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Abstract

Elevation maps are a popular data structure for repregpttign environment
of a mobile robot operating outdoors or on not-flat surfagé#evation maps store
in each cell of a discrete grid the height of the surface attineesponding place in
the environment. However, the use of th%aimensional representation, is disad-
vantageous when utilized for mapping with mobile robotsratieg on the ground,
since vertical or overhanging objects cannot be repregeqpropriately. Further-
more, such objects can lead to registration errors when tex@gon maps have
to be matched. In this paper, we propose an approach thatsadlanobile robot
to deal with vertical and overhanging objects in elevatiomps Our approach
classifies the points in the environment according to whethey correspond to
such objects or not. We also present a variant of the ICP itthgorthat utilizes
the classification of cells during the data association. i#althlly, we describe
how the constraints computed by the ICP algorithm can beieppd determine
globally consistent alignments. Experiments carried oitih & real robot in an
outdoor environment demonstrate that our approach yiegidyhaccurate eleva-
tion maps even in the case of loops. We furthermore pres@etriemental results
demonstrating that our classification increases the robastof the scan matching
process.

1 Introduction

The problem of learning maps with mobile robots has beemaely studied in the
past. In the literature, @ierent techniques for representing the environment of aleobi
robot prevail. Topological maps aim at representing emvirents by graph-like struc-
tures, where nodes correspond to places, and edges to eateen them. Geometric
models, in contrast, use either grid-based approximatomggometric primitives for
representing the environment. Whereas topological mayes the advantage to better
scale to large environments, they lack the ability to repméshe geometric structure
of the environment. The latter, however, is essential uegibns, in which robots are
deployed in unstructured outdoor environments where thiléyato traverse specific
areas of interest needs to be known accurately. Howevéthfele-dimensional mod-



Figure 1: Scan (point set) of a bridge recorded with a molaleot carrying a SICK
LMS laser range finder mounted on a gdnunit.

Figure 2: Standard elevation map computed for the outdoar@mment depicted in
Figure 1. The passage under the bridge has been converedl lenige un-traversable
object.

els typically have too high computational demands for aadlia@plication on a mobile
robot.

Elevation maps have beenintroduced as a more comp?dirﬁensional represen-
tation. An elevation map consists of a two-dimensional gridihich each cell stores
the height of the territory. This approach, however, can todlpmatic when a robot
has to utilize these maps for navigation or when it has tostegiwo diterent maps
in order to integrate them. For example, consider the thieeensional point cloud
shown in Figure 1, which has been acquired with a mobile rtdarzted in front of a
bridge. The resulting elevation map, which is computed fem@araging over all scan
points that fall into a cell of a horizontal grid (given a \eal projection), is depicted
in Figure 2. As can be seen from the figure, the underpass nagletely disappeared
and the elevation map shows a non-traversable object. iaddity, when the envi-
ronment contains vertical structures, we typically obtairying average height values
depending on how much of this vertical structure is contimea scan. When two
such elevation maps need to be aligned, this can lead tordegggration errors.

In this paper, we present a system for mapping outdoor emviemts with ele-



vation maps. Our approach classifies locations in the emmient into four classes,
namely locations sensed from above, vertical structursical gaps, and traversable
cells. The advantage of this classification is twofold. fritke robot can represent
obstacles corresponding to vertical structures like waflsuildings. It also can deal
with overhanging structures like branches of trees or sddSecond, the classifica-
tion can be applied to achieve a more robust data associattbe ICP algorithm [4].
In this paper we also describe how to apply a constraintébesigot pose estimation
technique [33], similar to the one presented by Lu & Miliog]1to calculate globally
consistent alignments of the local elevation maps. We ptesgerimental results il-
lustrating the advantages of our approach regarding theseptation aspect as well
as regarding the robust matching in urban outdoor envirensredso containing loops.

