. In
Proc. EUROGRAPHICS Workshop on 3D Object Retrieval
(3DOR), 2010. 6

[3] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numer-
ical geometry of non-rigid shapes. Springer, 2008. 3, 4, 6

[4] M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel
signatures for non-rigid shape recognition. In Proc. IEEE
CVPR, 2010. 6

[5] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J.
Smola. Learning graph matching. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI), 31(6):1048–
1058, 2009. 2

[6] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer. Online passive-aggressive algorithms. Machine
Learning Research, 7:551–585, 2006. 5

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. IEEE CVPR, 2005. 2

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 32(9), 2010. 2

[9] M. Leordeanu and M. Hebert. A spectral technique for cor-
respondence problems using pairwise constraints. In Proc.
IEEE ICCV, 2005. 1

[10] M. Leordeanu and M. Hebert. Smoothing-based optimiza-
tion. In Proc. IEEE CVPR, 2008. 2

[11] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local
appearance: Category recognition from pairwise interactions
of simple features. In Proc. IEEE CVPR, 2007. 2

[12] M. Leordeanu, R. Sukthankar, and M. Hebert. Unsupervised
learning for graph matching. International Journal of Com-
puter Vision, 96(1):28–45, 2012. 2

[13] F. Mémoli. Gromov-Wasserstein distances and the met-
ric approach to object matching. Found. Comput. Math.,
11:417–487, 2011. 3, 4

[14] D. Pachauri, M. Collins, V. Singh, and R. Kondor. Incor-
porating domain knowledge in matching problems via har-
monic analysis. In Proc. ICML, 2012. 2
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