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Abstract

Elevation maps are a popular data structure for representing the environment
of a mobile robot operating outdoors or on not-flat surfaces.Elevation maps store
in each cell of a discrete grid the height of the surface at thecorresponding place in
the environment. However, the use of this 21

2-dimensional representation, is disad-
vantageous when utilized for mapping with mobile robots operating on the ground,
since vertical or overhanging objects cannot be represented appropriately. Further-
more, such objects can lead to registration errors when two elevation maps have
to be matched. In this paper, we propose an approach that allows a mobile robot
to deal with vertical and overhanging objects in elevation maps. Our approach
classifies the points in the environment according to whether they correspond to
such objects or not. We also present a variant of the ICP algorithm that utilizes
the classification of cells during the data association. Additionally, we describe
how the constraints computed by the ICP algorithm can be applied to determine
globally consistent alignments. Experiments carried out with a real robot in an
outdoor environment demonstrate that our approach yields highly accurate eleva-
tion maps even in the case of loops. We furthermore present experimental results
demonstrating that our classification increases the robustness of the scan matching
process.

1 Introduction

The problem of learning maps with mobile robots has been intensively studied in the
past. In the literature, different techniques for representing the environment of a mobile
robot prevail. Topological maps aim at representing environments by graph-like struc-
tures, where nodes correspond to places, and edges to paths between them. Geometric
models, in contrast, use either grid-based approximationsor geometric primitives for
representing the environment. Whereas topological maps have the advantage to better
scale to large environments, they lack the ability to represent the geometric structure
of the environment. The latter, however, is essential in situations, in which robots are
deployed in unstructured outdoor environments where the ability to traverse specific
areas of interest needs to be known accurately. However, full three-dimensional mod-
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Figure 1: Scan (point set) of a bridge recorded with a mobile robot carrying a SICK
LMS laser range finder mounted on a pan/tilt unit.

Figure 2: Standard elevation map computed for the outdoor environment depicted in
Figure 1. The passage under the bridge has been converted into a large un-traversable
object.

els typically have too high computational demands for a direct application on a mobile
robot.

Elevation maps have been introduced as a more compact, 21
2-dimensional represen-

tation. An elevation map consists of a two-dimensional gridin which each cell stores
the height of the territory. This approach, however, can be problematic when a robot
has to utilize these maps for navigation or when it has to register two different maps
in order to integrate them. For example, consider the three-dimensional point cloud
shown in Figure 1, which has been acquired with a mobile robotlocated in front of a
bridge. The resulting elevation map, which is computed fromaveraging over all scan
points that fall into a cell of a horizontal grid (given a vertical projection), is depicted
in Figure 2. As can be seen from the figure, the underpass has completely disappeared
and the elevation map shows a non-traversable object. Additionally, when the envi-
ronment contains vertical structures, we typically obtainvarying average height values
depending on how much of this vertical structure is contained in a scan. When two
such elevation maps need to be aligned, this can lead to largeregistration errors.

In this paper, we present a system for mapping outdoor environments with ele-
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vation maps. Our approach classifies locations in the environment into four classes,
namely locations sensed from above, vertical structures, vertical gaps, and traversable
cells. The advantage of this classification is twofold. First, the robot can represent
obstacles corresponding to vertical structures like wallsof buildings. It also can deal
with overhanging structures like branches of trees or bridges. Second, the classifica-
tion can be applied to achieve a more robust data associationin the ICP algorithm [4].
In this paper we also describe how to apply a constraint-based robot pose estimation
technique [33], similar to the one presented by Lu & Milios [17], to calculate globally
consistent alignments of the local elevation maps. We present experimental results il-
lustrating the advantages of our approach regarding the representation aspect as well
as regarding the robust matching in urban outdoor environments also containing loops.

This paper is organized as follows. After discussing related work in the following
section, we will present our extension to the elevation mapsin Section 3. In Section 4
we then describe how to incorporate our classification into the ICP algorithm used for
matching elevation maps. Section 5 will introduce our constraint-based pose estimation
procedure for calculating consistent maps. Finally, we present experimental results in
Section 6.