This paper is organized as follows. After discussing relaterk in the following
section, we will present our extension to the elevation niaj8ection 3. In Section 4
we then describe how to incorporate our classification ineol€P algorithm used for
matching elevation maps. Section 5 will introduce our c@ist-based pose estimation
procedure for calculating consistent maps. Finally, wes@né experimental results in
Section 6.

2 Related Work

The problem of learning three-dimensional representatias been studied intensively
in the past. Recently, several techniques for acquiringetitimensional data with 2d
range scanners installed on a mobile robot have been dedeldgpopular approach is
to use multiple scanners that point toward@edient directions [29, 9, 30]. An alterna-
tive is to use pattilt devices that sweep the range scanner in an oscillatang[@5, 20].
More recently, techniques for rotating 2d range scanners baen developed [13, 36].

Many authors have studied the acquisition of three-dinogradimaps from vehi-
cles that are assumed to operate on a flat surface. For exafiplen et al. [29]
present an approach that employs two 2d range scannersifsiraating volumetric
maps. Whereas the first is oriented horizontally and is useld¢alization, the second
points towards the ceiling and is applied for acquiring 3thpolouds. Friih and Za-
khor [7] apply a similar idea to the problem of learning lasgmle models of outdoor
environments. Their approach combines laser, vision, aridlamages. Furthermore,
several authors have considered the problem of simultam@apping and localization
(SLAM) in an outdoor environment [6, 8, 31]. These technigjegtract landmarks
from range data and calculate the map as well as the pose ekttieles based on
these landmarks. Our approach described in this paper dbeslyion the assumption
that the surface is flat. It uses elevation maps to capturhtbe-dimensional structure
of the environment and is able to estimate the pose of thet iakall six degrees of
freedom.

One of the most popular representations are raw data paitrigingle meshes [1,
15, 25, 32]. Whereas these models are highly accurate anebsily be textured, their
disadvantage lies in the huge memory requirement, whiclgliaearly in the number
of scans taken. Accordingly, several authors have studielohiques for simplifying
point clouds by piecewise linear approximations. For eXamigahnelet al. [9] use



a region growing technique to identify planes. latal.[16] as well as Martin and
Thrun [18] apply the EM algorithm to cluster range scans piames. Recently, Triebel
et al. [34] proposed a hierarchical version that takes into actte parallelism of
the planes during the clustering procedure. An alternadive use three-dimensional
grids [21] or tree-based representations [27], which ondydinearly in the size of the
environment. Still, the memory requirements for such mapsutdoor environments
are high.

In order to avoid the complexity of full three-dimensionalps, several researchers
have considered elevation maps as an attractive alteenafie key idea underlying
elevation maps is to store th%-ﬁimensional height information of the terrain in a
two-dimensional grid. Barest al.[3] as well as Hebertt al.[10] use elevation maps
to represent the environment of a legged robot. They expraicts with high surface
curvatures and match these features to align maps coreirfrom consecutive range
scans. Parrat al. [24] represent the ground floor by elevation maps and usedcster
vision to detect and track objects on the floor. Singh andy@iB] extract elevation
maps from laser range data and use these maps for navigatial+t@rrain vehicle.
Ye and Borenstein [37] propose an algorithm to acquire él@vanaps with a moving
vehicle carrying a tilted laser range scanner. They proppseial filtering algorithms
to eliminate measurement errors or noise resulting fronsta@ner and the motions of
the vehicle. Lacroiet al.[14] extract elevation maps from stereo images. Hygounenc
et al. [12] construct elevation maps with an autonomous blimpg8ith stereo vision.
They propose an algorithm to track landmarks and to matchl kelevation maps us-
ing these landmarks. Olson [23] describes a probabiligtialization algorithm for a
planetary rover that uses elevation maps for terrain mogeliVellingtonet al. [35]
construct a representation based on Markov Random Fields; fropose an environ-
ment classification for agricultural applications. Theynaute the elevation of the cell
depending on the classification of the cell and its neighbGmsmpared to these tech-
niques, the contribution of this paper lies in two aspectsstfwe classify the points
in the elevation map into horizontal points seen from abweetjcal points, and gaps.
This classification is important especially when a roverdpldyed in an urban envi-
ronment. In such environments, typical structures likewladls of buildings cannot
be represented in standard elevation maps. Second, wel@elsow this classification
can be used to improve the matching afelient elevation maps.

