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Abstract

In this work we revisit the Mumford-Shah functional, one
of the most studied variational approaches to image seg-
mentation. The contribution of this paper is to propose an
algorithm which allows to minimize a convex relaxation of
the Mumford-Shah functional obtained by functional lifting.
The algorithm is an efficient primal-dual projection algo-
rithm for which we prove convergence. In contrast to exist-
ing algorithms for minimizing the full Mumford-Shah this
is the first one which is based on a convex relaxation. As
a consequence the computed solutions are independent of
the initialization. Experimental results confirm that the pro-
posed algorithm determines smooth approximations while
preserving discontinuities of the underlying signal.

1. Introduction
In 1989 Mumford and Shah [16] suggested to minimize

the functional

E(u) =λ

∫
Ω

(
f − u)2dx+

∫
Ω\Su

|∇u|2dx+ νH1(Su), (1)

in order to approximate an input image f : Ω ⊂ R2 → R
in terms of a piecewise smooth function u : Ω → R.
The functional contains a data fidelity term and two regu-
larity terms imposing smoothness of u in areas separated
by the discontinuity set Su and regularity of Su in terms of
its one-dimensional Hausdorff measure H1(Su). Related
approaches were proposed in a spatially discrete setting by
Geman and Geman [12] and by Blake and Zisserman [4]. To
date the paper of Mumford and Shah has attracted more than
1600 citations. In practice, one of the major challenges is to
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develop efficient algorithms to compute high quality min-
imizers of this functional. In the following we will briefly
review a number of the most popular algorithms and discuss
their shortcomings.

(a) Input image (b) Approximation

Figure 1. Approximation of a natural image using the proposed
algorithm for minimizing the piecewise smooth Mumford-Shah
functional. Our method leads to high quality solutions being in-
dependent from the initialization.

1.1. Related Work

Minimizing the Mumford-Shah functional in its original
setting turns out to be a challenging problem due to the
non-regularity of the edge term. It is therefore not aston-
ishing that there have been several lines of research dealing
with the question of how to find good approximations of the
Mumford-Shah functional.

One of the earliest attempts are based on so-called con-
tinuation methods, such as simulated annealing [12] or the
graduated non convexity (GNC) procedure [4]. The idea is
to minimize the original energy by gradually decreasing a
continuation parameter. However, the performance of these
methods largely depend on the dynamics of the continua-
tion parameter and therefore tend to get stuck in bad local
minima.

A quite popular class of algorithms is based on the level
set method [20, 19] or splines [10]. While these meth-



ods work well for certain image segmentation tasks, they
are limited in several ways. Firstly, they do not allow the
formation of open boundaries (also known as crack tips)
since level sets always being closed regions, Secondly, the
curves are propagated only locally and therefore can easily
get stuck in local minima (e.g. they do not allow to detect
interior boundaries). Lastly, in the case of multiple regions
regions, the cost functional overcounts the boundary length
in those regions where multiple zero level sets meet. Alter-
natively the level set framework can be replaced by graph
cut algorithms [14] or convex relaxation approaches [9, 7].
While these methods allow to find good solutions with re-
spect to the curve evolution (for two regions they can even
find the globally optimal solution), these methods still do
not minimize the full Mumford-Shah energy, as we do so
in this work. Similar to level sets, graph based approaches
also do not allow to represent open boundaries.

A special case of the full Mumford-Shah functional - the
piecewise constant Mumford-Shah functional - is obtained
by setting the weight of the smoothness term in (1) to +∞.
This results in a piecewise constant approximation of the
input image f . Very recently Pock et al. proposed in [17] a
convex relaxation approach which allows to compute high
quality solutions of the piecewise constant Mumford-Shah
functional.

