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Abstract

This thesis discusses the methods importance sampling and subset simulation, which
are used to e�ciently estimate small failure probabilities in order to investigate the
reliability of structures under uncertain input. The work focuses on the �rst excursion
problem for linear and non-linear systems with a high dimensional uncertain input.
The methods and their variants are reviewed and studied in order to implement them
e�ciently and in a parallel manner. The di�erent generality of the sampling methods
is discussed and incorporated in the proposed simulation framework. This provides
high source code re-usability due to the problem independent encapsulation of each
method. The sampling methods are compared in several experiments, which show their
advantages, limits and their applicability to parallel computation.

keywords: Monte Carlo simulation, importance sampling, subset simulation, structural
analysis, reliability, parallel computing

Resumen

Esta tesis presenta los métodos �importance sampling� y �subset simulation�. Estos
métodos se usan para estimar probabilidades de falla pequeñas de modo e�ciente, con
el objetivo de investigar la con�abilidad de estructuras bajo la in�uencia de parámetros
inciertos. Este trabajo se focaliza en el problema de la primera incursión para sistemas
lineales y no-lineales de gran dimensión probabilística. Los métodos y sus variantes
son analizados y estudiados para ser implementados de una manera paralela y e�ciente.
Los diferentes grados de generalidad de los métodos considerados son discutidos e in-
cluidos en la estructura del software de simulación propuesta, que ofrece un alto grado
de reutilización del código de programación mediante el blindaje de cada método inde-
pendientemente del problema tratado. Los métodos de sampling se comparan en varios
experimentos numéricos mostrando así sus ventajas, sus límites y sus aplicaciones en la
computación paralela.

Palabras claves: simulación de Monte Carlo, importance sampling, susbet simulation,
problema de la primera incursión, con�abilidad, computación paralela
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1. Introduction

1.1. Motivation

In order to analyze real world structures adequately it is necessary to take all param-
eters into account. Mostly, structural parameters are subject to uncertainties, which
may occur in loading conditions or in structural behavior. Of special interest is the
behavior of structures subjected to dynamic loads, which may, for example, be caused
by earthquakes, wind, ocean waves or tra�c. In practice, it is important that the re-
sponse of the structure to uncertain loadings does not exceed given tolerance thresholds
in order to prevent lasting material changes or even a collapse of the structure. This
problem is generally known as the �rst excursion problem and is of particular interest
in structural safety and reliability based structural engineering [2, 3].

The idea to use uncertainty models in engineering not only stems from the pure am-
bition to investigate the reliability of structures. With knowledge about the structure
reliability for uncertain short-term dynamic loadings one can also draw conclusion about
the lifetime reliability of a structure [4]. As another example, the reliability of a struc-
ture is also a desirable property in structural optimization. In economical practice, cost
minimization plays an important role. Therefore the minimization of structural costs
under safety restrictions is of common interest in current research, e.g. [5, 6].

To perform structural analysis close to reality, it is natural to describe incomplete infor-
mation in a stochastic way since uncertainties can usually be well described by means of
a probability distribution which may be obtained from analytical or empirical studies.
The mathematical model of the structure is thus extended by the probabilistic model
for the uncertain parameters. Due to the higher complexity, especially for industry
size structures analytical methods for probabilistic analysis often become infeasible and
numerical methods need to be applied. As a very general approach, Monte Carlo-based
methods have proved to be a robust approach for any level of complexity of the problem
[7, 8].

In order to examine the reliability of a structure the probability for a system failure
is investigated. Since real world structures are designed to withstand common types
of loadings, the probability of failure is generally small. This in turn makes the pure
Monte Carlo method ine�cient, because rare occurrences of failure events need a large
amount of samples in order to obtain a good estimation. Since the generation of each
sample is coupled with a system analysis, this property is a severe drawback in view of
computational e�ciency. Therefore, several approaches have been developed to improve
the e�ciency of the estimation of small failure probabilities, e.g. importance sampling

1. Introduction 1
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[9, 10, 11], line sampling [12] or subset simulation [13, 1, 14]. These methods are the
�rst steps to make reliability analysis of industry size structures practically feasible.
Consequently, the main goal of research in this area is to further improve the compu-
tational e�ciency of the failure probability estimation. This can be achieved not only
by the development of better estimators, but also by means of approximation methods
[5, 15] or by run time improvements due to an e�cient implementation of the methods.

The scope of this work is to study recent failure probability methods for linear and
non-linear systems with respect to their e�cient implementation and in a parallel man-
ner. Therefore, the sampling methods importance sampling and subset simulation
are reviewed and studied to �nd out which in�uences the e�ciency of each method
and investigate possible improvements. Furthermore, di�erences and similarities of the
methods are investigated and incorporated in order to develop a �exible and e�cient
software package providing these methods.

1.2. Thesis Outline

The thesis starts with the mathematical formulation of the reliability problem at the
beginning of chapter 2. In the following, �ve methods for numerically calculating the
probability of failure - each with di�erent generality and e�ciency - are described.

As the most reliable and robust basis, Monte Carlo simulation used for failure probabil-
ity estimation is reviewed brie�y. Then the principle of importance sampling is applied
to the special case of structures with linear behavior. Then, the very general method
subset simulation is explained in detail on the example of three variants of this method.
Chapter 3 focuses on the e�cient implementation and parallelization of the methods
described in chapter 2 and explains the structure of the software package which has
been developed in this work.

In the following, chapter 4 illustrates the applicability and properties of the methods
by several examples. Finally, the thesis concludes with a summary in chapter 5.

2 1. Introduction
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2. Failure Probability Sampling

2.1. Problem De�nition

2.1.1. General De�nition and Notation

To examine the reliability of a system being described by its system state x ∈ X
and in�uenced by the system input u ∈ U , one �rst needs to de�ne the set F ⊆ X
of unwanted systems states (failures) and secondly calculate the probability that any
system failure event occurs. In physics and engineering tasks, system input and state
are generally continuous and described by vectors and the sets of states X and the set
of inputs U are described by X = Rn and U = Rp. Let r : U → X be the response
function which describes the system behavior (shown in �gure 2.1).

Physical
System

r(u) = x

System Input u

(Uncertain)

System State x

(Response)

Figure 2.1.: Processing scheme of a system being subject to reliability analysis.

The uncertain system input will be modeled with random vector U which takes values
u ∈ U . This elementary event will be denoted as U = u and P (U = u), abbreviated
P (u), will denote the probability that random vector U takes the value u. The prob-
ability distribution p (u) of the uncertain input is assumed to be given and together
with the deterministic response function r the probability distribution p (u) can also be
described over the domain X of system responses.

The probability for a system failure PF can now be described as

PF = P (U = u|r (u) ∈ F ) =

∫
u|r(u)∈F

p (u) du =

∫
I (r (u) ∈ F ) p (u) du (2.1)

where I : {false, true} → {0, 1} is an indicator function de�ned as

2. Failure Probability Sampling 3
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I (boolean expression) =

{
1 if boolean expression = true
0 otherwise

(2.2)

With the indicator function the failure probability can also be viewed as the expected
value of failure indicator function, i.e. PF = E [I (r (U) ∈ F )]

The main problem in reliability analysis is, however, that the integral in Equation (2.1)
can usually not be e�ciently calculated and therefore estimation techniques are often
applied, especially for continuous state space variables. In engineering, the state space
variables are generally continuous and therefore this thesis focuses its discussions and
examples on continuous state space variables, but the following algorithms are also ap-
plicable to discrete input or state spaces. A robust and easy way to estimate the failure
probability is to generate samples from the probability distribution. Since failure proba-
bilities of interest are generally very small an e�ciency problem arises, because common
sampling methods are mostly ine�cient to estimate small failure probabilities. Even for
coarse approximations of the failure probability many samples are required due to the
rare occurrences of failure events. Therefore, special algorithms have been developed to
decrease the number of samples and therefore the number of system analysis, which are
necessary for each sample. Especially, for dynamic systems the system response calcula-
tion may require a lot of computational e�ort and makes an e�cient failure probability
estimation valuable. In engineering, reliability analysis is generally applied to dynamic
systems and more specialized and e�cient methods have been found to estimate the
failure probability. Some of these methods will be explained in the following sections.

Throughout this thesis the mathematical notation of sets is used frequently. For brevity
in notation and to improve readability sets of elements like

{
x1, x2, . . . , xN

}
are some-

times abbreviated by
{
xk
}N
k=1

. Furthermore, for sets of elements with several changing
indexes, the start value will be 1 for all indexes and only the index and the end value
will be denoted and aligned in the same way, that is, for example the following set of
integer pairs will be abbreviated as {(1, 1), . . . , (1, 8), . . . , (6, 1), . . . , (6, 8)} = {(i, j)}6,8

i,j .

2.1.2. Dynamic Systems

While some of the methods being described in this thesis, i.e., Monte Carlo simula-
tion, importance sampling, subset simulation, are more general applicable to sampling
problems in di�erent domains, subset simulation with splitting and hybrid subset simu-
lation is specialized for reliability analysis of dynamic systems, that is, the �rst excursion
problem.

Assuming a discrete-time state-space model of a causal dynamical system, the reliability
of the system is usually investigated for a given time interval t ∈ [0, T ] at discrete time
steps tl = (l − 1) ·∆t, l = 1, . . . , nt, so that there is a total number of nt = T/∆t + 1
time steps. Therefore the set of system inputs will be de�ned as U = Rp×nt and the
set of system states X = Rn×nt correspondingly. The uncertain system input U is then
de�ned as a �eld of random variables

4 2. Failure Probability Sampling
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U = {U(t) : t = tl, l = 1, . . . , nt} (2.3)

A particular system input, that is, a realization of U(t) will also be called excitation
and denoted as u = {u(t) : t = tl, l = 1, . . . , nt}. Its corresponding system state, also
called trajectory, will be x = {x(t) : t = tl, l = 1, . . . , nt}.
The state of a dynamic causal system can generally be described by

x(tl+1) = h
(
x(tl), u(tl), tl

)
(2.4)

where h : Rn×p×1 → Rn is a function which describes the system dynamics.

Using this iterative description of the system dynamics, the response function r : U → X
for such a system can be described by

x = r (u) (2.5)

=
{
x(t0) := x0, x(t) : x(t) = h

(
x(tl−1), u(tl−1), tl−1

)
, ∀l = 1, 2, . . . , nt

}
The problem to detect a failure of causal dynamic system subjected to uncertain input
is also widely known as �rst passage point problem or �rst excursion problem, since
it is the task to �nd the �rst point, where the dynamic system response exceeds a
given limit. In reliability analysis, the only question of interest is, whether such a point
exists for a given excitation. Since the structural system is now studied over time, the
de�nition of a system failure may also vary over time. In general, it may be necessary
to model a time-variant shape of the failure region, that is F = F (t). However, the
methods explained in this thesis will work in the same way and for the sake of simplicity
this possible dependency is dropped in the notation.

2.2. Monte Carlo Simulation

The Monte Carlo simulation (MCS) method provides an easy approach to the given re-
liability problem and tends to be used often when deterministic methods are impossible
or infeasible.

PF =

∫
u

I (r (u) ∈ F ) p (u) du = E [I (r (U) ∈ F )] (2.6)

=

∫
x

I (x ∈ F ) p (x) dx = E [I (X ∈ F )] (2.7)

Assuming to have a set of samples
{
uk
}N
k=1

, drawn from p (u), the set of samples
{
xk
}N
k=1

2. Failure Probability Sampling 5



UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA

which is distributed according to p (x) can be calculated with response function r (·).
With the strong law of large numbers the failure probability can also be calculated as

PF = E [I (X ∈ F )] = lim
N→∞

1

N

N∑
k=1

I
(
r
(
uk
)
∈ F

)
(2.8)

Hence, for large numbers N the failure probability can be approximated with arbitrary
accuracy by using the estimator

P̂F = Ê [I (X ∈ F )] =
1

N

N∑
k=1

I
(
xk ∈ F

)
(2.9)

As commonly known, the MCS estimator P̂F for independent identically distributed
(i.i.d.) samples from p (u) converges to PF (Law of Large Numbers), is unbiased,
consistent, and asymptotically Gaussian (Central Limit Theorem). Its �rst moments
are given as

E
[
P̂F

]
= PF (2.10)

Var
[
P̂F

]
=

(1− PF )PF
N

(2.11)

and the coe�cient of variation, denoted by δPF
, is determined by

δPF
=

√
Var

[
P̂F

]
E
[
P̂F

] =

√
1− PF
PF ·N

(2.12)

Equation (2.12) may also be used to �nd out how many samples are necessary to achieve
a given c.o.v. value and it can be seen that the number of required samples is inversely
proportional to the probability of failure PF for small values of PF .

Nδ =
1− PF
PF · δ2

PF

∼ 1

PF · δ2
PF

for small PF (2.13)

Common disadvantages of the MCS method are on the one hand its reliance on good
random number generators and on the other hand its slow convergence to better ap-
proximations when more data points are sampled. However, the main drawback of MCS
- used for reliability analysis - is its ine�ciency if small probability values need to be
calculated, because on average it needs 1/PF samples to obtain one sample which lies
in the failure region. Therefore, special methods for failure probability calculation have
been developed which tackle this problem by moving more samples toward the failure
region.

6 2. Failure Probability Sampling
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2.3. Importance Sampling

Independent of the shape of the probability distribution p (x) regions with low proba-
bility density may need many samples before they are being explored with direct Monte
Carlo simulation. Conversely, most samples will be generated in regions with high prob-
ability density and a single samples does not gain much more information about this
region. In view of probability density estimation in low and high probability regions, a
less probable sample is much more 'important' because its contribution to the relative
frequencies in this region is much higher. Hence, for the problem of estimating small
probabilities, it is bene�cial for computational e�ciency, if samples are generated more
frequently in the region of interest.

2.3.1. General Idea

The essential idea of importance sampling [7] is to simulate samples from an importance
sampling density (ISD) f (x) instead of simulating samples directly from the PDF p (x)
of interest. With direct MCS the failure probability is calculated as the expected value
of the failure indicator function

PF = Ep [I (x ∈ F )] =

∫
x

I (x ∈ F ) p (x) dx (2.14)

The failure probability can also be expressed as an expected value with respect to the
ISD, if failure probability equation (2.14) is expanded with f (x).

PF =

∫
x

I (x ∈ F ) p (x)

f (x)
f (x) dx = Ef [I (x ∈ F )R (x)] (2.15)

where

R (x) =
p (x)

f (x)
(2.16)

is called the importance sampling quotient. If samples
{
xk
}N
k=1

are drawn from f (x)
instead of p (x), the failure probability can be estimated by

PF ≈ P̂F =
1

N

N∑
k=1

I
(
xk ∈ F

)
R (x) (2.17)

The meaning of R (x) can be interpreted as it weights the samples drawn from f (x)
according to their real importance in p (x) and ensures that the estimator P̂F in (2.17)
remains unbiased. An appropriate choice of the ISD can signi�cantly reduce the es-
timator variance, or equivalently, the number of necessary samples to obtain a good

2. Failure Probability Sampling 7
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estimation. However, a bad choice of the ISD can lead to the contrary and the estimator
will have a worse variance compared to direct MCS. Therefore, the fundamental issue
of importance sampling simulation is a choice of the ISD such that it generates more
samples in the region of interest.

In the following, special properties of linear systems are described in order to construct
an ISD for e�cient failure probability estimation of linear dynamic systems.

2.3.2. Application to Linear Dynamic Systems

Generally, the input-output relation of a linear system can be expressed by the Duhamel
integral (or convolution method) [16]. Being only valid for linear systems, the Duhamel
integral is based on the principle of superposition, that is, if the system input u(t) is
viewed as a series of short-duration impulses, the system response at a particular time
t is the sum of all previous impulse responses. Assuming zero initial conditions at time
t = 0 without loss of generality, the uncertain system output Xi (t) , i = 1, . . . , n can
therefore be calculated as

Xi (t) =

p∑
j=1

t∫
0

hij (t, τ)Uj (τ) dτ (2.18)

where Uj (τ) is the jth index of the uncertain system input vector at time τ and hij (t, τ)
is the linear unit response function (or Green's function) of the system, which returns
the ith output at time t, caused by a unit impulse applied to the system at time τ .

Assuming a discrete-time system, the system response is evaluated at discrete time
steps tl = (l − 1) · ∆t, l = 1, . . . , nt and for small ∆t the Duhamel integral can be
approximated by a sum over discrete time steps

Xi (tl) =

p∑
j=1

l∑
s=1

gij (tl, ts)Uj (ts) ∆t (2.19)

where gij (tl, ts) represents the discrete-time unit response function which tends to
hij (tl, ts) if the sampling interval ∆t approaches zero

gij (tl, ts)→ hij (tl, ts) if ∆t→ 0 (2.20)

given that the numerical integration scheme for the response calculation is consistent
and stable [17].