Recently, several authors have studied the problem of samebus localization
and mapping by taking into account the six degrees of freeafoanmobile robot op-
erating on a non-flat surface. For example, Davisbal. [5] presented an approach
to vision based SLAM with a single camera moving freely tlylothe environment.
This approach uses an extended Kalman Filter to simultastgaypdate the pose of
the camera and the 3d feature points extracted from the eémages. More recently,
Nuchteret al. [22] developed a mobile robot that builds accurate threeedisional
models. In this approach, loop closing is achieved by umfgrdistributing the esti-
mated odometry error over the poses in a loop. In contrastwiirk described here
employs elevation maps to obtain a more compact repregamnt#tthe 3d data. Our
approach also includes a technique to globally optimizepttee estimates for calcu-
lating consistent maps. The loop-closing technique is atsextension to our previous
work [26] in which the ICP algorithm was used for incrememhapping.



Figure 3: Variance of the height measurements dependinigeodistance of the beam.

3 Extended Elevation Maps

As already mentioned above, elevation maps aré-dimensional representation of
the environment. They maintain a two-dimensional grid andesin every cell of this
grid an estimate about the height of the terrain at the cpomging point of the envi-
ronment. To correctly reflect the actual steepness of thaitea common assumption
is that the initial tilt and roll of the vehicle are known.

When updating a cell based on sensory input, we have to takeaatount, that
the uncertainty in a measurement increases with the mehsdis&nce due to errors
in the tilting angle. In our current system, we a apply a Kalrfider to estimate the
parameterg; ando+ about the elevation of points in a cell and its standard dievia
We apply the following equations to incorporate a new messentz with standard
deviationo at timet [19]:
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Note that the application of the Kalman filter allows us togt@kto account the uncer-
tainty of the measurement. In our current system, we appgnaa model, in which
the variance of the height of a measurement increaseslinggh the distance of the
corresponding beam. This process is illustrated in FigurltBough this approach is
an approximation, we never found evidence in our practixpbements that it causes
any noticeable errors.

In addition we need to identify which cells of the elevatiompncorrespond to
vertical structures and which ones contain gaps. In orddetermine the class of a
cell, we first consider the variance of the height of all measients falling into this
cell. If this value exceeds a certain threshold, we ideriti&g a point that has not been
observed from above. We then check whether the point se¢smonding to a cell
contains gaps exceeding the height of the robot. This issaeliby maintaining a set
of intervals per grid cell, which are computed and updatezhiipcoming sensor data.
During this process we join intervals with a distance lesmtthOcm. Accordingly,



Figure 4: Labeling of the data points depicted in Figure Joeding to their classifica-
tion. The four diferent classes are indicated bytdient colorgrey levels.

Figure 5: Extended elevation map for the scene depictedjuarEil.

it may happen, that the classification of a particular ce#dseto be changed from
the label ‘vertical cell’ or 'cell that was sensed from abotethe label 'gap cell'.
Additionally, it can happen in the case of occlusions thaglachanges from the state
'gap cell’ to the state 'vertical cell’. When a gap has beeamiified, we determine the
minimum traversable elevation in this point set.

Figure 4 shows the same data points already depicted ind-igurhe classes of the
individual cells in the elevation map are indicated by thiedéent colorgrey levels.
The blugdark points indicate the data points which are above a gae.ré&timedium
grey values indicate cells that are classified as vertichle greeplight grey values,
however, indicate traversable terrain. Note that the mametsable cells are not shown
in this figure.

A major part of the resulting elevation map computed frors tata set is shown
in Figure 5, in which we only plot the height values for the éswinterval in each cell.
As aresult, the area under the bridge now appears as a @hlesurface. This allows
the robot to plan a safe path through the underpass.