2 Related Work

The problem of learning three-dimensional representations has been studied intensively
in the past. Recently, several techniques for acquiring three-dimensional data with 2d
range scanners installed on a mobile robot have been developed. A popular approach is
to use multiple scanners that point towards different directions [29, 9, 30]. An alterna-
tive is to use pan/tilt devices that sweep the range scanner in an oscillating way [25, 20].
More recently, techniques for rotating 2d range scanners have been developed [13, 36].

Many authors have studied the acquisition of three-dimensional maps from vehi-
cles that are assumed to operate on a flat surface. For example, Thrun et al. [29]
present an approach that employs two 2d range scanners for constructing volumetric
maps. Whereas the first is oriented horizontally and is used for localization, the second
points towards the ceiling and is applied for acquiring 3d point clouds. Früh and Za-
khor [7] apply a similar idea to the problem of learning large-scale models of outdoor
environments. Their approach combines laser, vision, and aerial images. Furthermore,
several authors have considered the problem of simultaneous mapping and localization
(SLAM) in an outdoor environment [6, 8, 31]. These techniques extract landmarks
from range data and calculate the map as well as the pose of thevehicles based on
these landmarks. Our approach described in this paper does not rely on the assumption
that the surface is flat. It uses elevation maps to capture thethree-dimensional structure
of the environment and is able to estimate the pose of the robot in all six degrees of
freedom.

One of the most popular representations are raw data points or triangle meshes [1,
15, 25, 32]. Whereas these models are highly accurate and caneasily be textured, their
disadvantage lies in the huge memory requirement, which grows linearly in the number
of scans taken. Accordingly, several authors have studied techniques for simplifying
point clouds by piecewise linear approximations. For example, Hähnelet al. [9] use
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a region growing technique to identify planes. Liuet al. [16] as well as Martin and
Thrun [18] apply the EM algorithm to cluster range scans intoplanes. Recently, Triebel
et al. [34] proposed a hierarchical version that takes into account the parallelism of
the planes during the clustering procedure. An alternativeis to use three-dimensional
grids [21] or tree-based representations [27], which only grow linearly in the size of the
environment. Still, the memory requirements for such maps in outdoor environments
are high.

In order to avoid the complexity of full three-dimensional maps, several researchers
have considered elevation maps as an attractive alternative. The key idea underlying
elevation maps is to store the 21

2-dimensional height information of the terrain in a
two-dimensional grid. Bareset al. [3] as well as Hebertet al. [10] use elevation maps
to represent the environment of a legged robot. They extractpoints with high surface
curvatures and match these features to align maps constructed from consecutive range
scans. Parraet al. [24] represent the ground floor by elevation maps and use stereo
vision to detect and track objects on the floor. Singh and Kelly [28] extract elevation
maps from laser range data and use these maps for navigating an all-terrain vehicle.
Ye and Borenstein [37] propose an algorithm to acquire elevation maps with a moving
vehicle carrying a tilted laser range scanner. They proposespecial filtering algorithms
to eliminate measurement errors or noise resulting from thescanner and the motions of
the vehicle. Lacroixet al. [14] extract elevation maps from stereo images. Hygounenc
et al. [12] construct elevation maps with an autonomous blimp using 3d stereo vision.
They propose an algorithm to track landmarks and to match local elevation maps us-
ing these landmarks. Olson [23] describes a probabilistic localization algorithm for a
planetary rover that uses elevation maps for terrain modeling. Wellingtonet al. [35]
construct a representation based on Markov Random Fields. They propose an environ-
ment classification for agricultural applications. They compute the elevation of the cell
depending on the classification of the cell and its neighbors. Compared to these tech-
niques, the contribution of this paper lies in two aspects. First, we classify the points
in the elevation map into horizontal points seen from above,vertical points, and gaps.
This classification is important especially when a rover is deployed in an urban envi-
ronment. In such environments, typical structures like thewalls of buildings cannot
be represented in standard elevation maps. Second, we describe how this classification
can be used to improve the matching of different elevation maps.