Assume further that the uncertain input vector Uj (t) is Gaussian white noise with
spectral intensity Sj, that is

8 2. Failure Probability Sampling
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Uj (tl) =

√
2πSj
∆t

Zj (l) (2.21)

where Zj (l) , j = 1, . . . , p; l = 1, . . . , nt are i.i.d. standard Gaussian random variables,
which can be arranged to the p · nt = q-dimensional random vector

Z = [Z1 (1) , . . . , Zp (1) , . . . , Z1 (nt) , . . . , Zp (nt)] (2.22)

which takes values z = [z1, . . . , zq]. The joint probability distribution of z is hence

p (z) = φ (z) ∼ (2π)−q/2 exp

[
−1

2

q∑
i=1

z2
i

]
(2.23)

Combining equations (2.19) and (2.21) leads to

Xi (tl) =

p∑
j=1

l∑
s=1

gij (tl, ts)Zj (s)
√

2πSj∆t (2.24)

Let the system failure for the ith output be de�ned by the exceedence of the absolute
system response |Xi (tl)| over a given threshold bi at any time step tl within the duration
of study. This will be the elementary failure event in the sample space and will be
denoted as

Fil = {|Xi (tl)| ≥ bi} (2.25)

For a better understanding of the elementary failure region this event can further be
split into two mutual exclusive events, because Fil is the union Fil = F+

il ∪ F−il of
the up-crossing failure event F+

il = {Xi (tl) ≥ bi} and the down-crossing failure event
F−il = {−Xi (tl) ≥ bi}. Since the excitation has been assumed to be symmetrical, these
two cases can be treated identically. However, for the non-symmetric case the failure
events F+

il and F−il have to be handled separately and the extension of the following
derivations is straightforward.

Clearly, an overall failure event occurs if at least one elementary event occurs. The
failure event F of interest is thus the union of the elementary failure events:

F =
n⋃
i=1

nt⋃
l=1

Fil (2.26)

Applying the de�nition of the response (2.24) to the de�nition of F+
il it can be seen

that the failure event is a linear classi�er due to the linearity of the response function.
The failure boundary ∂F+

il is given as a hyperplane in the q-dimensional space of z

2. Failure Probability Sampling 9
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∂F+
il =

{
z :

p∑
j=1

l∑
s=1

gij (tl, ts)Zj (s)
√

2πSj∆t = bi

}
(2.27)

If the probability φ (z) of the points z lying in the failure region de�ned by F+
il is

taken into account, one can observe that the probability of the points decreases with
its distance from the origin, because the PDF φ (z) has been assumed to be radially
decreasing. Therefore, there exists a point in F+

il which has the highest probability with
respect to φ (z). This point is commonly called design point and will be denoted as z∗il.
Intuitively, the design point is the system input at time tl with the 'smallest energy'
to push the response of the system to the limit value bi [18]. The word energy in this
case is meant to be the euclidean distance of the design point to the expected value of
the system input (the origin in this case). The design point is simply the point on the
boundary ∂F+

il with the minimum distance to the origin. Minimizing φ (z) conditioned
on ∂F+

il delivers the design point z∗il ∈ Rq for the elementary failure event F+
il with

z∗il =
{
z∗il,j (1) , . . . , z∗il,j (nt)

}p
j=1

(2.28)

and the corresponding values z∗il,j (s) of the jth input at time step s are

z∗il,j (s) = H (l − s)
√

2πSj∆t
gij (l, s)

σ2
il

bi (2.29)

where H (·) is the Heaviside step function: H (a) = 1 if a ≥ 0 and zero otherwise,
which only ensures that z∗il,j (s) = 0 ∀s > l, as the design point at time step l is only
in�uenced by previous time steps due to the assumed causality of the system.

σ2
il denotes the variance of the response and can be derived from Equation (2.24):

σ2
il = Var [Xi (tl)] =

p∑
j=1

[
l∑

s=1

gij (tl, ts)
2

]
2πSj∆t (2.30)

With the knowledge of the input variance, one can also easily calculate the euclidean
norm of design point z∗il, because its calculation simpli�es to

βil = ‖z∗il‖ =
bi
σil

(2.31)

where βil is often called the 'reliability index' and represents intuitively the limit value
bi in the probability space of z.

By de�nition, the design point with the smallest reliability index within the duration
of study is called the global design point.

10 2. Failure Probability Sampling
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2.3.3. Construction of an E�cient ISD for Linear Dynamic

Systems

A simple method to construct an ISD is to use only the global design point, because
this is the point with the highest probability in the input domain, which certainly
leads to a system failure. The importance sampling density f (z) could then simply be
the input PDF φ (z) centered at the global design point z∗: f (z) = φ (z− z∗). With
this ISD the samples drawn from f (z) will have higher probability to lie in the failure
region and sampling from the ISD will improve the e�ciency of the failure probability
estimator. However, the knowledge about the design point at each time step can be
used to generate much better sampling densities.

To see this, one can investigate the contribution of the failure probability of a single
failure event Fil to the overall failure probability. The conditional probability ratio of
any two elementary failure events Fil and Fjs, given that the failure occurs is:

P (Fil|F )

P (Fjs|F )
=
P (Fil ∩ F ) /P (F )

P (Fjs ∩ F ) /P (F )
=
P (Fil)

P (Fjs)
(2.32)

Therefore, the relative contribution of an elementary failure event Fil to the overall
failure event F may be measured only by their unconditional probability

P (Fil) = 2Φ (−βil) (2.33)

where Φ (·) is the cumulative distribution function of the standard Gaussian distribu-
tion. Equation 2.33 is due to the fact that z is assumed to be Gaussian distributed
and the probability content of Fil is the sum of the probability contents of F+

il and F−il ,
which in turn are equal due to the symmetry of φ (z).

P
(
F+
il

)
= Φ (−‖z∗il‖) = Φ (−βil) (2.34)

The probability content of Fil is therefore completely determined by the reliability index
βil. Certainly, the global design point has the highest probability, but the contribution of
the other design points should also be considered in order to construct a well suited ISD.
Empirical studies have shown (see [11]), that neighboring design points from consecutive
time steps have similar probabilities and therefore especially the design points in the
neighborhood of the global design point may also contribute signi�cantly to the overall
failure probability.

To take the importance of all design points into account the ISD can be constructed as
a weighted sum of individual densities which favor a particular design point

f (z) =
n∑
i=1

nt∑
l=1

wilfil (z) (2.35)

with the weight conditions

2. Failure Probability Sampling 11
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wil ≥ 0 and
n∑
i=1

nt∑
l=1

wil = 1 (2.36)

The weights are introduced to determine the contribution of each individual ISD fil (z)
to the overall ISD f (z). According to the property derived in Equation (2.32) the
weights wil can be chosen to be proportional to the probability content of Fil:

wil =
P (Fil)∑n

j=1

∑nt

s=1 P (Fjs)
=

Φ (−βil)∑n
j=1

∑nt

s=1 Φ (−βjs)
(2.37)

Since the weight wil determines the relative frequency of the samples simulated from
p (z|Fil), the samples drawn from p (z|Fil) will have relative frequencies proportional to
the importance of the design point z∗il.

If the individual ISDs fil (z) have the important property that samples can be e�-
ciently generated according to fil (z), one can also e�ciently generate samples from
f (z), by �rst drawing a random ordered pair (I, L) from {(i, l)}n,nt

i,l according to their
corresponding probabilities {wil}n,nt

i,l , and then drawing a sample from fIL (z).

According to Equation (2.17) the failure probability can then be estimated by

P̂F =
1

N

N∑
k=1

φ
(
zk
)
I
(
r
(
zk
)
∈ F

)∑n
i=1

∑nt

l=1wilfil (z
k)

(2.38)

where
{
zk
}N
k=1

are N samples drawn from f (z). For simplicity of notation, the function
r (z) is meant to transform the vector z into the domain of x. Since r (·) is de�ned over
the domain of u, this implicitly means that z is �rst transformed to u by Equation
(2.21) and then the result is applied to r (·). Two di�erent ISDs using the properties
described above will be discussed in following.

2.3.3.1. Weighted Sum of Gaussians (ISD A)

Re�ning the �rst idea at the beginning of this section, the ISD can also be constructed
as a weighted sum of Gaussian PDFs centered at the individual design points, rather
than using a single ISD centered at the global design point. This approach is a common
choice of the ISD (e.g. [9]) and is described by

fA (z) =
n∑
i=1

nt∑
l=1

wilφ (z− z∗il) (2.39)

The weights wil are chosen according to Equation (2.37). With samples
{
zk
}N
k=1

drawn
from fA (z) according to Equation (2.39) the failure probability PF can be estimated
by
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P̂F =
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)
φ
(
zk
)∑n

i=1

∑nt

l=1 wil · φ (zk − z∗il)
(2.40)

The evaluation of the estimator in this form is not e�cient and appendix A.2.1 shows
how to implement the estimator e�ciently. A part of it can be used in both described
importance sampling methods.

2.3.3.2. Weighted Sum of Conditional PDFs (ISD B)

S.K. Au et al. [11] proposed an ISD which is more e�cient than the aforementioned
ISD A. They suggest generating samples from the conditional PDF p (z|Fil), that is, the
probability of z with respect to φ (z), given that z lies in the elementary failure region
Fil. Put into words, the conditional PDF p (z|Fil) is the original PDF φ (z) con�ned to
Fil and normalized by the probability content of Fil:

p (z|Fil) =
φ (z) I (r (z) ∈ F )

P (Fil)
=
φ (z) I (r (z) ∈ F )

2Φ (−βil)
(2.41)

Using the de�nition of the conditional PDF in Equation (2.41) to construct an ISD as
weighted sum of conditional PDFs yields

fB (z) =
n∑
i=1

nt∑
l=1

wil · p (z|Fil) =
n∑
i=1

nt∑
l=1

wil
φ (z) I (r (z) ∈ Fil)

2Φ (−βil)
(2.42)

where the weights wil again ful�ll the conditions (2.36) of a probability distribution and
are chosen according to Equation (2.37).

Applying the de�nition of the weights to the last equation, the ISD is given as

fB (z) =
φ (z)

2
∑n

j=1

∑nt

s=1 Φ (−βjs)
n∑
i=1

nt∑
l=1

I (r (z) ∈ Fil) (2.43)

Since the denominator in Equation (2.43) is an independent factor it will also be inde-
pendent of the sum over the samples if Equation (2.43) is substituted in the Equation
(2.38) for the failure probability estimator:

P̂F = 2
n∑
j=1

nt∑
s=1

Φ (−βjs) ·
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)∑n
i=1

∑nt

l=1 I (r (zk) ∈ Fil)
(2.44)

The factor
P̄F = 2

n∑
j=1

nt∑
s=1

Φ (−βjs) (2.45)

in Equation (2.44) is independent of the sampling process and can be interpreted as
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the upper bound for the failure probability. Furthermore, it is known that the samples
for the estimation are drawn from p (z|Fil), which means that every sample lies in the
failure region and I

(
r
(
zk
)
∈ F

)
in Equation (2.44) will always be 1. Thus, the failure

probability estimator is given by

P̂F = P̄F ·
1

N

N∑
k=1

1∑n
i=1

∑nt

l=1 I (r (zk) ∈ Fil)
(2.46)

where
{
zk
}N
k=1

are independent samples drawn from fB (z) according to Equation 2.43.

The resulting estimator therefore evaluates the number of time steps in which the
response of the system to sample zk is above the de�ned threshold bi. The evaluation
of the failure probability (2.46) is simple and computational inexpensive, because the
Gaussian PDF of the input and the cumulative distribution of the Gaussian PDF has
been canceled out due to the choice of the conditional PDFs p (z|Fil) for the construction
of the ISD. The more expensive calculation of the factor P̄F is independent of the
sampling process and can be calculated in advance.

E�cient Sampling from the Conditional PDF

To e�ciently simulate samples from p
(
z|F+

il

)
one can use the knowledge about the

corresponding design point z∗il. Any vector z
k ∼ p

(
z|F+

il

)
can be represented by a vector

Failure

Region

Design

Point

∂Fil
+

β il

α

z1

z

, il
*

il
*

α il
*

il
*

il

il

Figure 2.2.: Generation of samples from the
ISD shown for the �rst two time
steps: a sample zk ∼ p

(
z|F+

il

)
is

generated using the design point
z∗il and a sample z ∼ φ (z).

αu∗il which points in direction of the
design point and a second vector z⊥il ,
which is perpendicular to the �rst
one, i.e., parallel to the hyperplane
∂F+

il :

zk = αu∗il + z⊥il (2.47)

where

u∗il = z∗il/ ‖z∗il‖ = z∗il/βil (2.48)

is the unit vector in direction of the
design point and α is a standard
Gaussian random variable condi-
tional on {α ≥ βil} with probability
p (α) = φ (z)H (α− βil) /Φ (−βjs).
The vector z⊥il which is parallel to
∂F+

il can in turn be represented as

z⊥il = z− 〈z,u∗il〉u∗il (2.49)

where z is a q-dimensional standard
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Gaussian random vector. Combining Equations (2.47) and (2.49) leads to

zk = z + (α− 〈z,u∗il〉)u∗il (2.50)

which facilitates e�cient simulation of samples zk ∼ p
(
z|F+

il

)
, because one only needs

a q-dimensional random Gaussian z ∼ φ (z) which can be generated independently for
each dimension and a one-dimensional random Gaussian α conditional on {α ≥ βil}.
This can be obtained by simulating a uniform number between Φ (βil) and 1 and ap-
plying the inverse cumulative Gaussian distribution function to it. Given a uniform
sample a ∼ U [0, 1] the conditional Gaussian α can be calculated as

α = Φ−1 (a+ (1− a)Φ (βil)) (2.51)

Note, that Figure 2.2 only shows half of the failure region for the up-crossing failure
events, the other failure region, its limiting hyperplane and the the design point for the
down-crossing failure events are in a symmetric position with respect to the coordinate
origin. Therefore, the simulation of samples z+ ∼ p

(
z|F+

il

)
, z− ∼ p

(
z|F−il

)
is analogous,

because −z+ and z− are identically distributed.

2.3.3.3. Comparision of the ISDs

It has already been mentioned, that the estimator ISD B is computationally e�cient,
since the probability P̄F is independent of the sampling process and can be calcu-
lated in advance. The only necessary operation during the sampling process is simply
counting the number of time steps where the response is above the threshold. In com-
parison, to estimate the failure probability using ISD A the evaluation of the term
φ
(
zk
)
/
∑n

i=1

∑nt

l=1wil · φ
(
zk − z∗il

)
is necessary for each sample and includes the cal-

culation of O (n · nt) exponential functions. In view of the sampling process, ISD B
therefore allows computationally more e�cient simulation, since the estimator is much
simpler. Furthermore, the shape of the ISDs compared to the original PDF reveals that
ISD B is also more e�cient with respect to the estimator c.o.v., because it generates all
samples in the failure region. Figure 2.3 illustrates the di�erences between the shapes
of the ISDs.

Figure 2.3(a) shows the probability distribution of interest together with the failure
region for the �rst dimension of z. Figure 2.3(b) shows ISD A where the Gaussians
have been moved to the elementary design points. During the sampling process one
of the two distributions (shown in blue) centered at the up-crossing and down-crossing
design points is selected with probability 0.5. Then, the sample is drawn from the PDF
centered at the design point. Due to this modi�cation the samples from fA (z) will have
much more probability to lie in the failure region than the samples directly drawn from
φ (z). More exactly, any simulated sample zk ∼ fA (z) will have a probability ≥ 1/2
to lie in the failure region F , because the probability for a sample to be generated in
the elementary failure region Fil is 1/2 + Φ (−2βil). Hence the overall probability for a
sample to be generated in the failure region is given by
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Figure 2.3.: Schematical comparison of the two di�erent choices for the ISD. (a) PDF
of interest and failure region (gray) (b) ISD A: weighted sum of Gaussians
(c) ISD B: weighted sum of conditional PDFs

P
(
r
(
zk
)
∈ F

)
=

n∑
i=1

nt∑
l=1

wil

(
1

2
+ Φ (−2βil)

)
(2.52)

For very small failure probabilities the values of Φ (−2βil) will get closer to zero and
thus

P
(
r
(
zk
)
∈ F

)
≈ 1

2

n∑
i=1

nt∑
l=1

wil =
1

2
(2.53)

Since Φ (−2βil) is always greater than zero, 1/2 can be viewed as a lower bound for
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this probability. In comparison with the simulation from the original PDF this is a
signi�cant improvement. However, Figure 2.3(c) illustrates that the ISD constructed
with the conditional PDF p (z|Fil) is more e�cient, because the shape of ISD B is
proportional to φ (z) and thus the importance of the samples from ISD B re�ects the
shape of φ (z). Moreover, ISD B is only de�ned over the failure region, so every sample
from the ISD will lie in F which improves the e�ciency of the estimation remarkably.

Note, that Figure 2.3 is a scheme to show the idea behind the ISDs. Since the fail-
ure probabilities are usually very small the failure region is much smaller than shown
in the �gure. Also, the proportions between φ (z) and the conditional probabilities
p
(
z|F+

il

)
, p
(
z|F−il

)
are incorrect in Figure 2.3(c) as all of them are probability distri-

butions which sum up to 1 over the input domain.

2.3.4. Importance Sampling Algorithm for Linear Dynamic

Systems

Algorithm 1 Importance Sampling Simulation for Linear Systems.

- Given is the system response function r (·) in form of the Duhamel integral eq.(2.19)
with unit response functions gij (l, s). The system input is Gaussian: z ∼ φ (z).

- Output is the probability estimation P̂F for a system failure.