4 Matching Elevation Maps in 6 Dimensions

To calculate the alignments between two local elevationsyganerated from indi-
vidual scans, we apply the Iterative Closest Point (ICPp@tigm. The goal of this
process is to find a rotation matrik and a translation vectdrthat minimize an ap-
propriate error function. Assuming that the two scans apeesented by point sets
X ={X1,...,Xn,} @NdY = {y1,...,Yn,}, the algorithm first computes a set©findex
pairs orcorrespondencess, j1), - . -, (ic, jc) such that the point;_ in X corresponds to
the pointy;, in Y, forc=1,...,C. Then, in a second step, the error function

C
eRY) = éZ(xic—(Ry;c+t»Tz*1(xic—(Ry,-c+t» (3)
c=1

is minimized. HereX denotes the covariance matrix of the Gaussian correspgiain
each pairX;, yi). In other words, the error functiomis defined by the sum of squared
Mahalanobis distances between the poijisand the transformed poinyt.. In the
following, we denote this Mahalanobis distancedés,, y;.).

In principle, one could define this function to directly ogteron the height values
and their variance when aligning twdi@irent elevation maps. The disadvantage of this
approach, however, is that in the case of vertical objeletsresulting height strongly
depends on the view point. The same vertical structure may te varying heights
in the elevation map when sensed fronffelient points. In practical experiments, we
observed that this introduces serious errors and oftereptsithe ICP algorithm from
convergence. To overcome this problem, we separate Equ@@janto four compo-
nents each minimizing the error over fouffdrent classes of points. These four classes
correspond to cells containing vertical objects, gap c#fssersable cells, and edge
cells. In this context, traversable cells are those for Wwhiie elevation of the surface
normal obtained from a plane fitted to the local neighborteanteds a threshold of 83
degrees. Edge cells are cells that lie more than 20cm abewragighboring points.

Let us assume that;, andu’_are corresponding vertical points, and v’jc are
vertical gap cellsw;_ andw’jc are edge points, and, andx’jc are traversable cells. The
resulting error function then is

1 Cl CZ CB C4
eRt)= = Z;dv(uic,u'jc) + Z;d(vic,vgc) + z;d(wic,w'jc) + z;d(xic,x'jc) . @
Cc= Cc= c= Cc=

vertical objects vertical gaps edge cells  traversable cells

In this equation, the distance functidpcalculates the Mahalanobis distance between
the lowest points in the particular cells. Note that the sariguation (3) has been
split into four diferent sums of distances and tat C; + C; + C3 + Ca.

To increase thef@ciency of the matching process, we only consider a subset of
these cells by sub-sampling. In case there are not enoughrctie individual classes,
we randomly select an appropriate number of cells (apprateiy 1,000). This way
we obtain an approach that allows to match elevation maps evéhe absence of
features. In such a situation, our technique becomes dquoita a standard approach,
in which the complete or a random subset of all cells is usechfeiching.
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Figure 6: Incremental registration of two elevation mapise Teft column depicts the
original point clouds (see also Extension 1). The right oolushows the ‘vertical’,

‘'gap’, 'edge’, and 'traversable’ cells of the elevation reaysed by the ICP algorithm.
The individual rows correspond to the initial relative pgsgp row), alignment after 2
iterations (second row), after 5 iterations (third row) dhe final alignment after 15
iterations (last row).

Figure 6 illustrates how two elevation maps are aligned gegeral iterations of
the minimization process. Whereas the left column showpthiet clouds, the right
column shows a top view on the cells in the elevation map usedhinimizing Equa-



SICK laser range finder

AMTEC wrist unit

Figure 7: Robot Herbert used for the experiments.

tion (4). In our current implementation, each iteration foé 1CP algorithm usually
takes between 0.1 and 0.2 seconds on an 800 MHz laptop compiie time to ac-
quire a scan by tilting the laser is 5 seconds.