Recently, several authors have studied the problem of simultaneous localization
and mapping by taking into account the six degrees of freedomof a mobile robot op-
erating on a non-flat surface. For example, Davisonet al. [5] presented an approach
to vision based SLAM with a single camera moving freely through the environment.
This approach uses an extended Kalman Filter to simultaneously update the pose of
the camera and the 3d feature points extracted from the camera images. More recently,
Nüchteret al. [22] developed a mobile robot that builds accurate three-dimensional
models. In this approach, loop closing is achieved by uniformly distributing the esti-
mated odometry error over the poses in a loop. In contrast, the work described here
employs elevation maps to obtain a more compact representation of the 3d data. Our
approach also includes a technique to globally optimize thepose estimates for calcu-
lating consistent maps. The loop-closing technique is alsoan extension to our previous
work [26] in which the ICP algorithm was used for incrementalmapping.
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Figure 3: Variance of the height measurements depending on the distance of the beam.

3 Extended Elevation Maps

As already mentioned above, elevation maps are a 21
2-dimensional representation of

the environment. They maintain a two-dimensional grid and store in every cell of this
grid an estimate about the height of the terrain at the corresponding point of the envi-
ronment. To correctly reflect the actual steepness of the terrain, a common assumption
is that the initial tilt and roll of the vehicle are known.

When updating a cell based on sensory input, we have to take into account, that
the uncertainty in a measurement increases with the measured distance due to errors
in the tilting angle. In our current system, we a apply a Kalman filter to estimate the
parametersµ1:t andσ1:t about the elevation of points in a cell and its standard deviation.
We apply the following equations to incorporate a new measurementzt with standard
deviationσt at timet [19]:

µ1:t =
σ2

t µ1:t−1 + σ
2
1:t−1zt

σ2
1:t−1 + σ

2
t

(1)

σ2
1:t =

σ2
1:t−1σ

2
t

σ2
1:t−1 + σ

2
t

(2)

Note that the application of the Kalman filter allows us to take into account the uncer-
tainty of the measurement. In our current system, we apply a sensor model, in which
the variance of the height of a measurement increases linearly with the distance of the
corresponding beam. This process is illustrated in Figure 3. Although this approach is
an approximation, we never found evidence in our practical experiments that it causes
any noticeable errors.

In addition we need to identify which cells of the elevation map correspond to
vertical structures and which ones contain gaps. In order todetermine the class of a
cell, we first consider the variance of the height of all measurements falling into this
cell. If this value exceeds a certain threshold, we identifyit as a point that has not been
observed from above. We then check whether the point set corresponding to a cell
contains gaps exceeding the height of the robot. This is achieved by maintaining a set
of intervals per grid cell, which are computed and updated upon incoming sensor data.
During this process we join intervals with a distance less than 10cm. Accordingly,

5



Figure 4: Labeling of the data points depicted in Figure 1 according to their classifica-
tion. The four different classes are indicated by different colors/grey levels.

Figure 5: Extended elevation map for the scene depicted in Figure 1.

it may happen, that the classification of a particular cell needs to be changed from
the label ’vertical cell’ or ’cell that was sensed from above’ to the label ’gap cell’.
Additionally, it can happen in the case of occlusions that a cell changes from the state
’gap cell’ to the state ’vertical cell’. When a gap has been identified, we determine the
minimum traversable elevation in this point set.

Figure 4 shows the same data points already depicted in Figure 1. The classes of the
individual cells in the elevation map are indicated by the different colors/grey levels.
The blue/dark points indicate the data points which are above a gap. The red/medium
grey values indicate cells that are classified as vertical. The green/light grey values,
however, indicate traversable terrain. Note that the non-traversable cells are not shown
in this figure.