1. System analysis: Calculate unit impulse response functions {gij (l, s)}n,p,nt,nt

i,j,l,s

2. Precalculation of system properties: Calculate
- response standard deviations {σil}n,nt

i,l by equation (2.30)
- elementary reliability indexes {βil}n,nt

i,l by βil = bi/σil
- ISD weights {wil}n,nt

i,l by equation (2.37)
3. Sampling and failure probability estimation

Simulate N i.i.d. samples
{
zk
}N
k=1

drawn from fA (z) / fB (z)
- Randomly select an output and time step index pair (I, L) from {(i, l)}n,nt

i,l

according to their corresponding probabilities {wil}n,nt

i,l

- Draw a sample zk from the ISD fIL (z):
Calculate design point z∗il by equation (2.28)
ISD A: Simulate q-dimensional random Gaussian zk ∼ φ (z− z∗il)
ISD B:

Simulate a q-dimensional standard Gaussian vector z with i.i.d. components
Simulate uniform random samples a1, a2 from U [0, 1] and calculate

α = Φ−1 (a1 + (1− a1)Φ (βil)) and u∗il = z∗il/βil

zk =

{
z + (α− 〈z,u∗il〉)u∗il if a2 ≤ 1/2

−z− (α− 〈z,u∗il〉)u∗il otherwise

Estimate failure probability PF by equation (2.40) (for ISD A)
or by equation (2.46) (for ISD B)
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Note, that for ISD A the precalculation of the design points should be considered,
because all of them are needed for each sample that hits the failure region in order
to calculate the probability estimator. Certainly, this memory and computation speed
trade-o� depends on the system under study and the available hardware. In contrast,
for ISD B this precalculation is additional computation and memory e�ort and is only
meaningful, if the number of samples reaches the number of design points for the system
(n · nt), which is usually not the case for high dimensional systems.

Finally, note that appendix A.2.1 gives suggestions for the implementation in order to
improve the e�ciency of the importance sampling method.

2.3.5. Statistical Properties of the Method

In general, importance sampling can be a very powerful tool to increase the e�ciency
of the failure probability estimation, if knowledge about the system of interest is given
and applicable to construct an appropriate ISD.

Especially for the case of a linear response function the knowledge about the com-
paratively simple shape of the failure region can be used to construct an ISD which
allows very e�cient failure probability estimation. The importance sampling estimator
in equation (2.15) is unbiased for an appropriate choice of the ISD as the importance
sampling estimator is simply the original estimator extented with the ISD. A funda-
mental requirement is similarity of the support regions. The coe�cient of variation δIS
of the estimator is given as

δIS =
∆IS√
N

(2.54)

where N is the number of samples used for the estimation and ∆IS is the unit c.o.v. of
the importance sampling estimator

∆IS =
Varf [I (x ∈ F )R (x)]

Ef [I (x ∈ F )R (x)]
=

Varf [I (x ∈ F )R (x)]

PF
(2.55)

where the second quotient assumes unbiasedness of the estimator.

Note, that although the input distribution has been assumed to be Gaussian the method
will generally work for symmetrical decreasing distribution functions, but the (e�cient)
sampling from conditional PDF may be more di�cult.
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Properties of ISD B and the Estimator

Since all parts of the failure region contribute to the ISD, the estimator (2.46) is unbi-
ased, which can shown if the de�nition of p (z|Fil) in equation (2.41) is applied to the
failure probability de�nition based on importance sampling in equation (2.17). Then,
by drawing the factor P̄F in front of the integral (similar to eq.(2.44)) the failure prob-
ability is given as

PF = P̄F · Ef
[

1∑n
i=1

∑nt

l=1 I (r (zk) ∈ Fil)

]
(2.56)

which can be used to show that Ef
[
P̂F

]
= PF .

Generally, the choice of the ISD to be the original PDF conditional on the failure
event is the optimal choice of ISD in sense that it minimizes the variance of the failure
probability estimator [4]. According to equation (2.15) the optimal ISD is

fopt (x) = arg inf
f
Varf

[
I (x ∈ F ) p (x)

f (x)

]
= p (x|F ) =

I (x ∈ F ) p (x)

PF
(2.57)

Since ISD B is constructed using the elementary conditional failure probabilities p (z|Fil)
in a weighted mixture, the ISD is close to the optimal ISD p (z|F ). Indeed, the con-
structed ISD B is optimal for the case where the elementary failure events {Fil}n,nt

i,l are
mutually exclusive for all samples, that is, I (r (z) ∈ Fil) = 1 for only one pair (i, l) and
I (r (z) ∈ Fj,s) = 0 for j 6= i or s 6= l. Then,

n∑
i=1

nt∑
l=1

I
(
r
(
zk
)
∈ Fil

)
= 1 (2.58)

for all samples and applied to failure probability estimator (2.46) this yields

PF = P̂F = P̄F (2.59)

Furthermore, due to the choice of the conditional PDFs as p (z|Fil), the support region
of the ISD grows and shrinks in the same way as the elementary failure region, if the
limit value bi is varied (see also Figure 2.3 c). As a result of this property, the smaller
the failure region is, the more e�cient is the estimator based on ISD B, because a
smaller failure region needs less samples to be explored. Thus the estimator is perfectly
suited to estimate small probabilities, while on the other hand, the estimator will be
less e�cient for larger failure probabilities.
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2.4. Subset Simulation with Markov Chain Monte

Carlo

Similar to the importance sampling approach the idea of subset simulation is to generate
more samples within the failure region, but - in contrast to importance sampling -
knowledge about the shape of the failure region is not necessary.

2.4.1. Basic Concept

The fundamental idea behind subset simulation is to replace the simulation of rare
failure events by a sequence of simulations of more frequent events. To achieve this,
the simulation for failure region F is replaced by an iterative scheme of simulations
for a nested sequence of failure regions F1 ⊃ F2 ⊃ . . . ⊃ Fm = F , such that Fk =⋂k
i=1 Fi, k = 1, . . . ,m. In other words, the failure region is partitioned in an increasing

sequence of subsets.

For instance, the failure region can be de�ned as the exceedance of an engineering
demand parameter over a given capacity, that is, F = {x ∈ X : g (x) ≥ b}, where g :
Rn → R maps a system state to an engineering demand parameter. Thus, the nested
sequence of failure regions can be de�ned as Fi = {x ∈ X : g (x) ≥ bi} with the sequence
of increasing limit values b1 < b2 < . . . < bm = b.

Let for convenience F denote both, the failure event and its corresponding failure region
in the domain of system states. Then, with the de�nition of the conditional probabilities
the failure probability can be de�ned as a sequence of conditional failure probabilities:

PF = P (Fm) = P

(
m⋂
i=1

Fi

)

= P

(
Fm

∣∣∣m−1⋂
i=1

Fi

)
P

(
m−1⋂
i=1

Fi

)
(2.60)

= P (Fm|Fm−1)P

(
m−1⋂
i=1

Fi

)
= . . .

= P (F1)
m∏
i=2

P (Fi|Fi−1)

Equation (2.60) shows, that the de�nition of the failure probability de�ned over the
nested sequence of failure regions de�nes a �rst order Markov chain. This property
will be used later on to for e�cient sample generation. Now it remains to calculate all
the probabilities for each failure region. The �rst one, P (F1), is independent of other
failure regions and can be estimated by direct MCS:
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P (F1) ≈ P̂1 =
1

N1

N1∑
k=1

I
(
x(1,k) ∈ F1

)
=
R1

N1

(2.61)

where
{
x(1,k)

}N1

k=1
is the set of samples for the �rst failure region and each of them is

distributed according to p (x) and Ri is the number of samples lying in Fi. For the
conditional failure probabilities, the same estimator is used:

P (Fi|Fi−1) ≈ P̂i =
1

Ni

Ni∑
k=1

I
(
x(i,k) ∈ Fi

)
=
Ri

Ni

(2.62)

but now each of the samples
{
x(i,k)

}Ni

k=1
has to be distributed according to the condi-

tional PDF p (x|Fi−1). This can be achieved e�ciently using a Markov chain Monte
Carlo method based on the Metropolis algorithm, which will be explained in the next
subsection.

A remaining problem is to determine the partial failure regions Fi, or equivalently,
the limit values bi appropriately. For e�cient estimation of failure probabilities it is
favorable, that all conditional failure probabilities approximately have the same size,
such that the amount of information coming from each failure region is roughly the
same. Since it is di�cult to determine the limit values bi a priori and to satisfy this
desire at the same time, S.K. Au [4] suggested to choose a particular value p0 for the
conditional failure probabilities instead:

P̂i = p0 ∀i = 1, . . . ,m− 1 (2.63)

where a value of p0 = 0.1 has been found to yield good e�ciency [4, p.95]. Note,
that the last conditional failure probability P̂m is calculated according to the estimator
(2.62) for the given limit value bm = b. The other limit values are found after ordering
the samples

{
x(i,k)

}Ni

k=1
in ascending order and are calculated as:

bi = g
(
x(i,j)

)
with j = b(1− p0) ·Nic , ∀i = 1, . . . ,m− 1 (2.64)

The limit value bi de�nes the intermediate failure region Fi, which is the sampling
domain for the next stage. The process of reopening further subsets of failure regions can
be repeated, as long as the failure event of interest lies within the current intermediate
failure region, i.e. bi < b.

The �nal estimator for the failure probability, which will be calculated according to
Equation (2.60), can hence also be calculated as a power of p0 (due to Equation 2.63):

P̂F =
m∏
i=1

P̂i = pm−1
0 P̂m (2.65)
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Roughly speaking, Equation (2.65) can be interpreted in a way that the numberm−1 of
failure regions de�nes 'the order' of the failure probability with respect to p0 and only
the conditional failure probability of the last failure region determines its quantity.
The advantage of this approach is that all failure regions Fi can be determined by
only one parameter p0. On the other hand, a disadvantage is that the number m
of subsets (failure regions) is not known a priori and therefore the total number of
samples is di�cult to estimate in advance. Finally, the subset simulation procedure
can be summarized in the the following algorithm.

Algorithm 2 subset simulation with MCMC.

- Given is the system response function r (·) and the probability distribution p (u) for
the system input.

- Output is the probability estimation P̂F for a system failure.

A. Stage 1: Generate root samples using direct MCS
i := 1
Simulate N1 independent input samples

{
u(1,k)

}N1

k=1
according to p (u) and

calculate response samples
{
x(1,k)

}N1

k=1
using response function r (·).

Sort samples
{
x(1,k)

}N1

k=1
in ascending order wrt. g

(
x(1,k)

)
Calculate �rst limit value: b1 := g

(
x(1,j)

)
with j = b(1− p0) ·N1c , R1 := p0N1

B. Stage i: Estimate Pi (i=1,. . . ,m-1) and possibly calculate new subsets recursively:
while (bi < b) . a new subset can be opened up

P̂i = p0 . probability is prede�ned by bi
Ri samples exceeded threshold bi and

are assigned as mother samples
{
x

(i+1,k)
M

}Ri

k=1
i := i+ 1 . open up a new subset
Generate Ni −Ri−1 o�spring samples using the mother samples from
the previous stage, to have samples

{
x(i,k)

}Ni

k=1
distributed as p (x|Fi−1)

Sort samples
{
x(i,k)

}Ni

k=1
in ascending order wrt. g

(
x(i,k)

)
bi := g

(
x(i,j)

)
with j = b(1− p0) ·Nic , Ri := p0Ni

end while

The last subset has been reached and bi is given as bi = bm = b (m := i)
P̂m = Rm

Nm
, where Rm is the number of samples exceeding threshold g (x) ≥ b.

C. Finally, calculate the failure probability estimation: P̂F =
∏m

i=1 P̂i

The recursive subset simulation procedure is illustrated in Figure 2.4 and shows which
samples are used as mother samples for the following stage and that the recursion ends
if the failure event of interest fails to lie within the next intermediate failure region.
This also clari�es why the subset simulation procedure only yields advantage for small
failure probabilities.
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Figure 2.4.: Subset simulation scheme illustrating the recursive procedure.

What remains is the question how to generate Ni−Ri−1 out of Ri−1 mother samples. In
practice, if the division Ni/Ri−1 always yields an integer value ni (this depends on the
chosen Ni and p0), each mother sample can be selected to simulate ni − 1 independent
o�spring samples. If this condition does not hold, one can easily create a strategy how
to distribute the remaining 'rest' of needed o�springs over the list of mother samples.
However, the easiest way is to simulate Ni−Ri−1 one by one and to select a new mother
sample uniformly from the set of mother samples each time. This strategy is applicable
for any proportion of Ni and Ri−1 and will also have the least in�uence on the bias of
the estimator. Finally, the e�cient generation of a conditional sample distributed as
p (x|Fi−1) using a given mother sample xM will be explained in the following subsection.
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2.4.2. Markov Chain Monte Carlo Simulation

In general, for any arbitrary PDF p (x), an ergodic Markov chain can be constructed
and used to generate samples approximately distributed as p (x). Consider again the
task to generate samples

{
x(i,k)

}Ni

k=1
, i = 2, . . . ,m which are distributed according to

the conditional PDF

p (x|Fi−1) =
p (x) I (x ∈ Fi−1)

p (Fi−1)
(2.66)

These are samples distributed as p (x) which lie in the failure region Fi−1. It is also
possible to generate such samples with direct MCS and take only the samples lying in
Fi−1, but this would not improve anything since on average it needs 1/P (Fi−1) samples
before one such sample occurs. Fortunately, the Metropolis-Hastings algorithm provides
the properties for an e�cient simulation.

2.4.2.1. Metropolis-Hastings Algorithm

First introduced by Metropolis et al. in 1953 [19] and generalized by Hastings in 1970
[20], the so-called Metropolis-Hastings (MH) algorithm is a rejection sampling algorithm
used to generate samples which are distributed according to an arbitrary probability
distribution p (x), which may be hard to sample from directly. Therefore, a (conditional)
proposal distribution q (x′|xi−1) (which may be easy to sample from) is used to generate
a sample x′ which depends on the mother sample xi−1 from the previous algorithm step
i− 1. To decide whether a new sample x′ is accepted or rejected the following ratio is
calculated:

ρ =

min

[
1,

p(x′)q(xi−1|x′)
p(xi−1)q(x′|xi−1)

]
if p (xi−1) q (x′|xi−1) > 0

1 otherwise
(2.67)

The new sample x′ is then accepted (xi := x′) with probability ρ and rejected (xi :=
xi−1) with probability 1− ρ. One easily recognizes, that the acceptance ratio (2.67) is
independent of q (·) for symmetric proposal distributions.

A drawback of the MH algorithm is that it is not applicable to high dimensional prob-
lems, because the expected step size of the MCMC simulation grows with the dimen-
sionality of the PDFs [21]. For the MH algorithm, large steps will almost always end
up in regions with low probability and therefore the samples will be rejected. This zero
acceptance phenomenon leads generally to very low acceptance ratios ρ, which means
that the MCMC samples will highly depend on each other and the sample domain is
no longer explored appropriately during the simulation.

2.4.2.2. Sample Generation using a Modi�ed Metropolis-Hastings Algorithm

To tackle the zero acceptance problem of the original MH algorithm, [4] proposed a
slightly modi�ed version of the MH algorithm. The main di�erence to its original version
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is that the generation of sample proposals and their rejection is done independently for
each dimension of the sample vector rather than for the whole n-dimensional sample
vector as in the original version. With this modi�cation the algorithm also works for
high dimensions. Due to the fact that MH algorithm generates conditional samples by
using samples from the previous iteration (mother samples), it can be used to generate
samples close to the mother sample and also distributed as p (x). This property makes
the MCMC-based sample generation more e�cient compared to direct MCS. To see
this, one has to consider that only samples which lie in the (current) failure region are
used as mother samples. Therefore, a sample, which is closely located to a mother
sample (being in failure region), will have much higher probability also to lie within
the failure region than a sample generated by direct MCS. What remains, is the fact
that the Metropolis algorithm also generates samples distributed as p (x). To obtain
conditional samples according to p (x|Fi−1), the samples from p (x) are simply rejected,
if they do not lie within the failure region Fi−1.

Remember, that the PDF of the samples is actually given by p (u) and p (x) can be
calculated with the response function r (·). To adapt the MH algorithm for high dimen-
sions let uj, j ∈ {1, . . . , p} denote the j-th dimension of vector u. The �nal algorithm
to e�ciently generate new samples which lie in the current failure region now looks as
follows:

Algorithm 3 Generation of a conditional sample x ∼ p (x|Fi−1)

Input is a mother sample ui−1 =
{
ui−1

1 , . . . , ui−1
p

}
with response xi−1

Output is a new sample xi ∼ p (x|Fi−1) which depends on xi−1 (due to MCMCS)

1. Generate a sample x∗ ∼ p (x):
for all dimensions j ∈ {1, . . . , p}

a) Generate a candidate u′j according to qj
(
u′j|ui−1

j

)
b) Calculate the acceptance ratio:

ρj =

min

[
1,

pj(u′j)qj(u
i−1
j |u′j)

pj(ui−1
j )qj(u′j |u

i−1
j )

]
if pj

(
ui−1
j

)
qj
(
u′j|ui−1

j

)
> 0

1 otherwise

c) Draw a uniform sample a from U(0, 1)
d) De�ne uij using the acceptance ratio:

u∗j =

{
u′j if a ≤ ρj

ui−1
j otherwise

end for

x∗ = r (u∗)

2. Ensure that xi ∼ p (x|Fi−1):

xi =

{
x∗ if x∗ ∈ Fi−1

xi−1 otherwise
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The purpose of the �rst rejection in step (1.d) of the algorithm is to keep the samples
generated by the Markov chain distributed as p (u), which may not be the case for a
sample proposed by q (u′|ui−1). Since the algorithm assumes the last sample ui−1 to
be distributed as p (u) this property can be ensured for the next sample by simply
repeating the previous sample. Therefore, MCMC simulation needs a 'warm up' phase,
if the initial sample of the Markov chain is not distributed as p (u), because with every
Markov chain iteration the current sample will be more independent of the initial sample
and the MH algorithm will actually generate samples according to p (u). Note that this
is not necessary within the subset simulation scheme, because the samples in the �rst
stage, which are the mothers and initial samples for the following stages, are generated
by direct MCS according to p (u). Finally, note that the generated Markov chains are
actually short, since they will be as long as there will be subset recursion stages m.