5 Loop Closing

The ICP-based scan matching technique described aboveusiko work well for the
registration of single robot poses into one global refeeciname. The advantage of
our variant based on the fourtirent point classes lies in itfieiency so that it can be
carried out while the robot travels from one scan positiothéonext. It quickly allows
the robot to correct potential odometry errors encountettte traveling over uneven
terrain. However, the scan matching processes may resutafl residual errors which
quickly accumulate over time and prevent the robot fromding globally consistent
maps. In practice, this typically becomes apparent whemahet encounters a loop,
i.e., when it returns to a previously visited place. Espbcfar large loops, this error
may result in inconsistencies that prevent the map fromcpageful for navigation.
Accordingly, techniques for calculating globally consist maps are necessary. In the
system described here, we apply a technique similar to tieepoasented by Lu &
Milios [17] to correct for the accumulated error when clasaloop.

5.1 Network-based Pose Optimization

Suppose the robot recorded 3D scandNadifferent positions and then detects that
the first and the last position are so similar that a loop canlbsed. As described
above, our current system calculates at each position hétmaation map including
the classification into vertical objects, vertical gapgyedells, and traversable cells.
In principle, this process can be considered as extractirg features of four dferent
classes from each local elevation map. The collection deallure points for a given
local elevation map will be called gartial viewV,, wheren = 1,...,N. This means,

a partial viewV,, consists of ® feature points of four dierent kinds. We denote the
number of feature points in a vieW,, ass, and all its points ag”,..., z”sn. Note that
each feature poirg! belongs to one of four feature classes. However, for the sake
of clarity we assign them all the same symhboln fact, the distinction of the feature



classes only improves the data association and hafext en the following equations.
Finally, we define a robot position as a vegbare R® and its orientation by the Euler
angles ¢n, 9, ¥n). We refer to thaobot posep,, as the tuplefin, ¢n, ¥n, ¥n). The goal
now is to find a set of robot poses that minimizes an apprapédeabr function based
on the observation¥/y, ..., V.

Following the approach described by Lu and Milios [17], wenialate the pose es-
timation problem as a system of error equations that are toibenized. We represent
the set of robot poses as a constraint network, where eachawtesponds to a robot
pose. A linkl in the network is defined by a pair of nodes and represeotsatraint
between the connected nodes. This framework is similar aplgbased approaches
like the ones presented by Alletal. [2] or Huber and Hebert [11] with the distinction
that in the constraint network all links are considered,levhi a pose graph only the
most confident links are used, either using a Dijkstra-tygerghm [2] or a spanning
tree [11]. This means, the network based approach usesadiviilable information
about links between robot poses and not only a part of it.

5.2 Constraints between Robot Poses

A constraint between two robot posps and py, is derived from the corresponding
views V, andV,,. Assuming that we are given a set©fy, point correspondences
(i1, j1), - - (icy Jc.,) betweenV, andVy as described above, we define the constraint
between poseg, andpn, as the sum of squared errors between corresponding points
in the global reference frame

Cnm

PP = D IRZ] + E0) = (R + T2 5)
c=1

Here, the transformation between the local coordinatemd the global coordinates
is represented as a global rotation magix which is computed from the Euler angles
(¢n. 9, ), and the global translation vectty, which is equal to the robot position
Pn. These transformsR, ) into the global reference frame areffdrent from the
local transformsR, t) from Equation (4). In fact, the local transforms obtainégra
convergence of our modified ICP algorithm are not needed amg nfhecause we only
need to consider the correspondences resulting from thiJBstep. Also note thatin
Equation (5), the number of correspondenCgsgis equal to the sur€; + C; +C3+Cy
from Equation (4), because the distinction of thietient feature classes is not needed
at this point.