A major part of the resulting elevation map computed from this data set is shown
in Figure 5, in which we only plot the height values for the lowest interval in each cell.
As a result, the area under the bridge now appears as a traversable surface. This allows
the robot to plan a safe path through the underpass.
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4 Matching Elevation Maps in 6 Dimensions

To calculate the alignments between two local elevation maps generated from indi-
vidual scans, we apply the Iterative Closest Point (ICP) algorithm. The goal of this
process is to find a rotation matrixR and a translation vectort that minimize an ap-
propriate error function. Assuming that the two scans are represented by point sets
X = {x1, . . . , xN1} andY = {y1, . . . , yN2}, the algorithm first computes a set ofC index
pairs orcorrespondences(i1, j1), . . . , (iC, jC) such that the pointxic in X corresponds to
the pointy jc in Y, for c = 1, . . . ,C. Then, in a second step, the error function

e(R, t) :=
1
C

C∑

c=1

(xic − (Ry jc + t))TΣ−1(xic − (Ry jc + t)) (3)

is minimized. Here,Σ denotes the covariance matrix of the Gaussian corresponding to
each pair (xi, yi). In other words, the error functione is defined by the sum of squared
Mahalanobis distances between the pointsxic and the transformed pointy jc. In the
following, we denote this Mahalanobis distance asd(xic, y jc).

In principle, one could define this function to directly operate on the height values
and their variance when aligning two different elevation maps. The disadvantage of this
approach, however, is that in the case of vertical objects, the resulting height strongly
depends on the view point. The same vertical structure may lead to varying heights
in the elevation map when sensed from different points. In practical experiments, we
observed that this introduces serious errors and often prevents the ICP algorithm from
convergence. To overcome this problem, we separate Equation (3) into four compo-
nents each minimizing the error over four different classes of points. These four classes
correspond to cells containing vertical objects, gap cells, traversable cells, and edge
cells. In this context, traversable cells are those for which the elevation of the surface
normal obtained from a plane fitted to the local neighborhoodexceeds a threshold of 83
degrees. Edge cells are cells that lie more than 20cm above their neighboring points.

Let us assume thatuic and u′jc are corresponding vertical points,vic and v′jc are
vertical gap cells,wic andw′jc are edge points, andx jc andx′jc are traversable cells. The
resulting error function then is

e(R, t) =
1
C





C1∑

c=1

dv(uic , u
′
jc)

︸             ︷︷             ︸

vertical objects

+

C2∑

c=1

d(vic, v
′
jc)

︸          ︷︷          ︸

vertical gaps

+

C3∑

c=1

d(wic,w
′
jc)

︸           ︷︷           ︸

edge cells

+

C4∑

c=1

d(xic, x
′
jc)




.

︸             ︷︷             ︸

traversable cells

(4)

In this equation, the distance functiondv calculates the Mahalanobis distance between
the lowest points in the particular cells. Note that the sum in Equation (3) has been
split into four different sums of distances and thatC = C1 +C2 +C3 +C4.

To increase the efficiency of the matching process, we only consider a subset of
these cells by sub-sampling. In case there are not enough cells in the individual classes,
we randomly select an appropriate number of cells (approximately 1,000). This way
we obtain an approach that allows to match elevation maps even in the absence of
features. In such a situation, our technique becomes equivalent to a standard approach,
in which the complete or a random subset of all cells is used for matching.
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Figure 6: Incremental registration of two elevation maps. The left column depicts the
original point clouds (see also Extension 1). The right column shows the ’vertical’,
’gap’, ’edge’, and ’traversable’ cells of the elevation maps used by the ICP algorithm.
The individual rows correspond to the initial relative pose(top row), alignment after 2
iterations (second row), after 5 iterations (third row) andthe final alignment after 15
iterations (last row).

Figure 6 illustrates how two elevation maps are aligned overseveral iterations of
the minimization process. Whereas the left column shows thepoint clouds, the right
column shows a top view on the cells in the elevation map used for minimizing Equa-
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Figure 7: Robot Herbert used for the experiments.

tion (4). In our current implementation, each iteration of the ICP algorithm usually
takes between 0.1 and 0.2 seconds on an 800 MHz laptop computer. The time to ac-
quire a scan by tilting the laser is 5 seconds.