Within the subset simulation framework, the MH algorithm iterates over all subsets
i = {2, . . . ,m}. Assuming that Ri−1 samples in the previous iteration have passed the
intermediate threshold bi−1. In iteration i these Ri−1 samples are used as mother sam-
ples to generate Ni−Ri−1 o�spring samples. Together with the mother samples, Ni are
used to estimate conditional probability P (Fi|Fi−1), because all samples (mothers and
o�springs) lie within Fi−1. Thus, in each iteration i, the sample generation algorithm
is called Ni − Ri−1 times to provide Ni samples

{
x(i,k)

}Ni

k=1
, i = 2, . . . ,m to estimate

the failure probability for Fi.

g(x(t))

g(x)=bi

t

g(x)=b

XM

rejected

accepted

Figure 2.5.: Accepted and rejected candidate o�spring trajectories (according to [1]).

Figure 2.5 illustrates the rejection of candidate o�spring samples (step 2 in algorithm
3 ) for the case of studying a dynamic system over time, i.e. the samples are system
trajectories. After the generation of a candidate trajectory xC using xM , the candi-
date may be rejected to ensure its distribution according to p (x|Fi−1). In case of a
rejection, the mother trajectory is simply repeated. In sum, the better e�ciency to
generate samples from P (Fi|Fi−1) using MCMC is only supported by the assumption
that the failure region is an union of somehow compact structures, that is, given a
point x ∈ F and a small distance value ε, the local neighborhood of x, de�ned by
Nx = {a | a ∈ X , ‖x− a‖ < ε}, has a high probability lie entirely in the failure region
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as well. Fortunately, this assumption seems to hold for many engineering systems of
interest for reasonable values of ε. The parameter ε is similar to the support region of
the proposal function, which may also be controlled by a parameter. However, if the
assumption does not hold, the algorithm still works, but its computational e�ciency
will drop to the one of direct MCS (omitting the fact that the sample dependencies of
MCMC also reduce e�ciency wrt. the failure region exploration).

2.4.2.3. Reusage of Samples during Sampling Stages

In literature the �rst publications about the subset simulation technique [4, 13, 22]
do not use the samples which passed the intermediate threshold level bi in stage i for
the estimation of the partial failure probability Pi+1 = P (Fi+1|Fi) of the next stage
i + 1. Thus, if a number of N is used for every stage in a simulation over m stages,
the total number of samples will be NT = mN . However, since the samples from stage
i, which passed the intermediate threshold level bi are also distributed as p (x|Fi) they
can also be used to estimate P (Fi+1|Fi). Since this approach reduces the total number
of samples without reducing the c.o.v. of the individual estimators P̂i, it is natural to
take the advantage of this approach. In the case that all intermediate limit values bi
are determined by the a priori chosen partial failure probability p0, the total number of
samples is then given as

NT = Nm + (1− p0)
m−1∑
i=1

Ni (2.68)

If the number of samples for each stage is equal, i.e. N = N1 = . . . = Nm, the last
equation simpli�es to

NT = (m− p0m+ p0)N (2.69)

This will also hold for the variants of the subset simulation procedures explained in the
following subsections.
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2.4.3. Statistical Properties of the Estimator

The estimator P̂F is unbiased [13, p.268] given the assumption that the proposal PDF
has a widely similar shape and support region as the input PDF. Its variation is derived
over the variation of each estimator P̂i for simulation stage i. For the �rst level, the
variation and the c.o.v. of the estimator P̂1 is equivalent to that of the MCS estimator:

Var
[
P̂1

]
=

(1− P1)P1

N1

and c.o.v.: δ1 =

√
1− P1

P1 ·N1

(2.70)

The variation for the estimators Pi (i = 2, . . . ,m) which make use of MCMC simulation
is in�uenced by the correlation of the Markov chain samples and is given as

Var
[
P̂i

]
=

(1− Pi)Pi
Ni

(1 + γi) and c.o.v.: δi =

√
1− Pi
Pi ·Ni

(1 + γi) (2.71)

The variable γi describes the correlation of the MCMC samples and the termNi/ (1 + γi)
can be interpreted as the e�ective number of independent samples. Thus, γi = 0 for
the case of independent samples and for Markov chain Monte Carlo the correlation is
generally γi > 0.

The overall c.o.v. of the P̂F estimator can be well approximated with the formula for
the uncorrelated case:

δPF
= E

[
P̂F − PF
PF

]
≈

√√√√ m∑
i=1

δ2
i (2.72)

E�ciency of the method

The following equation gives an approximation to the total number of samples needed
to estimate PF with particular accuracy, given as c.o.v. δ:

NT ≈ |logPF |r ·
(1 + γ)(1− p0)

p0 |log p0|r δ2
(2.73)

where the exponent r ≤ 3 speci�es the correlation of the probabilities Pi. Compared to
direct MCS, where the number of needed samples is proportional to NT ∼ 1/PF , subset
simulation provides a signi�cant e�ciency improvement with NT ∼ |logPF |r, for �xed
p0, δ.
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Advantages

The �rst step of subset simulation is direct MCS which e�ectively explores the sampling
domain, for higher accuracy MCMC is used to generate more samples only within the
failure region. The e�ectiveness to explore the intermediate failure regions can still be
controlled by changing the shape of the proposal PDF. Therefore, subset simulation is
widely independent of the shape of the failure region. Due to the approach to determine
the intermediate failure regions (i.e. their bounds) adaptively according to �xed con-
ditional probabilities the choice of the intermediate threshold levels can be e�ectively
controlled by just one parameter. In sum, the original problem of sampling very small
failure probabilities is replaced by a series of simulations in which the failure events
occur more frequently and can therefore be estimated e�ciently with a small number
of samples. Another advantage of the subset simulation procedure is that one simula-
tion run over m stages, provides estimates for all threshold levels having probabilities
between 0 and 1, where the resolution in the probability space is pi−1

0 /Ni for every
stage i = 1, . . . ,m. Thus, one failure estimation delivers an estimation of all possible
threshold levels as the probability for a particular threshold can be obtained by means
of interpolation methods.

Disadvantages

The choice of the proposal PDF is di�cult and also depends on the sampling problem.
If the support region of the proposal PDF is too broad, the samples will have lower
probability of lying in the failure region and many samples may be rejected. Since the
mother sample is repeated in that case, this will introduce high dependencies between
samples and also in�uence the exploration of the failure region. On the other hand, if
the support region of the proposal PDF is too small, the samples will highly depend on
each other and the failure region is poorly explored as well. Therefore the choice of the
proposal PDF is a di�cult trade-o� to obtain samples having a high probability of lying
in the failure region and also e�ectively explore the failure region at the same time. The
choice of the proposal PDF does not only e�ect the e�ciency of the MCMC algorithm
it may also in�uence the ergodicy of the MCMC procedure. If the failure region is not
explored properly by the MCMC procedure, the estimator based on the conditional
properties may be biased. For example, this may happen if a failure region is separated
from another failure region and has not been explored in the �rst MCS stage. Further,
if the distance of the separated failure region is large than proposal function support
region, the failure region can never be explored by the MCMC procedure. Due to the
adaptive choice of the intermediate threshold levels bi one does not know in advance how
many iterations will be needed to reach the limit value of interest b. Hence, the total
number of samples and thus the total computational e�ort is unknown in advance.
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2.5. Subset Simulation with Splitting

The subset simulation with splitting approach (abbreviated as SS/S) realizes the same
idea as the subset simulation with MCMC (abbreviated as SS/MCMC) with the dif-
ference that conditional samples can be generated di�erently for dynamic reliability
problems, in particular, the �rst passage point problem. The splitting approach makes
the use of MCMC unnecessary and therefore eliminates the problem to choose a proper
proposal density, which highly in�uences the e�ciency and accuracy of the SS/MCMC
method.

Therefore, the original subset simulation procedure explained in the last section (2.4)
remains mainly the same except for the step, where the conditional samples are gen-
erated based on the given mother samples from the previous subset simulation stage
(subsection 2.4.2.2).

Let again the failure regions Fi be described by threshold values bi for an engineering
demand parameter g (x), i.e. x ∈ Fi ⇔ g (x) ≥ bi, where all limit values form an
ordered sequence of increasing limit values b1 < b2 < . . . < bm = b.

In the �rst stage, direct MCS is used again to estimate the independent probability P1

of the �rst subset. The estimator is similar to (2.61) with the di�erence that the failure
event is now de�ned over the system trajectory, checking whether a �rst excursion point
exists:

P1 ≈ P̂1 =
1

N1

N1∑
k=1

I
(

max
t

[
g
(
x(1,k)(t)

)]
≥ b1

)
=
R1

N1

(2.74)

Similarly, the samples
{
x(1,k)(t)

}N1

k=1
of the �rst stage are simulated by direct Monte

Carlo simulation. For the following stages the conditional samples
{
x(i,k)(t)

}Ni

k=1
are

generated according to the splitting approach which will be explained in the following.
However, the estimator for the conditional failure probabilities is similar to (2.74):

Pi ≈ P̂i =
1

Ni

Ni∑
k=1

I
(

max
t

[
g
(
x(i,k)(t)

)]
≥ bi

)
=
Ri

Ni

(2.75)

2.5.1. Generation of conditional samples with splitting

Due to the specialization to a �rst passage problem, the samples are known to have
a shape of a trajectory and the generation of a conditional sample given a mother
trajectory can also be done e�ciently in the following way. A mother excitation uM ,
where its corresponding trajectory xM is known to lie in failure region Fi, can be
split into the partial excitation and partial trajectory before the �rst passage point S,
denoted by u−M and x−M , respectively, and also denote those after the �rst passage point
by u+

M and x+
M . Let, for simplicity, S contain the time coordinate and the corresponding
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state value of the �rst passage point.

To simulate an o�spring trajectory xO, which is also distributed as p (x|Fi), the partial
trajectory x−M is copied from the mother, i.e. x−O = x−M (by u−O = u−M). This will
ensure that xO ∈ Fi, regardless of the new partial trajectory x̃+ after S. Hence, if ũ+ is
generated according to p (u+|u−) = p (u+, u−) /p (u−) it follows that the new o�spring
trajectory xO =

{
x−M , x̃

+
}
is also distributed as p (x|Fi). Since the failure event occurs,

given that the partial excitation x−M reaches the �rst passage point, it follows that
P
(
Fi|ũ+, u−M

)
= 1 and P

(
Fi|u−M

)
= 1. Using this knowledge in Bayes's theorem, it

turns out that the distribution of the future excitation ũ+, given u−M , is independent of
the failure event:

p
(
ũ+|Fi, u−M

)
=
P
(
Fi|ũ+, u−M

)
P
(
Fi|u−M

) p
(
ũ+|u−M

)
= p

(
ũ+|u−M

)
(2.76)

Therefore, ũ+ can be simply generated by direct Monte Carlo simulation.

The generation of an o�spring trajectory according to the splitting approach is illus-
trated in the following Figure 2.6. The �rst part of the o�spring trajectory xC is equal to
its mother trajectory xM until the �rst passage point is reached. The second part after
the �rst passage point is generated by direct MCS and is thus completely independent
of its mother trajectory.

g(x(t))

g(x)=bi

t

g(x)=b

XM

XC

S

Figure 2.6.: Generation of an o�spring trajectory (according to [1]).

The idea of the splitting algorithm can be summarized in a way that the creation of
subsets to order a set of samples is further broken down to the sub-level of the samples.
The property which has been used in general subset simulation is that sample responses
which exceeded the threshold bi have also exceeded threshold bi−1 < bi. For the �rst
excursion problem, one can �nd such a property on the sample level: A trajectory part
which has exceeded a threshold bi has also exceed the threshold level bi−1 < bi at the
same or an earlier time point.
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2.5.2. Final Algorithm

Using the sampling generation method explained in the last subsection and the same
principles as in SS/MCMC, the subset simulation with splitting algorithm can be de-
scribed as follows:

Algorithm 4 Subset simulation with splitting.

- Given is the response function r (·) of a causal system and a probability
distribution p (u) for the system input.

- Output is the probability estimation P̂F for a system failure.

A. Stage 1: Generate root samples using direct MCS
i := 1
Simulate N1 i.i.d. trajectories

{
x(1,k)(t) : t = tl, l = 1, . . . , nt, k = 1, . . . , N1

}
by drawing samples from p (u) and calculate their response with function r (·)
Sort samples

{
x(1,k)(t)

}N1

k=1
in ascending order wrt. maxt

[
g
(
x(1,k)(t)

)]
Calculate b1 := maxt

[
g
(
x(1,j)(t)

)]
with j = b(1− p0) ·N1c , R1 := p0N1

B. Stage i: Estimate Pi (i=1,. . . ,m-1) and possibly calculate new subsets recursively:
while (bi < b) . a new subset can be opened up

P̂i = p0 . probability is prede�ned by bi
Ri trajectories exceeded threshold bi: assign them as mother

trajectories
{
x

(i+1,k)
M (t)

}Ri

k=1
and record their �rst passage points

{
S(i+1,k)

}Ri

k=1

i := i+ 1 . open up a new subset
forall Ni −Ri−1 o�springs that need to be created:

Uniformly select a mother trajectory xM having index k
Create o�spring as xO =

{
x−M , x̃

+
}
by applying r (·) to the partial mother

excitation u−M and the new simulated partial excitation ũ+ ∼ p (u+|u−),
which starts after the �rst passage point S(i,k)

end for

Sort samples
{
x(i,k)(t)

}Ni

k=1
in ascending order wrt. maxt

[
g
(
x(i,k)(t)

)]
bi := maxt

[
g
(
x(i,j)(t)

)]
with j = b(1− p0) ·Nic , Ri := p0Ni

end while

The last subset has been reached and bi is given as bi = bm = b (m := i)
P̂m = Rm

Nm
, where Rm is the number of samples exceeding threshold g (x) ≥ b.

C. Finally, calculate the failure probability estimation: P̂F =
∏m

i=1 P̂i

Dealing with a discrete-time state-space system

For the conditional sample generation it has been derived that the trajectories can be
freely simulated with direct MCS starting from the �rst passage point. When using a
discrete time model the �rst passage point S is generally not hit by a sample point.
Therefore, one can argue that the simulation of the o�spring trajectories can either
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be started from the sample point S− right before the FPP, or from the sample point
S+ right after the FPP. The �rst option again introduces a rejection step, because the
simulated trajectory might not exceed the given threshold. However, for reasonable
time sampling S− should be very close to S and rejection rate be nearly zero. Never-
theless, starting the simulation from S+ is easier to implement and does not a�ect the
computational e�ciency.

2.5.3. Statistical Properties of the Estimator

The estimator P̂F is an unbiased estimator of PF [1, p.1566] based on the assumption
that the space after the �rst passage points is reasonable long to ensure an appropriate
exploration of the failure region. This requires �rst a reasonable length of the system
trajectories and second that the distribution of the FPP times over the system trajectory
is not concentrated at the end of the trajectory. The variation of the estimator P̂i can
be approximated under the assumption that the �rst passage points

{
S(i+1,k)

}Ri

k=1
do

not strongly depend on each other, which should hold for large number of samples
N1, . . . , Ni−1. With this assumption the variance can be approximated as

Var
[
P̂ 2
i

]
≈ Pi(1− Pi)

Ni

(1 + γi) (2.77)

where γi describes the correlation between samples and reduces the number of samples
Ni to the e�ective number of independent samples used for the estimation. The c.o.v.
for P̂i, denoted by δi, is given by

δi =

√
1− Pi
Pi ·Ni

(1 + γi) (2.78)

This leads to the overall c.o.v. δ for subset simulation with splitting:

δ2 ≈
m∑
i=1

δi =
P1(1− P1)

N1

+
m∑
i=2

Pi(1− Pi)
Ni

(1 + γi) (2.79)

Equation (2.79) gives only an estimation of the c.o.v.. Using the same assumption
Ching et. al [1] therefore also derived estimators for the lower and upper bounds of the
c.o.v., which are given as

(1− P1)

P1N1

+
m∑
i=2

[
1− Pi
PiNi

]
≤ δ2 ≤ (1− P1)

P1N1

+
m∑
i=2

[
1− Pi
PiNi

(
1 + E

[
Ni

Ri−1

])]
(2.80)

The lower bound is de�ned by the c.o.v. values that would be obtained if each of the
conditional probabilities were estimated using direct MCS. Under the assumption of
independent samples they can be summed up to the overall c.o.v. that would obtained,
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if all conditional failure probabilities were estimated using direct MCS. However, due
to repetition of the time series before the FPP time, the samples are generally depen-
dent. Hence, this lower bound will not be reached in practice. Similar to SS/MCMC
the intermediate threshold values bi can be chosen a priori or adaptively during the
simulation. For the latter case, i.e. the conditional probabilities are de�ned a priori
with value p0.