Let us assume that the network consistd afonstraintdy,...,l_. Note that the
number of links is not necessarily equal to the nuntbef robot poses, because links
can also exist between non-consecutive poses. The robetgstisnation can then be
formulated as a minimization problem of the overall errordtion

L
fPL- o) = D (P Pro). (6)
i=1

Here, we introduced the indexing functionsandv, to provide a general formulation
for any kind of network setting, in which links can exist beem any pair of robot
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poses. In the simplest case, in which we have only one loopahdlinks between
consecutive poses, we hawgi) = i andv,(i) = (i + 1) modN.

To solve this non-linear optimization problem we derfvanalytically with respect
to all positionsps, ..., pn and apply the Fletcher-Reeves gradient descent algorithm
to find a minimum. In general, this minimum is local and thexe® guarantee that
the global minimum is reached. However, in our experimeamsinimization always
converged to a value that was at least very close to the ghipainum. We also found
that the convergence can be improved by restarting the sedching process with
the new, optimized robot poses as initial values. In this,wey obtain an iterative
algorithm that stops when the change in the robot poses dimghesr a given threshold
or no improvement can be achieved over several iterations.

It should be noted that in general the global minimum for tierdunctionf is not
unique. This is because both local and global constraietealy defined with respect
to the relative displacements between the robot poses amgidbal minimum off is
invariant with respect tofine transformations of the poses. In practice, this problem
can be solved by fixing one of the robot poses at its initiali®alThe other poses are
then optimized relative to this fixed pose.

6 Experimental Results

The approach described above has been implemented ardidesieeal robot system
and in simulation runs with real data. The overall impleraéion is highly dficient.
Whereas the scan matching process can be carried out ontiile,the robot is mov-
ing, the loop closing algorithm typically required betweiand 10 minutes for the
data sets described below and on a standard laptop comfiterobot used to ac-
quire the data is our outdoor robot Herbert, which is depliateFigure 7. The robot
is a Pioneer Il AT system equipped with a SICK LMS range scaand an AMTEC
wrist unit, which is used as a paift device for the laser. The experiments described
in this section have been designed to illustrate that ourcgmh yields highly accurate
elevation maps even containing large loops and that thadenagion of the individual
classes in the data association leads to more accurateinggch

6.1 Learning Large-scale Elevation Maps with Loops

To evaluate our approach on large-scale data sets, wedtmareobot Herbert through
two loops on our university campus and acquired 135 scansistorg of 35,500,000
data points. The area scanned by the robot spans approkimiéteby 120 meters.
During the data acquisition, the robot traversed two nekieds. Throughout the
evaluations described below, the inner loop, which has gtteaf 188m and consists
of 58 scans, is referred to as loop 1. The outer loop, whicteHaagth of 284m and
consists of 77 scans, is denoted as loop 2. The map has begutshaccording
to the pose estimates calculated with our SLAM algorithm.alflow a quantitative
evaluation of the results, we always let the robot returrtgcsfarting position after
closing each loop. Figure 8 shows top-views of thréBedent elevation maps obtained
from this data set. Whereas the leftmost image shows the rotgned from raw
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Figure 8: The leftmost image shows the map obtained from doweetry, the middle
image depicts the map obtained from the pure scan matchihgitpue described in
our previous work [26]. The rightmost image shows the magiolkd from our SLAM
algorithm described in Section 5. In these maps, the sizadi eell of the elevation
maps is 10 by 10cm. The lines show the estimated trajectattyeofobot. The size of
all the maps is approximately 160 by 120 meters.

Figure 9: Triangulated mesh representation of the outgrilocuding data points from
77 laser scans. Extension 2 shows a virtual walk throughntioidel on the trajectory
taken by the robot. Figure 10 depicts the elevation map ofdnee scene.
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Figure 10: Elevation map corresponding to the data set sliWwigure 9.

odometry, the middle image depicts the map obtained fronptire scan matching
technique described in our previous work [26]. The rightmosgge shows the map
obtained from our SLAM algorithm described in Section 5.Hade maps, the size of
each cell of the elevation maps is 10 by 10cm. The lines shevestimated trajectory
of the robot. As can be seen from the figure, the scan matchigeps substantially
decreases the odometry error but fails to correctly closddbp. Using our SLAM
algorithm, in contrast, the loop has been closed correettyure 9 shows a triangulated
mesh representation of the entire scan point data set of2odfxtension 2 shows a
virtual walk through this model on the trajectory taken bg tbbot. Figure 10 depicts
the elevation map of the same scene.