5 Loop Closing

The ICP-based scan matching technique described above is known to work well for the
registration of single robot poses into one global reference frame. The advantage of
our variant based on the four different point classes lies in its efficiency so that it can be
carried out while the robot travels from one scan position tothe next. It quickly allows
the robot to correct potential odometry errors encounteredwhile traveling over uneven
terrain. However, the scan matching processes may result insmall residual errors which
quickly accumulate over time and prevent the robot from building globally consistent
maps. In practice, this typically becomes apparent when therobot encounters a loop,
i.e., when it returns to a previously visited place. Especially for large loops, this error
may result in inconsistencies that prevent the map from being useful for navigation.
Accordingly, techniques for calculating globally consistent maps are necessary. In the
system described here, we apply a technique similar to the one presented by Lu &
Milios [17] to correct for the accumulated error when closing a loop.

5.1 Network-based Pose Optimization

Suppose the robot recorded 3D scans atN different positions and then detects that
the first and the last position are so similar that a loop can beclosed. As described
above, our current system calculates at each position a local elevation map including
the classification into vertical objects, vertical gaps, edge cells, and traversable cells.
In principle, this process can be considered as extracting point features of four different
classes from each local elevation map. The collection of allfeature points for a given
local elevation map will be called apartial viewVn wheren = 1, . . . ,N. This means,
a partial viewVn consists of 3D feature points of four different kinds. We denote the
number of feature points in a viewVn assn and all its points aszn

1, . . . , z
n
sn

. Note that
each feature pointzn

i belongs to one of four feature classes. However, for the sake
of clarity we assign them all the same symbolz. In fact, the distinction of the feature
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classes only improves the data association and has no effect on the following equations.
Finally, we define a robot position as a vectorp̂n ∈ R

3 and its orientation by the Euler
angles (ϕn, ϑn, ψn). We refer to therobot posepn as the tuple (̂pn, ϕn, ϑn, ψn). The goal
now is to find a set of robot poses that minimizes an appropriate error function based
on the observationsV1, . . . ,VN.

Following the approach described by Lu and Milios [17], we formulate the pose es-
timation problem as a system of error equations that are to beminimized. We represent
the set of robot poses as a constraint network, where each node corresponds to a robot
pose. A linkl in the network is defined by a pair of nodes and represents aconstraint
between the connected nodes. This framework is similar to graph based approaches
like the ones presented by Allenet al. [2] or Huber and Hebert [11] with the distinction
that in the constraint network all links are considered, while in a pose graph only the
most confident links are used, either using a Dijkstra-type algorithm [2] or a spanning
tree [11]. This means, the network based approach uses all the available information
about links between robot poses and not only a part of it.

5.2 Constraints between Robot Poses

A constraint between two robot posespn andpm is derived from the corresponding
viewsVn andVm. Assuming that we are given a set ofCnm point correspondences
(i1, j1), . . . , (iCnm, jCnm) betweenVn andVm as described above, we define the constraint
between posespn andpm as the sum of squared errors between corresponding points
in the global reference frame

l(pn, pm) :=
Cnm∑

c=1

‖(R̂nzn
ic
+ t̂n) − (R̂mzm

jc
+ t̂m)‖2. (5)

Here, the transformation between the local coordinateszn and the global coordinates
is represented as a global rotation matrixR̂n, which is computed from the Euler angles
(ϕn, ϑn, ψn), and the global translation vectort̂n, which is equal to the robot position
p̂n. These transforms (R̂n, t̂n) into the global reference frame are different from the
local transforms (R, t) from Equation (4). In fact, the local transforms obtained after
convergence of our modified ICP algorithm are not needed any more, because we only
need to consider the correspondences resulting from the last ICP step. Also note that in
Equation (5), the number of correspondencesCnm is equal to the sumC1+C2+C3+C4

from Equation (4), because the distinction of the different feature classes is not needed
at this point.