Advantages

In contrast to SS/MCMC the generated o�springs are in the failure region, because the
partial excitation until the �rst passage point is simply copied and therefore no further
rejection is needed. In case of a rejection of candidate trajectory in the SS/MCMC
framework, the mother trajectory is simply copied, which introduces stronger depen-
dencies of samples between the simulation stages. In SS/S this step is omitted and a
new o�spring trajectory is always generated (and accepted), which leads to a better
exploration of the failure region after the �rst passage point. Consequently, due to the
free simulation of each sample after the �rst passage point, every o�spring sample is
distinct from its mother sample.

While in the MCMC framework the o�springs are generally correlated with their neigh-
bors, the SS/S framework generates independent partial trajectories for each subset.
The trajectory space after the �rst passage point S is e�ectively explored, since all par-
tial o�spring trajectories x̃+ are generated independently. The trajectory space before
S is explored by MCS in previous subsets.

The SS/S framework does not require MCMC simulation and therefore avoids the prob-
lem of choosing an appropriate proposal PDF. Except of the choice for the partial failure
probabilities p0 the algorithm is parameterless. Furthermore, the computational e�ort
for SS/S is less than that for MCMC since only parts of the trajectories need to be
generated and the �rst part is simply copied, which is faster than simulation. Also,
depending on r (·), it may be possible to avoid expensive response calculation for this
�rst part.

Disadvantages

Depending on the system to be studied, i.e., the response function, the �rst passage
point may occur very late during the time of study, especially for very small failure
probabilities. This means, that only small parts of the system trajectories are used
to explore the failure region during the sampling process. Hence, the main drawback
of the SS/S algorithm is that it copies the trajectory parts before the �rst passage
points and relies the exploration of the trajectory space before the �rst passage points
on common Monte Carlo simulation. Therefore, SS/MCMC may outperform SS/S and
vice versa with respect to the c.o.v. of the failure probability estimates. Moreover,
SS/S is less general than SS/MCMC as it requires a causal system and the condition
that an excitation conditioned on the past excitation can be easily sampled.
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2.6. Hybrid Subset Simulation

Subset simulation with hybrid Markov chain and splitting (abbreviated SS/H) combines
subset simulation with Markov chain Monte Carlo (SS/MCMC) and subset simulation
with splitting (SS/S). The idea for a combination of the two methods has arisen from the
theoretical and empirical studies of the statistical properties of the estimators. Mainly,
the c.o.v. of SS/MCMC estimator is sometimes smaller than the SS/S estimator and
vice versa. Therefore, the following hybrid subset simulation method tries to combine
the advantages of both methods.

This is because the two methods produce di�erent types of dependencies between
o�spring-mother and o�spring-o�spring relations. To see this, consider again the par-
tition of a trajectory x into a partial trajectory before x− and after x+ the �rst passage
point S. In SS/H the generation of the o�spring xO =

{
x−O, x

+
O

}
after the �rst pas-

sage point is completely independent of the mother sample since direct MCS is used to
generate x+

O. This explores the failure region much better than MCMC simulation and
therefore SS/H outperforms SS/MCMC in the second part, because the samples which
are generated using MCMC simulation introduce dependencies between the o�spring
trajectories and their mother trajectories. Finally, these dependencies, i.e. correlations
between samples lead to higher (co)variance values and thus reduce the e�ciency of the
sampling method. Considering the generation of the �rst part of the o�spring trajec-
tory x−O the SS/H method simply copies this part from its mother trajectory x−O = x−M ,
which means that the correlation for this part of the sample could not be stronger. On
the other hand, SS/MCMC generates this part as well with MCMC simulation, which
also introduces dependencies to its mother sample, but they are by far fewer than a
direct copy. Hence, the advantages and disadvantages of the two methods with respect
to their correlation for the partial trajectories are completely opposite.

Keeping this properties in mind, the idea which comes up straightly, is to generate the
�rst part of the trajectory x−O using MCMC simulation to reduce the correlation between
samples (compared to simply copying it). The second part after the �rst passage point,
x−O, is then generated using the method used in SS/H, that is, direct MCS, which
does not introduce any correlation at all - in contrast to MCMC simulation. Besides
the mixture of the aforementioned algorithms, the main change in the implementation
is that the trajectory generation according to MCMC needs to be monitored to �nd
out whether a �rst passage point has been reached to abort the generation. If a �rst
passage point (FPP) has been found before the generation normally ends, the generation
is continued with direct MCS. The hybrid method for subset simulation is illustrated in
�gure 2.7 (also compare with �gures 2.5 and 2.6) and explained in detail in the following
algorithm.
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2.6.1. Algorithm

Algorithm 5 Hybrid subset simulation

- Given is the response function r (·) of a causal system and a probability
distribution p (u) for the system input.

- Output is the probability estimation P̂F for a system failure.

A. Stage 1: Generate root samples using direct MCS
i := 1
Simulate N1 i.i.d. trajectories

{
x(1,k)(t) : t = tl, l = 1, . . . , nt, k = 1, . . . , N1

}
by drawing samples from p (u) and calculate their response with function r (·)
Sort samples

{
x(1,k)(t)

}N1

k=1
in ascending order wrt. maxt

[
g
(
x(1,k)(t)

)]
Calculate b1 := maxt

[
g
(
x(1,j)(t)

)]
with j = b(1− p0) ·N1c , R1 := p0N1

B. Stage i: Estimate Pi (i=1,. . . ,m-1) and possibly calculate new subsets recursively:
while (bi < b) . a new subset can be opened up

P̂i = p0 . probability is prede�ned by bi
Ri trajectories exceeded threshold bi: assign them as mothers

{
x

(i+1,k)
M (t)

}Ri

k=1
i := i+ 1 . open up a new subset
forall Ni −Ri−1 o�springs that need to be created:

Uniformly select a mother trajectory xM having index k
Generate o�spring pointwise with MCMC until a FPP has been reached
if FPP has been reached:

the �rst part x̃− of trajectory xO = {x̃−, x̃+} is completed
else repeat the �rst part of the mother trajectory: x̃− = x−M
Calculate x̃+ after generating ũ+ according to p (u+|u−)

end for

Sort samples
{
x(i,k)(t)

}Ni

k=1
in ascending order wrt. maxt

[
g
(
x(i,k)(t)

)]
bi := maxt

[
g
(
x(i,j)(t)

)]
with j = b(1− p0) ·Nic , Ri := p0Ni

end while

The last subset has been reached and bi is given as bi = bm = b (m := i)
P̂m = Rm

Nm
, where Rm is the number of samples exceeding threshold g (x) ≥ b.

C. Finally, calculate the failure probability estimation: P̂F =
∏m

i=1 P̂i

2.6.2. Statistical Properties of the Estimator

Subset simulation with hybrid Markov chain and splitting combines the advantages of
both SS/MCMC and SS/S, that is, it reduces the estimation c.o.v. due to the reduction
of sample dependencies which exist in both methods. Therefore, the SS/H estimator
can be expected to have the same or a lower c.o.v. than both of the sampling methods
it is derived from.
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g(x(t))

g(x)=bi

t

g(x)=b
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S

tS
MCMC simulation MC simulation

Figure 2.7.: Generation of an o�spring trajectory using hybrid MCMC and MCS.

Ching et al. [14] derived approximations for c.o.v. of the hybrid method estimator
which are useful for theoretic conclusions but impractical to decide about how many
samples are needed to achieve a prede�ned accuracy of the estimation. Therefore, they
have shown that the lower and upper bounds for the c.o.v. which were derived for SS/S
are also valid for the hybrid method. Again under the assumption that the number of
samples per stage Ni is large, the c.o.v. δ should be within the following bounds:

(1− P1)

P1N1

+
m∑
i=2

[
1− Pi
PiNi

]
≤ δ2 ≤ (1− P1)

P1N1

+
m∑
i=2

[
1− Pi
PiNi

(
1 + E

[
Ni

Ri−1

])]
(2.81)

Advantages

SS/H combines the advantage that SS/MCMC has lower c.o.v. before the FPP and
that SS/S has lower c.o.v. after the FPP. As a result, SS/H always has a lower or
equal c.o.v. compared to both methods, SS/MCMC and SS/S. Nonetheless, the hybrid
method again introduces the necessity of a proposal function, but SS/H is less sensible
to the choice of proposal function and their parameters which will be shown in the
evaluation.

Disadvantages

As already mentioned, due to the usage of MCMC simulation the problem of choosing
an appropriate proposal function arises again, even if SS/H is more robust to the choice
of the proposal PDF it is not independent of its choice. Moreover, the computational
cost of SS/H is higher since it again introduces a rejection step, because it may happen
that the �rst part, which is simulated with MCMC, never reaches the required limit
value. This means, that the complete trajectory is simulated with MCMC but �nally
discarded and as in SS/S the �rst part of the mother trajectory is repeated.
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3. Implementation

This chapter gives an overview of the software package which provides all sampling
methods described above. Since computing performance is an important issue to solve
large-scaled engineering problems this work is also focused on an e�cient software
implementation and the use of parallel computing techniques.

3.1. Optimization of the Subset Simulation

Procedure

For the dynamic analysis, the amount of data handled by the subset simulation algo-
rithms increases easily with the size of the structure under study. Usually the resource
management is a trade-o� between memory usage and calculation time, but also the
selection of data structures and processing schemes may a�ect the usage of system
resources.

Generally, all subset simulation methods can be implemented in an iterative or an
recursive scheme to process through the sampling stages. While this choice has no
in�uence on the time complexity, it has an e�ect on the memory complexity. In a
recursive scheme, the mother samples have to be kept in memory for the next stage and
cannot be released before the recursion stops and so the total memory usage will be
O (mN), where m is the number of simulation stages and N is the number of samples
in each stage. In the iterative version, the mother samples can be released after the
generation of the o�spring samples. The memory usage decreases to O (N), because
only a maximum of 2N samples have to be kept in memory. A recursive implementation
should hence be avoided.

Using a di�erent data structure, the memory usage can be further reduced, especially
for the case that the corresponding responses are also saved. In simple Monte Carlo
simulation, the storage of samples is not necessary, since the only information needed
is whether a sample caused a system failure. This information can simply be hold
within a counter variable. But as stated above, in all subset simulation methods some
of the samples in each stage are needed to generate new descendants. Furthermore, it
is also bene�cial to store the system response for the case that a generated o�spring
candidate is rejected and its mother sample is repeated. This applies for both meth-
ods, SS/MCMC and SS/H. For SS/S, the storage of the response also avoids expensive
response calculations, because the �rst part of a mother sample is repeated for ev-
ery new o�spring sample. Since the response function is deterministic, the �rst part
of the mother sample response can be copied as well. Succinctly, in order to avoid
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computationally expensive system analysis, the storage of samples and responses is
advantageous for all subset simulation methods described in this thesis. In dynamic
analysis each sample and response is a long time series and this number multiplies with
the number of inputs and the degrees of freedom of the system, respectively. Even for
a moderate number of samples and medium size structures the amount of memory to
store samples and responses easily reaches several Gigabytes, which is still in the order
of signi�cant magnitude on todays computers.

Since the limit values bi are chosen adaptively, it is not known in advance which of the
samples will be needed as mother samples for the next stage. Therefore, the intuitive
way to implement subset simulation is to generate Ri samples for stage i, sort them
and de�ne the limit value bi with the a priori chosen conditional probability p0. This
will need memory for Ri samples per stage i.

However, the memory usage can be reduced to p0Ri, because only the p0Ri samples
with largest system response are needed for the next stage. For example, this can be
achieved by sorted insertion in a list with a maximum length of p0Ri elements during
the sample generation process. Samples with smaller system responses are therefore
displaced downwards the list and are �nally discarded, if they no longer �t into the
list. While a discarded sample will not be needed as a mother sample in the next
stage, its corresponding maximum response value may still be necessary for the partial
failure probability estimation. It is therefore suggested to replace the straightforward
implementation by a single list for samples and responses by a combination of two
lists with the following properties. The �rst list saves samples and responses as in the
simple implementation, but its size is limited to size p0Ri and the element with the
lowest maximum system response is removed, if the sampling process tries to insert a
new sample with higher response value into the full list. The displaced sample and
response can be released and only the maximum response value needs to be stored in
the second list which has size (1− p0)Ri.

While sorted insertion has a time complexity of O (n2) the desired functionality can
also be obtained by a priority queue, which keeps the elements in a semi-sorted order,
if it makes use of a heap, i.e. a self balancing binary tree. In short, a priority queue
is the generalization of the queue and the stack data structures. Each element which
is added to the list needs an priority value that is chosen by the user. Then only the
element with the highest priority in the queue can be read or removed. For further
information see [23] or [24, pp.138-142]. In this case, the �nal complexity to obtain the
maximum responses in order is O (n log n), which is also the lower bound for comparison
based sorting algorithms. A reduction of the memory usage can therefore be achieved
without signi�cant loss of performance. Figure 3.1 illustrates the described methodology
compared to a simple implementation.

Consequently, the use of memory resources is reduced by the fact, that the elements of
the second list are much smaller. Since the value of p0 is suggested to be around 0.1
the memory saving can be signi�cant, while the change of the data arrangement does
not change the time complexity.
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Figure 3.1.: Illustration of the memory savings: simple storage in a list (upper part) vs.
a combination of two lists (lower part).

3.2. Parallelization

In order to apply recently developed simulation techniques for reliability based methods
to large scale applications, parallel computing is an important part of current research in
this area. Due to the use of simulation methods the computational expensive structural
analysis is usually part of the simulation of each sample. Generally, the generation of
independent samples is a task which can be parallelized to reduce computational time.
After explaining some general aspects, this section discusses the parallelization of the
simulation methods described in chapter 2.

3.2.1. Preliminary

In general, parallelization can be achieved in di�erent ways. From the hardware point of
view parallelization may be achieved by instruction level parallelism, parallel comput-
ers, multicore processors, distributed computing, cluster computing, massive parallel
processors or grid computing. However, it depends on the task to decide which par-
allelization method is reasonable and worth the e�ort. Loosely speaking, one could
say the e�ort increases enormously with the scale of physical distribution, since data
synchronization and workload balancing gets more and more complicated.

As generally known, pure Monte Carlo simulation is an so-called embarrassingly parallel
problem, which is the simplest form of a parallelization problem, because there are no
dependencies between samples and no data needs to be exchanged or synchronized
during the sampling process. In contrast, the subset simulation methods need multiple
data synchronization steps in between recursion levels. Because of available hardware
resources and for simplicity, the focus is kept on symmetric multiprocessing (SMP)
and multi-core computing, which is easy to implement and synchronization as well as
communication is less complicated. Moreover, the needed hardware is available on
todays standard PC's and it is thus widely applicable. This form of parallelism can
be achieved by so-called multi-threading which is explained in the next subsection. A
general property for task parallelization is given by the following rule.
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Amdahl's law of parallelization
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Figure 3.2.: Illustration of Amdahl's law.

The speedup S is the most impor-
tant measure in parallel computing.
It describes how much faster the pro-
gram is due to the parallelization and
is calculated as the proportion of the
program runtime TP in parallel mode
and the program runtime TS in se-
quential mode.

S =
TS
TP

(3.1)

Amdahl's law [25] provides an upper
bound for the maximum speedup which can be achieved by parallelization. Let P be the
proportion of the program which can be parallelized, which means that the proportion
(1 − P ) remains sequential, then the maximum speedup Smax by using N processing
units is given as

Smax =
1

(1− P ) + P
N

(3.2)

This means, for instance, if 90% of the program is parallizable, the parallel program
cannot be more than 10 times faster than the sequential program, even if an in�nite
number of processors is used. Figure 3.2 shows the upper bounds for the theoretical
speedup and illustrates that only for parallel proportions close to 100% the speedup
grows reasonable with the number of assigned processors. Fortunately, the parallelizable
proportion of the subset simulation algorithms can become close 100% - depending on
the problem - because the proportion will increase for larger engineering problems, since
the computational expensive function r (·) is part of parallizable sampling generation
proportion. This will be discussed in more detail and illustrated by examples in the
evaluation part 4.5.

3.2.2. Multithreading

As processes are de�ned to perform tasks, threads maybe viewed to perform subtasks
simultaneously with other threads. They provide a simple abstraction layer to achieve
(pseudo-)parallelism with respect to processor instructions. On a single processor com-
puter threads are executed sequentially by rapidly switching between several threads
which may give the illusion of simultaneity. If the number of parallel threads is indeed
processed in parallel the actual speedup depends �nally on the scheduler of the oper-
ating system and the number of physically provided processing units. However, the
theoretical speedup factors are upper bounds which are usually not reached, because
of di�erent in�uence factors, e.g. interruption by the operating system, waiting for
resources, communication, synchronization, etc.
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From the programmers point of view a thread is de�ned by a code procedure which is,
for example, initiated by the main program and then runs completely independently
from the the main program. The thread �nally ends and looses all its resources when
the end of the thread procedure is reached. To avoid time consuming regeneration of
threads in between subset simulation levels the threads are designed as worker threads
being in an endless loop, either awaiting a new tasks or an external abortion signal.
The typical scheme is shown in the following pseudo code example:

Algorithm 6 Processing Scheme of a Worker Thread.

while (true) . endless loop
sleep and wait to be woken up from the main thread
if (signal to end the thread) return . leave the loop to end the thread
work: start the subtask procedure
signal the main thread that the subtask is �nished

end while

All simulation methods have been parallelized using this kind of abstract procedure.
The only di�erence is the subtask procedure, which needs to be de�ned additionally
to the sequential algorithm. The described worker thread scheme is therefore just
a generalization to make threads possibly reusable if similar work needs to be done
several times. This scheme is bene�cial for all subset simulation methods, since they
perform a similar sampling process in every stage.