In [3], Ambrosio and Tortorelli proposed to approximate
the original Mumford-Shah energy (1) by a sequence of
simpler elliptic variational problems. They proposed to re-
place the edge set Su by means of a 2D function z and de-
signed the so-called phase field energy

Lz,ε =
∫

Ω

ε|∇z|2dx +
∫

Ω

(1− z)2

4ε
dx . (2)

The remarkable property associated with this formulation
is that as ε → 0, Lz,ε approaches the length of Su, i.e.
H1(Su). However, this approximation works well only if
the scale of ε is in the order of the size of the pixel grid.
On the other hand, the Ambrosio-Tortorelli approximation
can handle open boundaries and therefore being more in the
spirit of the original formulation.

In [13, 8] the authors presented a non-local approxima-
tion of the Mumford-Shah functional which is inspired by
the original discrete model of Blake and Zisserman [4].
The major advantage of this formulation is, that the ex-
plicit computation of the jump set Su is avoided by us-
ing a family of continuous and non-decreasing functions
f : [0,+∞)→ [0,+∞) satisfying

lim
t→0+

f(t)
t

= 1 , lim
t→+∞

f(t) = 1 .

While Chambolle uses functions of the form f(t) =
arctan(t), it was later shown that f(t) = log(1 + t) is a
better choice, since it is less sensitive to local minima and

requires a smaller number of iterations to converge [15]. Let
us finally mention that this types of approximations work
well in practice but minimize only an anisotropic variant of
the Mumford-Shah functional.

1.2. Contribution

In this paper we propose a novel algorithm to compute
high quality solutions of the piecewise smooth Mumford-
Shah functional. Our approach is based on a convex rep-
resentation due to Bouchitte, Alberti and Dal Maso. As
the central contribution of our work, we propose a novel
fast and convergent primal-dual algorithm to compute the
solution of the convex representation of the Mumford-
Shah functional. Basically, computing the solution of
the Mumford-Shah functional amounts for a saddle point
search in higher dimensions. We compare the performance
of our algorithm to an old algorithm proposed due to Popov
and a recently proposed primal-dual algorithm for which
convergence cannot be proven. It turns out that our new
primal-dual algorithm clearly outperforms both methods. In
experimental results on synthetic and real images we com-
pare our algorithm to a non convex method of Ambrosio
and Tortorelli. We demonstrate that our algorithm leads to
more precise solutions while being independent of the ini-
tialization.

2. Convex Relaxation for the Mumford-Shah
Functional

Let Ω ⊂ R2 denote the image plane and let u ∈
SBV (Ω)1 Denote the upper level sets of u by the charac-
teristic function 1u : Ω × R → {0, 1} of the subgraph of
u:

1u(x, t) =
{

1, if t < u(x),
0, else. (3)

In a series of papers Bouchitte, Alberti, Dal Maso [5, 1]
proposed convex relaxations for the Mumford-Shah func-
tional. The main result of their work is summarized by the
following theorem.

Theorem 1. For a function u ∈ SBV (Ω) the Mumford-
Shah functional can be written as

E(u) = sup
ϕ∈K

∫
Ω×R

ϕD1u, (4)

1SBV (Ω) denotes the special functions of bounded variation [2], i.e.
functions u of bounded variation for which the derivative Du is the sum
of an absolutely continuous part∇u · dx and a discontinuous singular part
Su – see Figure 2.
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Figure 2. Schematic plot of a function u ∈ SBV (Ω) showing
the continuous and discontinuous part. The convex relaxation
of the Mumford-Shah functional is based on implicitly repre-
senting functions u by the characteristic function 1u of its sub-
graph which is 1 only in the gray shaded area under the curve.
A convex approximation of the Mumford-Shah functional (1)
is obtained by maximizing the flux through the interface Γu

over all vector fields in an appropriately chosen convex set.

with a convex set

K =
{
ϕ ∈ C0(Ω× R; R2) :

ϕt(x, t) ≥ ϕx(x, t)2

4
− λ(t− f(x))2,∣∣∣∣∫ t2

t1

ϕx(x, s)ds
∣∣∣∣ ≤ ν},

(5)

where the inequalities in the definition of K hold for all
x ∈ Ω and for all t, t1, t2 ∈ R.