Let us assume that the network consists ofL constraintsl1, . . . , lL. Note that the
number of links is not necessarily equal to the numberN of robot poses, because links
can also exist between non-consecutive poses. The robot pose estimation can then be
formulated as a minimization problem of the overall error function

f (p1, . . . , pN) :=
L∑

i=1

l i(pν1(i), pν2(i)). (6)

Here, we introduced the indexing functionsν1 andν2 to provide a general formulation
for any kind of network setting, in which links can exist between any pair of robot
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poses. In the simplest case, in which we have only one loop andonly links between
consecutive poses, we haveν1(i) = i andν2(i) = (i + 1) modN.

To solve this non-linear optimization problem we derivef analytically with respect
to all positionsp1, . . . , pN and apply the Fletcher-Reeves gradient descent algorithm
to find a minimum. In general, this minimum is local and there is no guarantee that
the global minimum is reached. However, in our experiments the minimization always
converged to a value that was at least very close to the globalminimum. We also found
that the convergence can be improved by restarting the scan matching process with
the new, optimized robot poses as initial values. In this way, we obtain an iterative
algorithm that stops when the change in the robot poses dropsunder a given threshold
or no improvement can be achieved over several iterations.

It should be noted that in general the global minimum for the error function f is not
unique. This is because both local and global constraints are only defined with respect
to the relative displacements between the robot poses and the global minimum off is
invariant with respect to affine transformations of the poses. In practice, this problem
can be solved by fixing one of the robot poses at its initial value. The other poses are
then optimized relative to this fixed pose.

6 Experimental Results

The approach described above has been implemented and tested on a real robot system
and in simulation runs with real data. The overall implementation is highly efficient.
Whereas the scan matching process can be carried out online,while the robot is mov-
ing, the loop closing algorithm typically required between3 and 10 minutes for the
data sets described below and on a standard laptop computer.The robot used to ac-
quire the data is our outdoor robot Herbert, which is depicted in Figure 7. The robot
is a Pioneer II AT system equipped with a SICK LMS range scanner and an AMTEC
wrist unit, which is used as a pan/tilt device for the laser. The experiments described
in this section have been designed to illustrate that our approach yields highly accurate
elevation maps even containing large loops and that the consideration of the individual
classes in the data association leads to more accurate matchings.

6.1 Learning Large-scale Elevation Maps with Loops

To evaluate our approach on large-scale data sets, we steered our robot Herbert through
two loops on our university campus and acquired 135 scans consisting of 35,500,000
data points. The area scanned by the robot spans approximately 160 by 120 meters.
During the data acquisition, the robot traversed two nestedloops. Throughout the
evaluations described below, the inner loop, which has a length of 188m and consists
of 58 scans, is referred to as loop 1. The outer loop, which hasa length of 284m and
consists of 77 scans, is denoted as loop 2. The map has been computed according
to the pose estimates calculated with our SLAM algorithm. Toallow a quantitative
evaluation of the results, we always let the robot return to its starting position after
closing each loop. Figure 8 shows top-views of three different elevation maps obtained
from this data set. Whereas the leftmost image shows the map obtained from raw
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Figure 8: The leftmost image shows the map obtained from raw odometry, the middle
image depicts the map obtained from the pure scan matching technique described in
our previous work [26]. The rightmost image shows the map obtained from our SLAM
algorithm described in Section 5. In these maps, the size of each cell of the elevation
maps is 10 by 10cm. The lines show the estimated trajectory ofthe robot. The size of
all the maps is approximately 160 by 120 meters.

Figure 9: Triangulated mesh representation of the outer loop including data points from
77 laser scans. Extension 2 shows a virtual walk through thismodel on the trajectory
taken by the robot. Figure 10 depicts the elevation map of thesame scene.
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Figure 10: Elevation map corresponding to the data set shownin Figure 9.

odometry, the middle image depicts the map obtained from thepure scan matching
technique described in our previous work [26]. The rightmost image shows the map
obtained from our SLAM algorithm described in Section 5. In these maps, the size of
each cell of the elevation maps is 10 by 10cm. The lines show the estimated trajectory
of the robot. As can be seen from the figure, the scan matching process substantially
decreases the odometry error but fails to correctly close the loop. Using our SLAM
algorithm, in contrast, the loop has been closed correctly.Figure 9 shows a triangulated
mesh representation of the entire scan point data set of loop2. Extension 2 shows a
virtual walk through this model on the trajectory taken by the robot. Figure 10 depicts
the elevation map of the same scene.