3.2.3. Parallelization of the Subset Simulation Process

What all subset simulation methods have in common is the easily parallelizable Monte
Carlo simulation in the �rst stage. In particular, that will be the sampling generating
step in section A of algorithms 2, 4 and 5. Generally, all sampling processes are im-
plemented to distribute the workload equally among a given number of threads. If the
processing speed of the parallel components is di�erent, the number of threads can be
simply increased. A subtask is de�ned as the generation of bNi/vc samples of a partic-
ular subset simulation stage i, where Ni is the total number of samples to be generated
in stage i and v is the number of subtasks among the workload is distributed. Due to
the fact that Ni/v may be a non-integer, the generation of possibly remaining a < v
samples is distributed among the �rst a working tasks.

For the other simulation stages of the subset simulation methods the parallelization is
more di�cult, since the sampling results have to be synchronized at the end of each
stage. Following the most important rule in parallelization - the result of a parallel
program must be equal to its sequential equivalent - read and write processes on shared
data structures must be protected by some kind of synchronization mechanism. This
is usually achieved by exclusive resource usage, i.e. resource locking, which in turn has
performance disadvantages, because threads have to wait until resources are available.
However, for the simple implementation of the subset simulation methods it is possible
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to construct a completely wait free parallel section, that is, without any resource lock-
ing. For the memory optimization, explained in section 3.1, resource locking becomes
necessary for the sample result list (priority queue), but further resource locking may
be avoided by the approach described in the following.

During the sampling generation the threads usually have to write into the same result
list. This can be avoided by providing each thread its own result list, which in turn
can be easily connected after the parallel code section is left. If the same approach of
moving the synchronization of data out of the parallel code sections is also used for
all other output data (e.g. statistic and performance data) there will be no concurrent
writing of data. All output data then have to be merged after leaving the parallel code
section.

Due to the separation of sampling method and sampling problem the sampling method
needs to call unknown user code of the sampling problem within the parallel code
section. Since this is certainly the computationally most expensive part, this code
section should not be locked entirely and two possibilities remain to deal with that
problem: 1. The user needs to provide threadsafe code for the sampling problem, or 2.
All data structures of the sampling problem which may be written concurrently during
the sampling process need to cloned before and synchronized afterwards to avoid race
conditions. Furthermore, if the code sections of the sampling problem act as a state
machine, which may be favorable for some numerical integration methods, option 2
remains as the only possibility and also provides easier programming conditions for the
end user. In sum, the parallelization requires the following additional e�ort:

• Before entering the parallel code section, the workload must be split and dis-
tributed among all threads. Additionally, each thread must be provided with
its own result data structure and its own copy of volatile data of the sampling
problem.

• After leaving the parallel code section, the private result data of each thread must
be merged into a single result.

This approach makes it easier for the user (i.e. the one who provides the sampling
problem) to create code which is able to run in parallel and this approach is even
necessary, if the functions of the sampling problem act as a state machine. As an
example, for a dynamic subset simulation problem, the user needs to provide a response
function, which calculates the response of just a single time point given the previous time
points and responses. This is because for SS/S and SS/H the samples and responses are
calculated partially. If, for example, the Newmark method is assigned for the response
calculation, the �rst and second derivative of the response from the last time point is
necessary for the calculation. To save memory resources, it is natural to handle these
values as a variable state during the response calculation of a whole sample (part).
While this works �ne for the sequential program, the parallel simulation of di�erent
samples will use the same function to generate them pointwise and would corrupt
the response function's state values. The user is therefore provided with a general
data structure for data that may be used concurrently during parallel computation.
This data structure is automatically copied for parallel processing and assigned to the
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corresponding thread. However, the user is free to use this data structure and can
additionally or alternatively use common protection methods to avoid race conditions.
Depending on the problem under study and its particular implementation it is up to the
user to decide whether to use the proposed cloning scheme of sensitive data structures
or to use resource locking techniques which may slow down the parallel computing.
Finally, it is noted that the data cloning approach needs extra memory resources and
may need extra calculation time after the parallel section. However, besides the simpler
implementation, a gain in performance may be achieved especially for data �elds which
are accessed frequently by a large number of parallel processes.

Figure 3.3 illustrates the described process of automatic user data multiplication for
the case that the workload is distributed over n threads. In the simplest case, the user
simply moves the data storage of sensitive data into the provided container and during
the sampling process each user method is automatically provided with the correct copy
in the case of parallel computation. Consequently, this approach facilitates parallel
computation from the user point of view as in most cases the user does not even take
notice of possible parallel computation. In practice, there may remain some simple
rules, which can be found in the code documentation, that is, for example, each of the
data structures shown in �gure 3.3 is provided with a private instance of a random
generator and the user is asked to use them if necessary, since their functions are not
thread-safe.

Sampling Method Sampling Problem

Methods:

Data:

SD
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data)

...

generateSamplePoint(SD,�)

generateConditionalSamplePoint(SD,�)

calculateResponsePoint(SD,�)
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select copy

n copies
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data

usage

Figure 3.3.: Data processing scheme during parallel computation.

As mentioned before, due to the basic similarity of the subset simulation methods their
parallelization is analog to the following example which shows a part of the subset
simulation algorithm with splitting. The �rst part, the Monte Carlo simulation is not
shown and needs to be parallelized separately with own functions and threads. In
the second part only the interior code section of the sampling generation loop can be
parallelized as shown in the following.
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Algorithm 7 Part of subset simulation with splitting (Algorithm 4).
...
B. Stage i: Estimate Pi (i=1,. . . ,m-1) and possibly calculate new subsets recursively:

while (bi < b) . a new subset can be opened up
P̂i = p0 . probability is prede�ned by bi
Ri trajectories exceeded threshold bi: assign them as mother

trajectories
{
x

(i+1,k)
M (t)

}Ri

k=1
and record their �rst passage points

{
S(i+1,k)

}Ri

k=1

i := i+ 1 . open up a new subset
forall Ni −Ri−1 o�springs that need to be created:

// ��� parallelizable code section starts
Uniformly select a mother trajectory xM having index k
Create o�spring as xO =

{
x−M , x̃

+
}
by applying r (·) to the partial mother

excitation u−M and the new simulated partial excitation ũ+ ∼ p (u+|u−),
which starts after the �rst passage point S(i,k)

// ��� parallelizable code section ends
end for

Sort samples
{
x(i,k)(t)

}Ni

k=1
in ascending order wrt. maxt

[
g
(
x(i,k)(t)

)]
bi := maxt

[
g
(
x(i,j)(t)

)]
with j = b(1− p0) ·Nic , Ri := p0Ni

end while
...

The parallel section needs to be encapsulated in an extra method and will �nally be
called by the assigned worker thread. After all, the parallel version of the algorithm is
illustrated in the following partial algorithm

Algorithm 8 Parallelized part of subset simulation with splitting (Algorithm 4).
...
B. Stage i: Estimate Pi (i=1,. . . ,m-1) and possibly calculate new subsets recursively:

while (bi < b) . a new subset can be opened up
P̂i = p0 . probability is prede�ned by bi
Ri trajectories exceeded threshold bi: assign them as mother

trajectories
{
x

(i+1,k)
M (t)

}Ri

k=1
and record their �rst passage points

{
S(i+1,k)

}Ri

k=1

i := i+ 1 . open up a new subset
Split workload and prepare private data structures for parallel threads
Start all threads to run parallel code sections
Wait until all threads have �nished
Merge data results of all threads
Sort samples

{
x(i,k)(t)

}Ni

k=1
in ascending order wrt. maxt

[
g
(
x(i,k)(t)

)]
bi := maxt

[
g
(
x(i,j)(t)

)]
with j = b(1− p0) ·Nic , Ri := p0Ni

end while
...
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Before the synchronization can start one needs to ensure, that all worker threads have
�nished their work. Therefore, the main thread has to wait for all workers to �nish.
The rest of the algorithm is similar to the sequential version.

3.2.4. Parallelization of Importance Sampling

The importance sampling technique which uses ISD B is already very e�cient, but
system analysis is still needed. In importance sampling the system analysis is a prepro-
cessing step and is not part of the actual sampling process. As shown in the importance
sampling algorithm in subsection 2.3.4 the whole importance sampling procedure can
be divided into to three steps. All of these steps need to calculate values which are
independent of each other, but the results of previous step (if any) are needed. Hence,
each of the steps can be parallelized by itself, but the steps need to stay in a sequential
order. The actual run time proportion of each step depends on the sampling problem
and the ISD. For instance, the system analysis (step one) and the value precalculation
(step 2) has been found to have the largest program proportion for ISD B for all test ex-
amples and reasonable sample numbers (≤ 500). This may change for larger problems.
In contrast the more complex estimator evaluation for A usually makes the sampling
process (step 3) to the essential part of the total run time. In the implementation all
three steps of the algorithm have been parallelized in a similar way as discussed in the
last subsections. Since the parallelization also needs additional computation time for
the workload distribution, the speedup for a particular step may also depend on the
problem under study and the selected ISD.

3.2.5. Scalability of the Methods

In this work the parallelization of the sampling methods has been focused on single com-
puters with several processing units, that is, small-scale parallelization. This drastically
simpli�es the e�ort for data exchange and synchronization. Since the data exchange
in large scale computation is usually the bottleneck of e�ciency, the parallelization
scalability of a particular method is therefore mainly de�ned by frequency of necessary
data exchange and by the amount of data that needs to be exchanged.

The subset simulation methods are well scalable up to certain number, since most of
the data can be generated independently and does not need to be exchanged. Data
synchronization is only needed in the change over from one stage to the other. If the
number of parallel processes is less or equal then the considered number of mother
samples in each stage, the amount of necessary data exchange will be limited, but will
increase noticeably is the number of processors is larger. Another important issue in this
aspect is the storage and re-usage of calculated responses. For large degree of freedom
systems the amount of data for the responses will be large and this optimization will
highly in�uence the scalability and may not be considered.

For importance sampling, one can generally say that the scalability of the paralleliza-
tion of the importance sampling method is worse compared to the subset simulation
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methods. Although, the three steps of the method can be parallelized separately, all
steps have strong data dependencies. For small scale parallelization as tested in this
work, this is not an issue since the data exchange can be e�ciently realized by means of
shared memory resources. For large scale distributed computing, however, the method
will need a huge e�ort for data transfer and synchronization.

3.3. Software Architecture

3.3.1. Encapsulation of Generality

From the mathematical point of view the increasing e�ciency of the sampling methods
described in chapter 2 is bought with the loose of generality. From the engineering
point of view the methods are stepwise specialized for reliability estimation of dynamic
structures, i.e. the �rst excursion problem. While MCS simulation is generally appli-
cable to any kind of probability distribution, SS/MCMC is only applicable to problems
which need to estimate the conditional probability P (x | g (x) ≥ b). While the shape
or type of the samples x can be arbitrary, SS/S and SS/H further assume that samples
are time series, which can be split and which are long enough that a re-simulation of
the last trajectory part is su�cient to explore the failure probability space over a few
sampling stages. The following �gure 3.4 gives an overview about the generality of the
sampling methods.

Note, that pure importance sampling has the same generality as Monte Carlo simu-
lation, but it is di�cult to �nd an appropriate importance sampling density for more
general cases. Therefore, this �gure shows the generality of the importance sampling
method which has been explained in this thesis.

Clearly, only simulation methods of the same generality and all more general simulation
methods are applicable to a given failure estimation problem. Thus, if this structure
is also applied to the computing software, the program will be able to know which
simulation methods are applicable and any of these methods can be applied without
changing the de�nition of the sampling problem.

3.3.2. Software package

The software package has been designed to achieve a maximum value of code reusability
and providing an e�cient implementation of all simulation methods at the same time.
Figure 3.5 illustrates the most important classes with respect to the sampling methods
discussed before. Furthermore, it shows the type of sampling problems covered by the
di�erent methods and their direct relation to the program source code. Note that the
class structure directly maps the generality of the methods (compare �gure 3.4). For
the sake of readability and brevity more detailed information about the software can be
found in the source code documentation which consists of a fully detailed UML-diagram
containing all methods and data �elds.
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Figure 3.4.: Generality overview of the presented methods.

The encapsulation of di�erent levels of generality facilitates code reusability, makes it
easier to add new sampling methods or problems and it abstracts the common properties
of sampling methods and problems which makes it easier to implement graphical user
interfaces (GUI). Furthermore, the proposed software structure separates the sampling
method from the problem to be solved. This highly increases the reusability of source
code since it is often favorable to solve di�erent sampling problems with the same
estimation method or the other way around: investigate di�erent sampling methods
for a particular sampling problem. The introduced abstraction layer simpli�es both
directions of testing.

For instance, for all sampling methods described in this thesis any sampling problem
must provide the following properties:

• The generation of a sample u ∼ p (u)

• The calculation of a response x for a given sample u, i.e. function r (·)

The type of the samples and responses can be arbitrary and therefore these requirements
are extended for the subset simulation methods by a partial order relation over X . This
relation is necessary to sort the samples and to identify the mother samples for the next
sampling stage. The partial order relation is de�ned by q : X ×X → {−1, 0, 1}, where
−1 and 1 respectively mean that the �rst argument is smaller or larger than the second
and 0 means equality of the arguments. The subset splitting method again extends the
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Figure 3.5.: UML-diagram showing the most important classes of the software package
and their relations.

requirements to provide the sample generation and response calculation functions for a
single time step, because this method works upon time series. In this way each sampling
method de�nes its minimum requirements and any sampling problem which satis�es
these requirements can be solved with the corresponding or more general sampling
method.

The software package has been developed in C#, because it drastically simpli�es mem-
ory management, GUI-development and generally accelerates the software development
process. It is widely platform independent, capable of being integrated with other pro-
gramming languages and easily portable. A very simple, but powerful and extendible
graphical user interface (GUI) has been developed in order to simplify the testing pro-
cess of examples and methods.
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4. Evaluation

This chapter consists of several experiments to investigate the e�ciency advantages of
the sampling methods. The focus of this chapter is to show similarities, di�erences and
general properties of the sampling methods. Therefore all examples are �rst explained
and later used to investigate particular properties.

The subset simulation algorithms are derived in a general way so that a particular
number of samples Ni can be used to estimate the partial failure probability Pi in stage
i. Since the �nal estimator is the product of each intermediate failure probability it is
desirable that their contribution is approximately similar, which can be achieved if the
partial failure probabilities are chosen a priori. Then, it is natural to estimate each of
the partial failure probabilities with the same accuracy, which means that the number
of samples in each stage can be chosen as N = N1 = N2 = · · · = Nm. Therefore, this
choice has been made for all of following experiments.

4.1. Example 1: Simple Benchmark

To show the principles of the subset simulation method and to illustrate intermediate
outcomes, the SS/MCMCmethod is applied to a simple 2-dimensional numeric example.
Two input variables u1, u2 are considered in this example, which are summarized by the
2 × 1 vector u (thus, the input space is U = R2). The system response function r (·)
returns a 1-dimensional vector (X = R) and is de�ned as

x = r (u) =
2

3
u1u2 + 5 · e (u, 1, 1) + 8 · e (u,−2, 0.5) + 15 · e (u, 2,−2) (4.1)

where e : R2×1×1 → R is de�ned as the following exponential function:

e (u, a1, a2) = exp
[
−(u1 − a1)2 − (u2 − a2)2

]
(4.2)

The input domain for both input variables is de�ned by the interval [−3, 3]. The
uncertain input is modeled with a standard Gaussian distribution with zero-mean and
unit variance, that is, p (uj) = qj (uj | 0) with σ2

j = 1, j = 1, 2 according to Equation
(4.3).

The limit state function is de�ned by the identity function g (x) = x and its limit
value to de�ne a system failure is b = 10. The adaptive proposal density function for
the subset simulation procedure is also modeled by a Gaussian distribution for each
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dimension j:

qj (uj | yj) =
1√

2πσj
exp

[
−1

2

(uj − yj)2

σ2
j

]
(4.3)

During MCMC simulation the Gaussian is centered at the mother sample and the same
variance σ2

j = 1 as for the input is used for both dimensions j = 1, 2.

The probability for a system failure PF is estimated with SS/MCMC using the partial
failure probability value p0 = 0.1. To estimate the partial probabilities N = 3000
samples are used in each sampling stage. The number of stages end up with m = 4
during the simulation, which results to the overall number of samples NT = 11 000

Sampling Process

The sampling process and generation of conditional samples according to the SS/MCMC
method is illustrated in the following Figure 4.1. The goal is to estimate the probability
that the response exceeds b = 10 being shown as a plane in Figure 4.1(a).

Furthermore, Figure 4.1(a) shows the response function and the set of samples, which
has been generated by direct MCS as the �rst stage of SS/MCMC procedure. The
samples are hence distributed all over the input domain according to the input PDF
p (u). All these samples are used to estimate the �rst partial failure probability value P1,
which is the probability that the response exceeds b1. The samples exceeding b1 are used
as mother samples to generate more conditional samples which are also distributed as
p (x|F1) (shown in (b)). This process is continued until the next intermediate threshold
is larger than b, which is the case 4.1(d). The intermediate limit value is b3 = 8.95. After
the generation of more samples distributed as p (x|F3) the next intermediate threshold
according to p0 is found to be b4 = 11.67, which is greater than the limit value b = 10.
The samples generated in this stage are hence su�cient to estimate the probability
P (F |F3), because its value is smaller than p0.