In particular, if for a given u the supremum in (4) is at-
tained by a divergence-free vector field ϕ̄ ∈ K, then the
solution u solves the original Mumford-Shah problem op-
timally. The corresponding vector field ϕ̄ is called a cal-
ibration. This is easily verified, because for any function
v : Ω → R which agrees with u on the boundary of Ω we
have due to the divergence theorem:

E(v) = sup
ϕ∈K

∫
Ω×R

ϕD1v

≥
∫

Ω×R
ϕ̄D1v =

∫
Ω×R

ϕ̄D1u = E(u), (6)

which implies the minimality ofE(u). For the sake of com-
pleteness let us quickly sketch the proof of Theorem 1. For
simplicity, we will present the proof for the case λ = 0 only
but an extension to λ > 0 is straight forward.

Proof. The proof start by expressing the integral on the
right-hand side of (4) as a flux through the interface Γu rep-
resenting the discontinuities of 1u – see Figure 2:∫

Ω×R
ϕD1u =

∫
Γu

ϕ · νΓu
dH2, (7)

where the normal νΓu on the interface Γu – see Figure 2 –
is given by:

νΓu =


(∇u,−1)√
|∇u|2+1

, if u ∈ Ω\Su

(νu, 0), if u ∈ Su

, (8)

where νu denotes the unit normal on Su pointing from the
side of u− to that of u+. The flux through the interface Γu

can therefore be written as:∫
Γu

ϕ·νΓu
dH2 =

∫
Ω\Su

(ϕx·∇u−ϕt)dx+
∫
Su

(∫ u+

u−
ϕxdt

)
νudH1.

Thus the flux through Γu can be expressed as the sum of
an integral over Ω\Su and integral over Su. The two con-
straints on ϕ imposed in K assure that:

ϕx · ∇u− ϕt ≤ |∇u|2, (9)

and that ∣∣∣∣∫ u2

u1

ϕxdt

∣∣∣∣ ≤ ν, (10)

which implies that the flux through Γu provides a lower
bound on the Mumford-Shah energy:

E(u) ≥ sup
ϕ∈K

∫
Γu

ϕ · νΓu
dH2. (11)

In addition, one can show (through a rather technical proof)
that it is possible to build vector fields in K such that (9) and
(10) are almost equalities, up to an arbitrarily small error,
showing that the equality in (4) holds.

In order to compute a minimizer of the Mumford-Shah
functional, we substitute 1u in (4) by a generic function
v(x, t) : Ω× R→ [0, 1] which satisfies

lim
t→−∞

v(x, t) = 1 , lim
t→+∞

v(x, t) = 0 . (12)

Hence, we are going to face the following optimization
problem:

min
v

{
E(v) = sup

ϕ∈K

∫
Ω×R

ϕDv

}
, (13)

which clearly poses a convex optimization problem. How-
ever, the crucial question remains, whether an optimal pair
(v∗, ϕ∗) of (13) also admits a global minimizer of the
Mumford-Shah functional? This would be true if one could
proof a co-area formula [11]

E(v) =
∫ 1

0

E(1{v>s})ds. (14)

Unfortunately, (14) does not hold in the case of the
Mumford-Shah functional. On the other hand, this formula



already suggests that if v∗ is binary, (14) is fulfilled and we
have found a global minimizer of the Mumford-Shah func-
tional. Let us finally mention that for functionals which are
convex in Du, the co-area formula holds. For example, in
our setting, this is the case for ν = +∞.

3. Numerical Algorithms
In this section we present numerical algorithms to com-

pute the solution of the relaxed problem (13).