Figure 11 depicts the area around the starting locationm aftsing both of the
loops. The two images also show the trajectories estimageddometry, our scan
matching procedure, and our loop closing algorithm. As aasden from the figure,
the network-based pose optimization algorithm yields thelkest localization error in
both cases.

To quantitatively evaluate the accuracy of our loop clogingcedure, we deter-
mined the estimated pose of the vehicle, given that thealrptisition was set to zero.
Table 1 shows the estimates of the odometry after closintptge As can be seen, the
translational error exceeds several meters and the angutaris 13 and 60 degrees
respectively. Table 2 shows the positions as they were ledézliby our incremental
scan matching algorithm. This procedure substantialluced the error in the odom-
etry, especially the angular deviation. However, the pose ¢ still too large to cor-
rectly close the loop. Finally, Table 3 shows the pose eséimabtained with our loop
closing procedure, which uses the results of the scan-imatphocess to calculate the

13
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Figure 11: Partial views of the elevation maps containiregatea where the two loops
start and end. Both maps were obtained using our loop cledgmgithm. The diterent
lines indicate the trajectories estimated by odometrycflausing the scan-matching
procedure (darblue), and our SLAM algorithm (grésed). As can be seen, the scan
matching process is highly accurate but still fails to cotlseclose the loop. Our SLAM
algorithm correctly identifies that the robot has returreethe position where it started.

loop | length X y W
1 188m | —-7.968m | 2.3676m | 13126
2 284m | -6.919m | 24.678n | 59583

Table 1: Poses estimated by odometry after closing the loops

loop | length X y z ¢ 0 W
1 188m | -1.767m | 0.353m | -0.231m | 1.235 | 0.235 | 0.75T°
2 284m | -1.375m | -1.916m | —-0.464m | 1.201° | 0.435 | 2.956

Table 2: Poses estimated by the incremental online scarhingtalgorithm after clos-
ing the loops.

loop | length X y z ¢ 0 U
1 188m | 0.006m | 0.064m | —-0.010m | 0.097 | 0.008 | 0.631°
2 284m | 0.007m | —-0.303m | —0.006m | 0.206° | 0.057 | 1.257

Table 3: Poses estimated by the loop closing algorithm.

constraints of the network. As can be seen, the angular drops below one degree
and also the pose error is seriously reduced.

To further evaluate our method in non-flat environments, teered the robot
through an underpass and then uphill on a ramp. Figure 12sshgphotograph of
the corresponding area. The map obtained with our algotigtadepicted in Figure 13.
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Figure 13: Elevation map generated from 36 local elevatiapsn The size of the map
is approximately 70 by 30 meters.

It has been obtained from 36 scans with an overall number5@f®000 data points.
The size of each cell in the elevation map is 10 by 10cm. Thdevimap spans approx-
imately 70 by 30 meters. As can be seen from the figure, the heaplg reflects the
details of the environment. Additionally, the matching loé televation maps is quite
accurate. The figure also shows the individual positionfiefrobbot where the scans
were taken.

Additionally, we compared our approach to the standardagi@wy map algorithm.
Figure 14 shows a typical scenario in which our algorithmdgenore accurate maps
than the standard approach. In this situation the robo¢keavalong a paved way and
scanned a tree located in the foreground of the scene (deienbgje of Figure 14).
Whereas the middle image shows the map obtained with theatdrelevation map
approach, the right image shows the map obtained with ounadetAgain, the figure
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Figure 14: Comparison of our elevation maps to the standawdion map technique.
The left image depicts a triangulated mesh of the whole seda. drhe image in the
middle shows a standard elevation map build from four scahe.right image depicts
the map obtained with our approach from the same data. THeipehe foreground
of the scene corresponds to the tree depicted in the leftémAg can be seen from
the rightimage, the errors introduced by the treetop arstankially reduced using our
representation.