Figure 11 depicts the area around the starting location after closing both of the
loops. The two images also show the trajectories estimated by odometry, our scan
matching procedure, and our loop closing algorithm. As can be seen from the figure,
the network-based pose optimization algorithm yields the smallest localization error in
both cases.

To quantitatively evaluate the accuracy of our loop closingprocedure, we deter-
mined the estimated pose of the vehicle, given that the initial position was set to zero.
Table 1 shows the estimates of the odometry after closing theloop. As can be seen, the
translational error exceeds several meters and the angularerror is 13 and 60 degrees
respectively. Table 2 shows the positions as they were calculated by our incremental
scan matching algorithm. This procedure substantially reduces the error in the odom-
etry, especially the angular deviation. However, the pose error is still too large to cor-
rectly close the loop. Finally, Table 3 shows the pose estimates obtained with our loop
closing procedure, which uses the results of the scan-matching process to calculate the
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Figure 11: Partial views of the elevation maps containing the area where the two loops
start and end. Both maps were obtained using our loop closingalgorithm. The different
lines indicate the trajectories estimated by odometry (black), using the scan-matching
procedure (dark/blue), and our SLAM algorithm (grey/red). As can be seen, the scan
matching process is highly accurate but still fails to correctly close the loop. Our SLAM
algorithm correctly identifies that the robot has returned to the position where it started.

loop length x y ψ

1 188m −7.968m 2.3676m 13.126◦

2 284m −6.919m 24.678m 59.583◦

Table 1: Poses estimated by odometry after closing the loops.

loop length x y z φ θ ψ

1 188m −1.767m 0.353m −0.231m 1.235◦ 0.235◦ 0.751◦

2 284m −1.375m −1.916m −0.464m 1.201◦ 0.435◦ 2.956◦

Table 2: Poses estimated by the incremental online scan matching algorithm after clos-
ing the loops.

loop length x y z φ θ ψ

1 188m 0.006m 0.064m −0.010m 0.097◦ 0.008◦ 0.631◦

2 284m 0.007m −0.303m −0.006m 0.206◦ 0.057◦ 1.257◦

Table 3: Poses estimated by the loop closing algorithm.

constraints of the network. As can be seen, the angular errordrops below one degree
and also the pose error is seriously reduced.

To further evaluate our method in non-flat environments, we steered the robot
through an underpass and then uphill on a ramp. Figure 12 shows a photograph of
the corresponding area. The map obtained with our algorithmis depicted in Figure 13.
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Figure 12: Photograph of the area where the map depicted in Figure 13 has been built.

Figure 13: Elevation map generated from 36 local elevation maps. The size of the map
is approximately 70 by 30 meters.

It has been obtained from 36 scans with an overall number of 9,500,000 data points.
The size of each cell in the elevation map is 10 by 10cm. The whole map spans approx-
imately 70 by 30 meters. As can be seen from the figure, the map clearly reflects the
details of the environment. Additionally, the matching of the elevation maps is quite
accurate. The figure also shows the individual positions of the robot where the scans
were taken.