3.1. Discrete Setting

For notational simplicity we may assume that Ω =
[0, 1]2 and u(x) ∈ [0, 1]. That is, the subgraph of the func-
tion u is defined in the unit cube [0, 1]3. For discretization,
we use a regular (N ×N)×M pixel grid defined by

G =
{

(i∆x, j∆x, k∆t) :

i, j = 1, 2, . . . , N, k = 1, 2, . . . ,M
}
, (15)

where (i, j, k), are the indices of the discrete locations on
the grid and ∆x = 1/N and ∆t = 1/M denote the dis-
cretization widths of the domain and the codomain of u.

Next, let us introduce the variables x ∈ X : G → R
and y ∈ Y : G → R3 which are the discrete versions of v
and φ in (13). In the following we will treat x as the primal
variable and y as the corresponding dual variable. Then we
define a discrete version of (13):

min
x∈C

max
y∈K
〈Ax, y〉 , (16)

where the linear operator A resembles the discrete gradi-
ent operator. For discretization, we use simple forward dif-
ferences with Neumann boundary conditions. Furthermore,
the convex set C ⊆ X is given by

C =
{
x ∈ X : x(i, j, k) ∈ [0, 1]

}
, (17)

and additionally satisfies the boundary constraints
x(i, j, 1) = 1 and x(i, j,M) = 0 to account for the limits
given in (12). Finally, the convex set K ⊂ Y is given by

K =
{
y = (y1, y2, y3)T ∈ Y :

y3(i, j, k) ≥ y1(i, j, k)2 + y2(i, j, k)2

4
− λ(

k

L
− f(i, j))2,∣∣∣∣∣∣

∑
k1≤k≤k2

(y1(i, j, k), y2(i, j, k))T

∣∣∣∣∣∣ ≤ ν
}
. (18)

In the next section we will present a novel globally con-
vergent first order primal-dual algorithm to compute the so-
lution of (16). It will turn out that the proposed algorithm is
efficient in terms of computational complexity and outper-
forms existing methods.

3.2. A Fast Primal-Dual Algorithm

The optimization problem (16) poses a classical saddle-
point problem. The algorithm we propose here is a variant
of an old algorithm proposed by Popov in [18]. We have
modified it in order to reduce the number of projections,
which is the most costly step in our case. Our scheme is
also related to a more simple primal-dual projected gradient
ascend/descend scheme which has been used in [21], but for
which convergence has not been proven so far.

The algorithm we are going to describe here applies for
a larger class of problems including pointwise linear terms
〈g, x〉 and 〈h, y〉. Problem (16) can obtained by simply set-
ting g = h = 0. However, let us turn back to the more
general problem, which is of the form

min
x∈C

max
y∈K
〈Ax, y〉+ 〈g, x〉 − 〈h, y〉 , (19)

whereC ⊆ X ,K ⊆ Y are closed, convex sets,A : X → Y
is a continuous linear operator with norm L. X and Y are
finite-dimensional spaces, although the proof also holds for
Hilbert spaces: however, in this case, the problem is purely
academic since in most interesting cases A would not be
bounded. We assume the problem has at least a solution
(x̂, ŷ) ∈ C ×K, and in particular, we have for any (x, y) ∈
C ×K,

〈A∗y + g, x− x̂〉 − 〈Ax− h, y − ŷ〉 ≥ 0 , (20)

where A∗ denotes the adjoint operator of A.
Our algorithm is as follow: we choose (x0, y0) ∈ C×K

and let x̄0 = x0. We choose two time-steps τ, σ > 0. Then,
we let for each n ≥ 0

yn+1 = ΠK(yn + σ(Ax̄n − h))

xn+1 = ΠC(xn − τ(A∗yn+1 + g))

x̄n+1 = 2xn+1 − xn

(21)

(observe that x̄n+1 might not be in C, if it is not a linear
space). Then, we have the following theorem:

Theorem 2. Choose τ , σ such that τσL2 < 1. Then, as
n→∞, (xn, yn)→ (x∗, y∗) which solves (19).

The proof of Theorem 2 is presented in Appendix A.