The �gure is meant to illustrate the principles of subset simulation which are the same
for the three variants of the method. The di�erence is only de�ned by the way, the
conditional samples are generated. The methods SS/S and SS/H are specialized for
high dimensional inputs and are thus not applicable to this sample problem.

The results of the estimation are compared to the ones obtained using direct MCS with
a number of samples NT = 100 000. Figure 4.2 shows the failure probability graph for
both estimations. The failure probability estimations for the limit value b = 10 are
2.176× 10−3 and 2.221× 10−3 for SS/MCMC and direct MCS, respectively.

The �gure shows that both methods lead to the same results as the failure probability
graphs are nearly identical. The 'bumps' in the failure probability graph are due to the
shape of the objective function. More interesting than the failure probability graph is
the coe�cient of variation of both estimators in comparison, which is shown in Figure
4.3.

Additionally to the c.o.v. values obtained from the estimation the �gure shows the
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Figure 4.1.: Subset sampling process during 4 stages: (a) stage 1: MCS samples and the
limit of interest (b = 10); (b),(c),(d) stage 2-4: generation of conditional
samples with response values greater than b1, b2, b3, respectively.

theoretical c.o.v. for a total number of samples NT = 11000 and NT = 100000. One can
see that the c.o.v. obtained by SS/MCMC increases linearly over the logarithmic scale of
the failure probabilities while the c.o.v. values from direct MCS increases exponentially.
For very small failure probabilities the c.o.v. values from SS/MCMC even outperform
the ones of MCS with 100 000 samples, which used almost 10 times more samples and
thus response function evaluations. The �gure also shows the theoretical c.o.v. values
that would be obtained if direct MCS is used with the same number of samples, i.e.
NT = 11 000. This illustrates the advantage of the method to estimate small failure
probabilities. However, the smallest probability that could be estimated by MCS with
such a number of samples is PF = 0.91× 10−4.

The example has shown, that SS/MCMC is much more e�cient to estimate small
probabilities than direct MCS. Only a small fraction of samples is necessary to obtain
the same estimation results. This is very valuable if the evaluation of the objective
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Figure 4.3.: Coe�cient of variation for failure probability estimation.

function r (·) is computationally expensive since the function needs to be evaluated
once for each sample.
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4.2. Dynamic System Examples

Three dynamic systems are studied with the described sampling methods to estimate
their �rst-excursion failure probabilities. The system input u(t) for these examples is
a Gaussian white noise process with spectral intensity S0. Using a sampling interval of
∆t = 0.02s, the system is studied over a time of T = 30 s, such that the number of time
steps is nt = T/∆t+1 = 1501. The stochastic input u(t) is hence a sequence of random
variables U(t) =

{√
2πS0/∆t · Z (tl) : l = 1, . . . , nt

}
, where S0 denotes the spectral

intensity and Z (tl) is a sequence of independent and identically distributed standard
Gaussian random variables with zero-mean and unit variance.

4.2.1. Example 2: SDOF Linear Oscillator

x(t)

u(t)
k

c

Figure 4.4.: Model of a one de-
gree of freedom os-
cillator.

To illustrate the simulation method on a simple dy-
namic system, a single-degree of freedom (SDOF)
linear oscillator is considered. The mathematical
model of the oscillator is shown in Figure 4.4. The
behavior of this spring-mass system is described
by the mass displacement over time x(t) ∈ R.
The system is subjected to white noise excitation
u(t) ∈ R with spectral intensity S0 = 1m2/s3 and
the equation of motion is given by:

ẍ(t) + 2ζωẋ(t) + ω2x(t) = u(t) (4.4)

where ω = 2π rad/s (1Hz) is the natural frequency of the system and ζ = 5% is the
damping ratio. The system is assumed to start from rest with initial states x(0) = 0
and ẋ(0) = 0. Conveniently, Equation (4.4) can be solved with numerical integration
methods [26]. In the implementation the Newmark method (appendix A.1.1) and the
central di�erence method have been tested. However, the response can also be obtained
using the Duhamel integral form (see Equation (2.19)). The corresponding unit response
function gij (tl, ts) = g (tl − ts) is shown in Figure 4.5 and is described by

g (t) =
e−ζωt

ωd
sinωdt (4.5)

where ωd = ω
√

1− ζ2 is the damped natural frequency.

The failure region is de�ned by the exceedance of the system response over the threshold
value b within the duration of study T = 30s, that is

F =
{
x : max

t
|x(t)| ≥ b

}
(4.6)

The intermediate failure regions {Fi} are de�ned by the increasing sequence of inter-

4. Evaluation 55



UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA

0 100 200 300 400 500 600 700
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time step l

g
(t

l)

Figure 4.5.: Impulse response function.

mediate threshold values b1 < b2 < . . . < bm = b, which are chosen adaptively during
simulation, such that P̂i = p0 = 0.1 ∀i = 1, . . . ,m− 1. Thus,

Fi =
{
x : max

t
|x(t)| ≥ bi

}
(4.7)

Figure 4.6 shows characteristics of the system response to the white noise input by
the mean system response and the corresponding standard deviation. It can be seen,
that the standard deviation reaches its maximum quickly, which is due to the damping
factor of 5%.
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Figure 4.6.: Response mean value and standard deviation of the SDOF oscillator.
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4.2.2. Example 3: Linear Shear Building
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½kn
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Figure 4.7.: n-story linear shear build-
ing model.

An n-story linear shear building is sub-
jected to earthquake motion modeled by
a non-stationary stochastic process. The
various �oors are rigid masses and assumed
to be damped classically. The columns
are �exible but assumed to be massless.
Given are the �oor masses for each story
m1,m2, . . . ,mn, the linear interstory sti�-
ness values k1, k2, . . . , kn and the damping
values c1, c2, . . . , cn. The system is mod-
eled as a n-degree of freedom oscillator and
is shown in Figure 4.7 To describe the dy-
namics of the system the mass, sti�ness
and damping values are written as matri-
ces:

[M ] =


m1 0 · · · 0

0 m2 0
...

... 0
. . . 0

0 · · · 0 mn


n×n

(4.8)

[K] =


k1 + k2 −k2 · · · 0

−k2 k2 + k3
. . . ...

... . . . . . . −kn
0 · · · −kn kn


n×n

[C] =


c1 + c2 −c2 · · · 0

−c2 c2 + c3
. . . ...

... . . . . . . −cn
0 · · · −cn cn


n×n

The displacement of each story, denoted by the n × 1 vector {x(t)}, is described by
n-coupled equations of motion which are in matrix form:

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = − [M ] {1} ä(t) (4.9)

where ä(t) denotes the base excitation.

With the solution of the eigenvalue problem ([K]− ω2 [M ])φ = 0 one obtains n eigen-
values ω2

i and corresponding eigenvectors φi, which can be arranged in columns to form
the n× n modal matrix [φ] = [{φ1} , {φ2} , . . . , {φn}]. With the substitution

{x(t)} = [φ] {η(t)} (4.10)

the displacement vector is described by a series of normal modes and with the left-wise
multiplication with matrix [φ]T Equation (4.9) becomes:
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[φ]T [M ] [φ] {η̈(t)}+[φ]T [C] [φ] {η̇(t)}+[φ]T [K] [φ] {η(t)} = − [φ]T [M ] {1} ä(t) (4.11)

Since the eigenvectors {φj} , j = 1, 2, . . . , n are mutually orthogonal with respect to
the matrices [M ] and [K], the matrices in Equation (4.11) take diagonal forms with the
following properties:

{φj}T [M ] {φj} = Mj

{φj}T [C] {φj} = 2ζjωjMj (4.12)

{φj}T [K] {φj} = ω2
jMj

whereMj is the jth modal mass and ω2
j , ζj respectively are the eigenvalue and damping

ratio corresponding to the eigenvector {φj}. With these properties Equation (4.11)
describes n-decoupled equations of motions:

η̈j(t) + 2ζjωj η̇j(t) + ω2
j ηj(t) = −{φj}

T [M ] {1}
Mj

ä(t) j = 1, 2, . . . , n (4.13)

The n equations in (4.13) may again be solved with any numerical integration method.
Note that the usage of the decomposition method (see e.g. [27]) can be bene�cial, if the
oscillation of the structure is essentially ruled by the �rst v of n eigenmodes. Especially
for low frequency loadings like earthquakes or wind the computational e�ciency can be
improved signi�cantly with little loss of accuracy by only calculating these modes [16,
p.198]. In this case the response vector {x(t)} is approximated by

{x(t)} ≈
M�n∑
j=1

{φj} ηj(t) (4.14)

and then only M (instead of n) independent single degree of freedom systems have to
be solved to obtain a good approximation of the response vector {x(t)}.
After the eigenmode decomposition, the system behavior is also described by the
Duhamel integral (see Equation (2.19)) with the unit response function gi1 (tl, ts) =
gi (tl − ts) which is given as

gi (t) =
M�n∑
l=1

φil {φl}T {1}
{φl}T [M ] {φl}

e−ζlωlt

ωdl

sinωdl
t (4.15)

where ωdl
= ωl

√
1− ζ2

l is the damped natural frequency for the underdamped case.

The earthquake motion ä(t) is modeled by Clough-Penzien [28] �ltered white noise u(t)
modulated by envelope function e(t):
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ä(t) + 2ζs2ωs2ȧ(t) + ω2
s2a(t) = 2ζs1ωs1ȧ1(t) + ω2

s1a1(t)

ä1(t) + 2ζs1ωs1ȧ1(t) + ω2
s1a1(t) = e(t)u(t) (4.16)

The dominant and the lower-cuto� frequencies of the spectrum are ωs1 = 15.7 rad/s
(2.5 Hz) and ωs2 = 1.57 rad/s (0.25 Hz), respectively. The corresponding damping
parameters are ζs1 = 0.6 and ζs2 = 0.8.

The envelope e(t) function is assumed to be quadratically for the �rst 4 s, then be
constant at unity for 20 s, and �nally decays exponentially starting from t = 24s, that
is,

e(t) =


(t/4)2 if 0 ≤ t ≤ 4

1 if 4 < t ≤ 24

exp [−(t− 24)2/2] if 24 < t ≤ 30

(4.17)

The spectral intensity for the Gaussian white noise u(t) in (4.16) is assumed to be
S0 = 2.5× 10−3 m2/s3. The envelope function as well as a Gaussian noise sample and
its corresponding �lter output is shown in Figure 4.8.
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Figure 4.8.: Envelope function e(t) and example input and output of the Clough-
Penzien �lter modulated by e(t).
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The failure event is de�ned as the exceedance of the interstory drift of any of the stories
above a given threshold level b within the �rst 30 s. Therefore, the system response
{x(t)} is transformed into local coordinates

{
xL (t)

}
by

{
xL (t)

}
= [T ] {x(t)} (4.18)

where [T ] describes a linear transformation matrix given by

[T ] =


1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0
0 · · · 0 −1 1


n×n

(4.19)

The interstory drift for the jth story at time t will be denoted by xLj (t), j = 1, . . . ,m
and the failure region is de�ned by

F =

{
x : max

j=1,...,n
max
t

∣∣xLj (t)
∣∣ ≥ b

}
(4.20)

Again, the increasing sequence of intermediate threshold values b1 < b2 < . . . < bm = b
de�nes the intermediate failure events {Fi}. The limit values are chosen adaptively
during simulation, such that P̂i = p0 = 0.1 ∀i = 1, . . . ,m − 1. Thus, the intermediate
failure region for sampling stage i is

Fi =

{
x : max

j=1,...,n
max
t

∣∣xLj (t)
∣∣ ≥ bi

}
(4.21)

Note, that for the Duhamel integral a modi�ed impulse response function can be derived
to obtain the response in local coordinates. Also, the �lter equations in (4.16) can be
transformed into a similar form as the response function in Equation (2.19) to make the
�ltered input also applicable to importance sampling [5]. However, this transformation
requires the solution of a complex eigenvalue problem, which is currently not supported
by the software. Therefore, two cases of input excitation are considered in this example.
That is, the structure is subjected to

• Case 1: modulated Gaussian white noise, i.e. ä(t) = e(t)u(t)

• Case 2: Clough-Penzien �ltered modulated Gaussian white noise and ä(t) is given
as the solution of the �lter equations (4.16).

Considered is a 5-story linear shear building with the mass and sti�ness values given
in Table 4.1. The fundamental frequency of the structure is 1.25 Hz. In all example all
modes have been used for the response calculation, i.e. M = 5 and the damping ratios
for the assumed classical damping are chosen to be 5% for all modes.
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story i mass mi × 103 [kg] sti�ness ki × 106 [N/m]
1 45.4 41.1
2 45.4 38.5
3 45.4 33.4
4 45.4 25.6
5 45.4 15.2

Table 4.1.: Properties of the 5-story linear shear building.
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Figure 4.9.: Impulse response gi (t), standard deviation σil, elementary failure probabil-
ity 2Φ (−βil) of the the building - case 1.

Some characteristics of the structure are shown in Figure 4.9. The �rst column shows
the impulse response function gi (t) for each story. The second column shows the
standard deviation σil for the interstory drift response of the structure to the mod-
ulated Gaussian white noise (case 1), i.e. the standard deviation of the ith com-
ponent of vector

{
xL (t)

}
. The third column shows the elementary failure probabil-

ity that the interstory drift response exceeds threshold level b at time step l, that is
P
(∣∣xLi (t)

∣∣ ≥ b
)

= 2Φ (−b/σil), with a threshold level b = 0.024 = 6.5×maxl σ1l.
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4.2.3. Example 4: Non-Linear Shear Building
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Figure 4.10.: n-story non-linear shear
building model.

In order to make structures more resis-
tant to earthquakes, it is desirable to re-
duce their interstory displacements dur-
ing an earthquake base excitation. This
can be achieved, if the structure is en-
forced with special devices which have a
non-linear hysteretic behavior. The lin-
ear shear building model from the previ-
ous example is therefore extended with a
non-linear hysteretic device in each story.
The mathematical model of the non-linear
shear building is shown in Figure 4.10.

Accordingly, the equation of motion of
the linear model is extended with an
additional component which represents
the non-linear restoring force {rN (t)} =
[R] {q (t)} and Equation (4.9) becomes

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)}+ [R] {q (t)} = − [M ] {1} ä(t) (4.22)

where [R] is a transformation matrix and {q (t)} is actually a function of the displace-
ments {x(t)} and the velocities {ẋ(t)}, i.e. {q ({x(t)} , {ẋ(t)})}. The mass, sti�ness
and damping matrices are the same as de�ned in Equation (4.8). The non-linear com-
ponents in the structure are described locally and the non-linear restoring forces are
de�ned in terms of local coordinates as

{
rLN (t)

}
=
[
RL
] {
q
({
xL (t)

}
,
{
ẋL(t)

})}
(4.23)

The relation between local displacements
{
xL (t)

}
and velocities

{
ẋL(t)

}
to the dis-

placements {x(t)} and velocities {ẋ(t)} in global coordinates can be described by a
linear coordinate transformation matrix [T ], such that

{
xL (t)

}
= [T ] {x(t)} and

{
ẋL(t)

}
= [T ] {ẋ(t)} (4.24)

Therefore, the restoring forces in the global coordinate system are described by their
local counterparts as

{rN (t)} = [T ]T
{
rLN (t)

}
= [T ]T

[
RL
] {
q
({
xL (t)

}
,
{
ẋL(t)

})}
(4.25)

According to Equations (4.10)-(4.13) the modal analysis of Equation (4.22) can be
performed in the same way and �nally leads to n-decoupled equations of motions
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η̈j(t) + 2ζjωj η̇j(t) + ω2
j ηj(t) = −{φj}

T [M ] {1}
Mj

ä(t)− {φj}
T [R]

Mj

{q ({x(t)} , {ẋ(t)})}

j = 1, 2, . . . , n (4.26)

Equation 4.26 can then be solved with a numerical integration scheme, but because
of the dependence of {x(t)} in the right-hand side, the equation must be solved in an
iterative scheme which is described in appendix A.1.2.

As mentioned before, the restoring forces for each story are described locally. For
simplicity in notation the index for the story is dropped. The restoring force rLN (t) is
described by

rLN (t) = kd
(
xL (t)− q1 + q2

)
= kduN (t) (4.27)

where kd denotes the initial sti�ness of the device, xL (t) is the relative displacement,
q1 and q2 describe the plastic elongations of the device and uN (t) is a auxiliary variable
which is used for brevity in the following equations. The plastic elongations q1 and q2

are speci�ed by the �rst-order di�erential equations

q̇1 = ẋL(t)g1

(
xL (t) , uN (t)

)
(4.28)

q̇2 = −ẋL(t)g2

(
xL (t) , uN (t)

)
(4.29)

where

g1

(
xL (t) , uN (t)

)
=H

(
ẋL(t)

) [
H (uN (t)− uy)

uN (t)− uy
up − uy

(4.30)

×H (up − uN (t)) +H (uN (t)− up)
]

(4.31)

and

g2

(
xL (t) , uN (t)

)
=H

(
−ẋL(t)

) [
H (−uN (t)− uy)

−uN (t)− uy
up − uy

(4.32)

×H (up + uN (t)) +H (−uN (t)− up)
]

(4.33)

H (·) again denotes the Heaviside step function, uy speci�es the onset of yielding and
kdup is the maximum restoring force of the device. The restoring force introduces
energy dissipation in the system response which causes the non-linearity. The hysteretic
properties of the restoring force are illustrated in Figure 4.11, which shows also the
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meaning of the parameters uy, up and kd.

rN(xL,q1,q )

up . kd

uy . kd

-up . kd

-uy . kd

xL

L

Figure 4.11.: Hysteretic displacement-restoring force.