displacement class max. rotation| max. translation
1 +5 degrees +0.5m
2 +5 degrees +1.0m
3 +5 degrees +1.5m
4 +5 degrees +2.0m
5 +5 degrees +2.5m

Table 4: Displacement classes used to evaluate the penficerd the ICP algorithm
on the classified and unclassified points extracted fromlthagon maps.

shows the positions of the robot where the scans were takencaA be seen, our
method results in more free space around the trunk of thetmepared to the standard
elevation map approach. This is due to the fact that the cefitaining the treetop are
classified as overhanging and only the value for the lowéstval in our elevation map

is shown.

6.2 Statistical Evaluation of the Feature-based Registrain

Additionally, we performed a series of experiments to getaéitical assessment as
to whether the classification of the data points into normaeitical, and gap points
combined with the sub-sampling of the normal points leadietter registration results.
To perform these experiments we considered tvi@dént elevation maps for which we
computed the optimal relative pose using several runs ofGRealgorithm. We then
randomly added noise to the pose of the second map and agipi¢é@P algorithm to
register both maps. We performed two sets of experimentsrtgare the registration
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Figure 15: The left image shows the average registratiar éor the individual types
of initial displacement. The results have been averaged28@ runs. The right im-
age depicts the number of times the ICP algorithm divergethi® individual initial
displacements.

results for the unclassified and the classified point setbleTashows the individual
classes of noise that were added to the true relative poseedfvo maps before we
started the ICP algorithm. In the experiment described,egeonly varied the pose
error of the maps and kept the error in the rotations constiaparticular, we randomly
chose rotational displacements frarh degrees around the real relative angle as well
as varying random displacements in thandy direction.

The resulting average displacement errors after conveggefithe ICP algorithm
are depicted in the left column of Figure 15. As can be seam fiee figure, the ICP
algorithm performed significantly better on the classifi@inp sets. The error bars
indicate thex = 0.05 confidence level. The results have been averaged oveug80 r

Additionally, we evaluated how often the ICP algorithm dailto accurately reg-
ister the two maps. The right column of Figure 15 depicts thealized divergence
frequencies in percent for the individual displacemenssds. As this plot illustrates,
the utilization of the individual classes in the ICP algmitleads to a substantially bet-
ter convergence rate. In additional experiments not repdrere, we obtained similar
results for the dterent orientational errors.

7 Conclusions

In this paper we presented an approach to solve the SLAM @molvith elevation
maps generated from three-dimensional range data acquitted mobile robot. Our
approach especially addresses the problem of acquiritgreaps with a ground-based
vehicle. On such a system one often encounters situationghich certain objects,
such as walls or trees, are not seen from above. Accordititgyresulting elevation
maps contain incorrect information. The approach in thigepalassifies the individ-
ual cells of elevation maps into four classes representimts pf the terrain seen from
above, vertical objects, overhanging objects such as hesnaf trees or bridges, and
traversable areas. We also presented an extension of thal@GRthm that takes this
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classification into account when computing the registratiéddditionally we use a
technique for constraint-based robot pose estimatioretmIglobally consistent eleva-
tion maps.

Our algorithm has been implemented and tested on outdoairietata containing
two loops. In practical experiments our constraint-basesepoptimization yielded
highly accurate maps. Additionally, the considerationhaf individual classes during
the data association in the ICP algorithm provides more sbbarrespondences and
more accurate alignments.
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A Index to Multimedia Extensions

The multimedia extensions to this article can be found entiy following the hyper-
links from www.ijrr.org.

Extension| Type | Description
1 Video | Incremental registration of two original point clouds
2 Video | Triangulated mesh representation of the outer loog in-
cluding data points from 77 laser scans. The efon-

sion shows a virtual walk through this model on the
trajectory taken by the robot.
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