Let us now apply the proposed algorithm to problem
(16). The Lipschitz parameter for the linear operator A
used in 16) is computed as L =

√
12 (assuming that

∆x = ∆t = 1). According to Theorem 2 we choose
τ = σ = 1√

12
.

In each iteration of our primal-dual algorithm we have to
perform Euclidean projections of x and y onto the feasible
sets C and K. The projection of x onto C can be achieved
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Figure 3. Comparison of the convergence behavior of F-PD, S-PD and P-PD using the synthetic test image of Figure 4. (a) shows the global
convergence behavior along 1000 iterations and (b) shows the last 600 iterations. Note that S-PD is very fast in the beginning but shows
a bad asymptotic convergence behavior. F-PD and P-PD show an iproved asymptotic convergence behavior, whereas the computational
complexity of the proposed algorithm (F-PD) is about the half of P-PD.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Piecewise smooth approximation of a synthetic test image of size 128 × 128 shown in (a). (b) shows the image degraded by
5% Gaussian noise. (c) shows the result of the phase field approach of Ambrosio and Tortorelli, the corresponding phase field is depicted
in (e). (d) shows the result using the proposed approach, (f) shows the 0.5-isosurface rendering of the corresponding higher-dimensional
solution. (g) and (h) show zoomings of (c) and (d). Note the artifacts of the method of Ambrosio and Tortorelli near discontinuities.

by a simple truncation operation x = min {1,max {0, x}}.
The projection of y onto K is more involved since it
takes into account non-local constraints. We therefore use
Dykstra’s iterative projection algorithm [6] to compute the
projection. In the inner loop of Dykstra’s algorithm we
use Newton’s algorithm to perform the projection onto the
parabola as imposed by the first constraint in (18) an a sim-
ple soft shrinkage schemes to account for the non-local con-

straints in (18).
Figure 3 shows a comparison of our proposed fast

primal-dual algorithm (F-PD) to the simple primal-dual al-
gorithm (S-PD) of [21] and Popov’s primal-dual algorithm
(P-PD) [18]. The comparison is taken using the synthetic
test image of Figure 4.

One can observe that S-PD is very fast during the first
iterations, but after approximately 400 iterations, F-PD out-



(a) (b) (c)

Figure 5. Piecewise smooth approximation of the drawing “La dama dell’ermellino” of Leonardo Da Vinci. (a) shows the 256 × 256
input image, (b) shows the piecewise smooth approximation using the proposed approach and (c) depicts a zooming which shows that the
proposed method is able to preserve fine scale structures with sharp discontinuities.

performs S-PD and also shows an improved asymptotic be-
havior (see the zooming). It is important to note that F-
PD has almost the same computational complexity as S-PD
since it needs the same number of projections, which is the
most costly part. P-PD is very slow in the beginning but af-
ter approximately 600 iterations, it also outperforms S-PD.
After 1000 iterations P-PD reaches the same dual energy
but we point out that P-PD needs twice as much projections
as our algorithm and is therefore approximately two times
slower.

3.3. Parallel Implementation

Our proposed primal-dual algorithm can be effectively
parallelized on graphics processing units (GPUs). We im-
plemented our algorithm on the GPU using the Nvidia
CUDA framework. The algorithm are executed on a Tesla
C1060 GPU running a 64 Bit Linux system. The speedup
compared to a C/C++ implementation is about a factor of
30. Typical execution times for 128 × 128 images with the
solution discretized on 32 levels are in the order of 600 sec-
onds (see also Figure 3).

4. Experimental Results
In this section we provide experimental results of our al-

gorithm using synthetic and real images. In all experiments,
the proposed F-PD algorithm was iterated until the change
of energy was below a certain threshold. The final solution
u(x) was computed out of the higher-dimensional function
v(x, t) be extracting the 0.5-isosurface.