Additionally, we compared our approach to the standard elevation map algorithm.
Figure 14 shows a typical scenario in which our algorithm yields more accurate maps
than the standard approach. In this situation the robot traveled along a paved way and
scanned a tree located in the foreground of the scene (see left image of Figure 14).
Whereas the middle image shows the map obtained with the standard elevation map
approach, the right image shows the map obtained with our method. Again, the figure
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Figure 14: Comparison of our elevation maps to the standard elevation map technique.
The left image depicts a triangulated mesh of the whole scan data. The image in the
middle shows a standard elevation map build from four scans.The right image depicts
the map obtained with our approach from the same data. The peak in the foreground
of the scene corresponds to the tree depicted in the left image. As can be seen from
the right image, the errors introduced by the treetop are substantially reduced using our
representation.

displacement class max. rotation max. translation
1 ±5 degrees ±0.5m
2 ±5 degrees ±1.0m
3 ±5 degrees ±1.5m
4 ±5 degrees ±2.0m
5 ±5 degrees ±2.5m

Table 4: Displacement classes used to evaluate the performance of the ICP algorithm
on the classified and unclassified points extracted from the elevation maps.

shows the positions of the robot where the scans were taken. As can be seen, our
method results in more free space around the trunk of the treecompared to the standard
elevation map approach. This is due to the fact that the cellscontaining the treetop are
classified as overhanging and only the value for the lowest interval in our elevation map
is shown.

6.2 Statistical Evaluation of the Feature-based Registration

Additionally, we performed a series of experiments to get a statistical assessment as
to whether the classification of the data points into normal,vertical, and gap points
combined with the sub-sampling of the normal points leads tobetter registration results.
To perform these experiments we considered two different elevation maps for which we
computed the optimal relative pose using several runs of theICP algorithm. We then
randomly added noise to the pose of the second map and appliedthe ICP algorithm to
register both maps. We performed two sets of experiments to compare the registration
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Figure 15: The left image shows the average registration error for the individual types
of initial displacement. The results have been averaged over 200 runs. The right im-
age depicts the number of times the ICP algorithm diverges for the individual initial
displacements.

results for the unclassified and the classified point sets. Table 4 shows the individual
classes of noise that were added to the true relative pose of the two maps before we
started the ICP algorithm. In the experiment described here, we only varied the pose
error of the maps and kept the error in the rotations constant. In particular, we randomly
chose rotational displacements from±5 degrees around the real relative angle as well
as varying random displacements in thex andy direction.

The resulting average displacement errors after convergence of the ICP algorithm
are depicted in the left column of Figure 15. As can be seen from the figure, the ICP
algorithm performed significantly better on the classified point sets. The error bars
indicate theα = 0.05 confidence level. The results have been averaged over 200 runs.

Additionally, we evaluated how often the ICP algorithm failed to accurately reg-
ister the two maps. The right column of Figure 15 depicts the normalized divergence
frequencies in percent for the individual displacement classes. As this plot illustrates,
the utilization of the individual classes in the ICP algorithm leads to a substantially bet-
ter convergence rate. In additional experiments not reported here, we obtained similar
results for the different orientational errors.

7 Conclusions

In this paper we presented an approach to solve the SLAM problem with elevation
maps generated from three-dimensional range data acquiredwith a mobile robot. Our
approach especially addresses the problem of acquiring such maps with a ground-based
vehicle. On such a system one often encounters situations, in which certain objects,
such as walls or trees, are not seen from above. Accordingly,the resulting elevation
maps contain incorrect information. The approach in this paper classifies the individ-
ual cells of elevation maps into four classes representing parts of the terrain seen from
above, vertical objects, overhanging objects such as branches of trees or bridges, and
traversable areas. We also presented an extension of the ICPalgorithm that takes this

17



classification into account when computing the registration. Additionally we use a
technique for constraint-based robot pose estimation to learn globally consistent eleva-
tion maps.

Our algorithm has been implemented and tested on outdoor terrain data containing
two loops. In practical experiments our constraint-based pose optimization yielded
highly accurate maps. Additionally, the consideration of the individual classes during
the data association in the ICP algorithm provides more robust correspondences and
more accurate alignments.
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A Index to Multimedia Extensions

The multimedia extensions to this article can be found online by following the hyper-
links from www.ijrr.org.

Extension Type Description
1 Video Incremental registration of two original point clouds
2 Video Triangulated mesh representation of the outer loop in-

cluding data points from 77 laser scans. The exten-
sion shows a virtual walk through this model on the
trajectory taken by the robot.
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