4.1. Synthetic example

In our first experiment, we apply our algorithm for com-
puting a piecewise smooth approximation of a synthetic test

image. The clean image has been degraded by adding 5%
Gaussian noise. Our algorithm was executed by discretiz-
ing the solution u on M = 32 levels. Somehow surpris-
ingly, this rather coarse discretization of u already leads to
high quality solutions. The parameters where set to ν = 5
and λ = 0.1. Figure 4 shows a comparison of the proposed
method to the phase field approximation of Ambrosio and
Tortorelli (AT). One can observe that our method leads to
smooth regions and sharp boundaries whereas the method
of Ambrosio and Tortorelli shows artifacts near discontinu-
ities (see also the zoomings).

4.2. Natural image

Figure 5 shows a piecewise smooth approximation of the
drawing “La dama dell’ermellino” of Leonardo Da Vinci.
The solution u was discretized using M = 32 and the pa-
rameters were set to ν = 5 and λ = 0.1. This example
shows that the proposed method is able to preserve fine-
scale structures with sharp discontinuities.

4.3. Crack Tip

One central problem of the Mumford-Shah functional
is the proof of optimality and existence of the so-called
crack-tip problem, which plays a central role in the mod-
eling of open boundaries in segmentation problems and is
also important for the study of cracks in fracture mechan-
ics. In order to compute the crack-tip example we gener-
ated a synthetic input image with the function I(x, y) =√
r(x, y) sin(θ(x, y)/2), where r(x, y) is the Euclidean

distance of a point (x, y) to the image center and θ(x, y) is
the angle of the point (x, y) to the horizontal line. The func-
tion u was discretized using M = 64 levels and the param-
eter ν was set to 12. The parameter λ was set to 0 inside a
disk-like region and set to +∞ outside. Hence the solution
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Figure 6. Computing the solution of the crack tip problem. (a) shows the 127 × 127 input image. The gray disk depicts the region where
the parameter λ was set to 0. (b) shows the result of the approach of Ambrosio and Tortorelli from an initial guess close to the true solution
and (c) shows the solution obtained from a bad initial guess. (d) shows the result of the proposed algorithm and (e) shows the 0.5-isosurface
rendering of the corresponding higher-dimensional solution. Note that our method gives a good approximation to the crack-tip problem,
which is independent from any initialization whereas the method of Ambrosio and Tortorelli heavily relies on the initial guess.

u(x, y) takes exactly the same values as I(x, y) outside the
disk and minimizes the Mumford-Shah energy inside the
disk. Figure 6 shows a comparison of our convex method
with the non convex phase field approach of Ambrosio and
Tortorelli. One can see that the method of Ambrosio and
Tortorelli leads to good results only when providing a good
initial guess. In contrast, since being a convex method, our
method delivers a good approximation of the crack-tip in-
dependent of any initialization.

5. Conclusion
We proposed an algorithm for minimizing a convex

relaxation of the piecewise smooth Mumford-Shah func-
tional. The convex formulation is obtained by functional
lifting in higher dimension and convex relaxation. The solu-
tion of the relaxed problem amounts to finding saddle points
of a convex-concave functional. We propose to solve this by
a novel primal-dual projected gradient descent/ascend algo-
rithm for which we prove convergence. To the best of our
knowledge, this is the first algorithm to minimize the piece-
wise smooth Mumford-Shah functional in a manner that is
independent of initialization. In experimental comparisons
on synthetic and real images we demonstrate that it it better
reconstructs piecewise smooth signals than the commonly
used approach of Ambrosio and Tortorelli.

Appendix A
Proof. We closely follow the proof in [18]. First, we ob-
serve that for any u ∈ Y and v ∈ K,

‖v −ΠK(u)‖2 ≤ ‖v − u‖2 − ‖u−ΠK(u)‖2 (22)

so that, choosing v = ŷ and u = yn +σ(Ax̄n−h), we find

‖yn+1 − ŷ‖2 ≤ ‖yn − ŷ‖2 − ‖yn − yn+1‖2
+ 2σ

〈
Ax̄n − h, yn+1 − ŷ〉 . (23)

In the same way,

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − ‖xn − xn+1‖2
− 2τ

〈
A∗yn+1 + g, xn+1 − x̂〉 . (24)

We let for each n, Dn = σ‖xn − x̂‖2 + τ‖yn − ŷ‖2. Mul-
tiplying (23) by τ , (24) by σ, and adding both we get

Dn+1 ≤ Dn − τ‖yn − yn+1‖2 − σ‖xn − xn+1‖2
−2στ

( 〈
A∗yn+1+ g, xn+1− x̂〉−〈Ax̄n− h, yn+1− ŷ〉 )

(25)

It follows from (20) that〈
A∗yn+1 + g, xn+1 − x̂〉− 〈Ax̄n − h, yn+1 − ŷ〉

≥ 〈A(xn+1 − x̄n), yn+1 − ŷ〉
=
〈
A(xn+1 − 2xn + xn−1), yn+1 − ŷ〉

=
〈
A(xn+1 − xn), yn+1 − ŷ〉−〈A(xn − xn−1), yn − ŷ〉

+
〈
A(xn − xn−1), yn − yn+1

〉
≥ 〈A(xn+1 − xn), yn+1 − ŷ〉−〈A(xn − xn−1), yn − ŷ〉

− L‖xn − xn−1‖‖yn − yn+1‖ (26)

We choose M > N ≥ 1 and sum (25) from N to M ,
using (26) and 2ab ≤ δa2 +b2/δ for any a, b and any δ > 0.
It follows

DM+1 ≤

DN − τ
M∑

n=N

‖yn − yn+1‖2 − σ
M∑

n=N

‖xn − xn+1‖2

−2τσ
( 〈
A(xM+1 − xM ), yM+1 − ŷ〉

− 〈A(xN − xN−1), yN − ŷ〉 )
+τσL

(
δ

M−1∑
n=N−1

‖xn+1 − xn‖2 +
1
δ

M∑
n=N

‖yn − yn+1‖2
)
.



Choosing δ =
√
σ/τ , so that σL/δ = τLδ =

√
στL < 1,

and δ′ ∈ (σL, 1/(τL)), so that both τ ′ = τσL/δ′ < τ and
τσL2 < τLδ′ < 1, it becomes

σ‖xM+1 − x̂‖+ (τ − τ ′)‖yM+1 − ŷ‖2

+ τ(1−√στL)
M∑

n=N

‖yn − yn+1‖2

+σ(1−√στL)
M−1∑
n=N

‖xn − xn+1‖2

+σ(1− τLδ′)‖xM − xM+1‖2

≤ DN + τ1/2σ3/2L‖xN − xN−1‖2
+ 2τσ

〈
A(xN − xN−1), yN − ŷ〉 .

(27)

We deduce that both ‖xM+1 − x̂‖ and ‖yM+1 − ŷ‖ are
bounded, and, as well, that both ‖yM+1 − yM‖ and
‖xM+1 − xM‖ go to zero as M →∞.

Hence, there is a subsequence (xMk , yMk) which con-
verge to some couple (x∗, y∗) ∈ C × K, and, moreover,
also xMk+1 and x̄Mk converge to x∗ while yMk+1 goes to
y∗. Passing in the limit in (21) we find that{

y∗ = ΠK(y∗ + σ(Ax∗ − h))

x∗ = ΠC(x∗ − τ(A∗y∗ + g)),

meaning that (x∗, y∗) is a solution of (19). Hence, we may
choose x̂ = x∗, ŷ = y∗, and N = Mk in (27): if k is large
enough this will make the right-hand side of (27) arbitrarily
small, hence for M > Mk we get a bound on ‖xM+1 − x̂‖
and ‖yM+1 − ŷ‖ which can be as small as we want. It
follows that (xM , yM )→ (x∗, y∗) as M →∞.
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