Considered is the same 5-story building as in example 3, that is, all mass, damping and
sti�ness values are the same. The earthquake excitation is modeled as Clough-Penzien
�ltered white noise modulated by envelope function e(t), with the same parameters as
in example 3 - case 2. The un�ltered excitation of the non-linear shear building is not
considered in this example. The only di�erence is the additional non-linear device in
each story. The parameters for the non-linear device are chosen to be equal for all
stories and the following values have been used for all hysteric devices:

kd = 1.0× 106 N/m
up = 6.0× 10−3 m (4.34)
uy = 0.7up

The e�ect of the non-linear elements is essentially a reduction of the maximum interstory
displacement values. This �nally leads to a reduction the response standard deviation
σil which is shown in Figure 4.12 for the �rst story of the building.
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Figure 4.12.: Estimated standard deviation σ1l of the linear and the non-linear shear
building for the �rst story (10 000 samples).

One can see that on average the non-linear response is lower than the linear response.
For larger values of the non-linear device sti�ness kd the standard deviation will further
decrease. This will be shown later in subsection 4.4.3, Figure 4.42. The response
standard deviations for the other stories are very similar and not shown here.

4.3. Comparison of Simulation Methods

To evaluate the correctness of the subset simulation methods, they are compared with
standard MCS using 100000 samples. For all subset simulation methods N = 1000 sam-
ples have been used for each simulation stage and the conditional failure probabilities
have been set to P̂i = p0 = 0.1, ∀i = 1, . . . ,m−1. This choice for the conditional failure
probabilities is suggested by the authors of [4, 13, 1, 14] and is empirically justi�ed in
subsection 4.4.1. Consequently, the probability of intermediate failure events in each
stage i is 10−i and 100 of the 1000 samples in each level are taken as mother samples
for the next stage. For the �xed number of simulation stages m = 4 the total number
of samples is NT = 3700. For SS/MCMC and SS/H the adaptive uniform proposal
function with an interval size of 2lj = 1 has been used centered at the current mother
sample. This choice is also discussed in subsection 4.4.1. These parameters have been
used for all examples applied to the subset simulation methods, if not noted otherwise.

4.3.1. Failure Probability Estimations

This subsection shows results of the failure probability estimations for the described
examples. In order to investigate variance and bias of the methods 50 independent
simulation runs have been computed with all methods and for all examples. Figure
4.13 shows the average of the probability estimations for the SDOF oscillator example.
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Figure 4.13.: Failure probability estimation for the SDOF example.

One can see in Figure 4.13 that the results of all simulation methods are very similar.
Note, that MCS and all subset simulation methods deliver a probability estimation for
each sample and its corresponding maximum response value. Therefore, the failure
probability graph consists of as the number of samples used for the estimation. In
contrast, the probability estimation with importance sampling works di�erently, ev-
ery sample contributes directly to the overall failure probability estimation. To obtain
an approximation of the whole failure probability graph the simulation process needs
to be repeated for di�erent threshold levels. In Figure 4.13 the importance sampling
probabilities have been calculated for 17 threshold values between 0.5 and 2.1 in steps
of 0.1. The subset simulation methods are therefore better suited for a general prob-
ability study of a structural system, while the importance sampling methods are fast
to compute a single failure probability, e.g. within an reliability-based optimization
framework. An advantage of this kind of probability estimation is that the overall fail-
ure probability estimation can be calculated after each sample. This allows to track
the convergence of the estimation, which can be used for an automatic termination of
the sample process if a desired c.o.v. value has been reached. This approach is not
applicable to the subset simulation methods. Figure 4.14 shows example trajectories
for single probability estimation runs for three di�erent threshold levels.

It can be seen that the convergence of the importance sampling estimator is really
fast, especially for ISD B where about 20 or 30 samples are su�cient to obtain a good
estimation for small failure probabilities. Note, that the number of necessary samples
to obtain a desired c.o.v. value decreases with smaller failure probabilities for ISD B.
The estimator for ISD A also converges fast but generally more samples are needed
due to higher variance values. Figure 4.15 shows the importance sampling estimation
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Figure 4.14.: Failure probability estimation history with importance sampling for the
SDOF example.

after each sample for the linear shear building example (case 1). One can see that the
estimation convergence for the multi-degree of freedom system is similar to the single
degree of freedom system.
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Figure 4.15.: Failure probability estimation history with importance sampling for the
linear shear building - case 1.

Figure 4.15 also shows that the estimator with ISD A needs more samples for smaller
failure probabilities, because the estimator variance increases with smaller failure proba-
bilities. The failure probability graph for the linear shear building - case 1 - is illustrated
in Figure 4.16 and shows that all sampling methods are unbiased.

In order to estimate the failure probability graph for the linear shear building (case
1) with importance sampling, 15 threshold values between 0.01 and 0.024 in steps
of 0.001 have been considered. The failure probability graph thus shows the linear
interpolation of those estimated probability values. Figure 4.17 shows the results of the
failure probability estimations for the linear shear building with �ltered input excitation
considered in case 2.

All sampling methods yield very similar results. The failure probability graphs are
almost identical and can hardly be distinguished in the �gure. Figure 4.18 shows the
corresponding failure probability graph for the non-linear shear building example. By
comparing Figures 4.17 and 4.18 one can see that maximum response values are higher
for the the Clough-Penzien �ltered input (case 2) in comparison to the responses ob-

4. Evaluation 67



UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA

0.8 1 1.2 1.4 1.6 1.8 2
10

−4

10
−3

10
−2

10
−1

10
0

Threshold Level b (cm)

Fa
ilu

re
P

ro
ba

bi
lit

y
P

F

MCS 100 000 samples

SS/MCMC 3700 samples

SS/S 3700 samples

SS/H 3700 samples

IS (A) 500 samples

IS (B) 500 samples

Figure 4.16.: Failure probability estimation for the linear shear building - case 1.
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Figure 4.17.: Failure probability estimation for the linear shear building - case 2.

tained with the modulated Gaussian white noise input, although the amplitudes of the
un�ltered input are larger. In sum, several examples have shown that all simulation
methods deliver the same results for small probabilities as direct Monte Carlo simu-
lation, which supports the statement that all simulation methods are unbiased. The
di�erences between the methods, however, can be seen by investigating the e�ciency
of the estimators, that is, their variance values.
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Figure 4.18.: Failure probability estimation for the non-linear shear building.

4.3.2. Variance of the estimators

In the following the c.o.v. values of the estimated failure probabilities are investigated.
As already mentioned the c.o.v. values have been calculated with the results of 50
independent simulation runs. The following Figure 4.19 shows the c.o.v. values corre-
sponding to the failure probability estimation for the SDOF oscillator shown in Figure
4.13.

Figure 4.19 demonstrates that SS/S has the largest and SS/H has the lowest c.o.v.
values among the subset simulation methods for the SDOF oscillator example. The
results of the importance sampling are not comparable with the ones from the subset
methods. However, it illustrates their e�ciency and shows that importance sampling
with ISD B has almost the opposite behavior of MCS, because it has a comparatively
bad performance to estimate high failure probabilities and gets more and more e�cient
the smaller the probability is. This illustrates the 'inverse' behavior of ISD B which
has been discussed in subsection 2.3.3.3. It also shows that the estimator with ISD B
clearly outperforms the one with ISD A with respect to the estimation c.o.v..

Figure 4.21 shows the c.o.v. value of both importance sampling estimator during the
sampling process. Again, the estimator with ISD B is more e�cient. One can also
observe that the estimator c.o.v. for ISD A increases noticeably with smaller failure
probability values. In contrast, the estimator c.o.v. for ISD B gets smaller for smaller
probabilities. This can be also be seen in Figure 4.22, which shows the c.o.v. of the
estimation for linear shear building (case 1) during the importance sampling procedure.

Furthermore, Figure 4.21 shows that the c.o.v. values for ISD A have increased with
the complexity of the problem (compare Fig. 4.20), while the estimator c.o.v. for ISD
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Figure 4.19.: Coe�cient of variation for the SDOF example.
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Figure 4.20.: Coe�cient of variation for the SDOF example.

B is not a�ected.

Figure 4.22 shows the c.o.v. values for the linear shear building example (case 1)
in comparison with the subset methods. One can see that the importance sampling
estimator with ISD A roughly yield similar c.o.v. values as the subset simulation
methods, which has used more than seven times more samples (see also Figure 4.19).
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Figure 4.21.: c.o.v. value during importance sampling for the SDOF example.
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Figure 4.22.: c.o.v. values during importance sampling for the linear shear building
example - case 1.

The c.o.v. values for the �ltered excitation (case 2) are very similar and are shown in
Figure 4.23.

Again, it can be seen that SS/S has the worst performance followed by SS/MCMC. The
hybrid method combines the advantages of both methods and usually reaches better
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Figure 4.23.: Coe�cient of variation for the linear shear building example - case 2.
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Figure 4.24.: Coe�cient of variation for the non-linear shear building example.

c.o.v. values. This is also true for the estimation results of the non-linear structure
which are shown in Figure 4.24. It shows similar results for SS/MCMC and SS/H, but
with an even worse performance of the splitting method. This, however, may not only
be caused by the sampling method, but also by special properties of the example. This
will be further discussed later on (subsection 4.4.3).
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In sum, it has been shown that the importance sampling methods clearly outperform
the subset simulation methods due to the usage of explicit knowledge about the failure
region. The hybrid method usually delivers estimations with the lowest c.o.v. value
and seems to be the best choice in order to minimize the estimation c.o.v.. However,
the simulation methods also have di�erent computational e�ciency which needs to be
accounted in order to compare the simulation methods with respect to their overall
e�ciency. This is further investigated in subsection 4.5.1.

4.3.3. Modi�cation of Samples

A property that almost all described sampling methods have in common is that they
'modify' a given sample to increase the probability that its corresponding response
provokes a failure state. In the following this process is shown for the high dimensional
samples used in the SDOF oscillator example in order to illustrate the dependencies
between these samples.

For SS/MCMC the modi�ed version of the Metropolis-Hastings algorithm should be
used for high dimensional samples. Then, each dimension is separately modi�ed using
the proposal density. For the applied adaptive uniform proposal function the changes
in each dimension are only in a small vicinity which is de�ned by the proposal function
support region. Figure 4.25 shows the last part of three samples from di�erent sim-
ulation stages. Thus, the samples are in a sequential mother-child relationship. The
�rst sample (stage 1) is generated by MCS and the second and the third sample are,
respectively, realizations of the generated Markov chains separately for each dimension.
It can be seen that the dependencies of the samples are clearly visible, especially for
the corresponding responses.

Figure 4.25 has illustrated that SS/MCMC introduces dependencies between sample
values of consecutive states over the whole duration of study, but separately for each
dimension. Note, that a part of these sample values directly take the same value as its
mother sample due to the rejection step in the Metropolis-algorithm, which introduces
even stronger dependencies.

In the SS/S method, however, the �rst part before the �rst passage point is copied and
the second part of the excitation is freely simulated by direct MCS. Thus, the depen-
dencies only occur by their extremes as fully dependent and completely independent.
Figure 4.26 shows the last part of three consecutive simulated samples from di�erent
simulation stages generated with SS/S. It can be seen that all three samples are equal
until the �rst intermediate passage point at time step 1243 and in turn, the third sample
is equal until the second intermediate passage point at time step 1268.
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Figure 4.25.: Samples and responses generated by SS/MCMC.

Obviously, the combination of both methods, which is used in SS/H creates less de-
pendencies between consecutive samples, because the �rst part until the FPP is only
dependent by the Markov chains (instead of copying) and the second part is indepen-
dent due to direct MCS (instead of the Markov chain dependency). This �nally leads
to a more e�cient estimation in the sense of a lower c.o.v. value.

In the importance sampling scheme which uses the conditional PDF p (z|Fil) as im-
portance sampling density (ISD B) a similar behavior of sample modi�cation can be
observed during the sample generation process in which a q-dimensional sample, con-
ditional on the elementary failure event Fil, is generated using an unconditional q-
dimensional Gaussian sample. This transformation process facilitates e�cient simula-
tion of conditional samples and has already been illustrated for the two-dimensional
case in Figure 2.2. However, Figure 4.27 shows an example for this transformation for
the high-dimensional case for the SDOF oscillator example. The �gure shows the design
point at time step l = 192 for a threshold value b = 1.8. Note, that the �gure shows
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Figure 4.26.: Samples and responses generated by SS/S.

transformed design point in the u-space, because it is originally de�ned in z-space. Ac-
cording to its de�nition, the design point pushes the maximum response value at time
step l = 192 exactly to the threshold level b. As a result of the transformation, the
original sample is modi�ed in a way that its maximum response will be at the same
time and above threshold b. How much the threshold level will be exceeded depends on
the (random) choice of α, which determines how 'far' the samples will be pushed into
the failure region.
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Figure 4.27.: Samples and their corresponding responses in the importance sampling
framework with ISD B.

4.4. Properties of the Subset Sampling Methods

This section investigates properties of the subset simulation methods which may in�u-
ence their estimation or computational e�ciency. Moreover, the choices of parameters
are investigated in several examples.

4.4.1. Parameter Selection for Subset Simulation

4.4.1.1. Choice of the Intermediate Thresholds

As mentioned before the simplest way to distribute the contribution of the intermediate
failure probabilities equally over the sampling stages is to determine all (but the last)
intermediate failure probabilities a priori with the same value p0. The corresponding
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intermediate threshold levels bi are then chosen adaptively during the simulation and
moreover, all of them can be controlled by a single parameter. In the following, the
in�uence of the parameter p0 is shown on the SDOF oscillator example applied to SS/S.

Similar to the choice of the proposal function support region size, an appropriate value
for p0 is a trade-o� between two contradicting in�uences. On the one hand, a small
value of p0 leads to better convergence of the algorithm toward the failure region of
interest, that is, less sampling stages m may be required and the total number of
samples NT will be reduced. On the other hand, if the conditional probabilities are
smaller their accurate estimation will need more samples N per sampling stages, which
in turn increases the total number of samples. The choose of p0 is therefore a trade-
o� between minimizing the number of samples per stage, while the number of stages
increases, and minimizing the number of stages, while the number of necessary samples
per stage increases.

However, this value should be chosen in a way that the estimation is e�cient, which
means that a small c.o.v. value should be favored. In order to investigate a good choice
for this parameter, the SDOF example is studied with SS/S under �xed computational
e�ort, that is, a �xed number of total samples NT . The SS/S method has been selected,
because it is free of other parameters as the proposal function in SS/MCMC and SS/H.
To de�ne the right proportion of the parameters m and N two scenarios are considered.
For given failure probabilities PF = 10−3 and PF = 10−4 the number of necessary subset
recursions m can be approximated by

m ≈ logPF
log p0

(4.35)

Then the number of samples per sampling stage N for a �xed number of total samples
can be obtained by Equation (2.69). Table 4.2 gives an overview over the considered
parameters which have been used in the simulations. Due to the fact that the values
N,R,m need to be integers, the actual numbers of NT vary fractionally.

The results of 100 independent simulation runs are shown in Figures 4.28 and 4.29.

According to Figure 4.28, one can see that the changes of the value p0 have no noticeable
in�uence on the expectation value of the estimator. All estimations roughly yield the
same probability values. However, in Figure 4.29 it can be seen that the c.o.v. values
increase exponentially for very small values of p0 < 0.1 and that the c.o.v. for values p0

larger than 0.1 does not change signi�cantly. This supports the approximate analytical
equation for the estimator c.o.v. which has been derived in [1] under the assumption of
independent �rst passage points. In sum, it can be seen that p0 = 0.1 is a reasonable
choice to achieve a good convergence to the target failure probability level while the
estimator c.o.v. is su�ciently small.

Also note, that also in view of the parallelization of the subset simulation procedure
a small value for m and a large value for N is favorable, because N e�ectively de�nes
the limit for parallel computation during the simulation process. Contrarily, m de�nes
the number of synchronization steps during the di�erent stages. Hence, in a parallel
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PF = 10−3 PF = 10−4

p0 m N NT m N NT

0.01 2 1407 2799 2 1859 3699
0.04 2 1428 2798 3 1267 3699
0.08 3 986 2800 4 984 3699
0.1 3 1000 2800 4 1000 3700
0.2 4 823 2797 6 740 3700
0.3 6 622 2797 8 628 3701
0.4 8 538 2800 10 579 3702
0.5 10 509 2795 13 529 3697
0.6 14 451 2792 18 475 3705
0.7 19 438 2796 26 435 3712
0.8 31 400 2770 41 411 3691
0.9 66 373 2778 87 390 3658

Table 4.2.: Number of samples used for the c.o.v. evaluation for di�erent values of p0
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Figure 4.28.: Results of the failure probability estimation for di�erent values p0. with
target failure probability (a) PF = 10−3 and (b) PF = 10−4.

computation framework, a value of p0 = 0.1 is a good choice to maximize the number
of possible parallel calculations and keep the estimator c.o.v. low at the same time.
Therefore, for most of the experiments the value p0 = 0.1 has been used.

4.4.1.2. Proposal Function for MCMC simulation

As already mentioned in subsection 2.4.3 the choice of the proposal function and their
support region in�uences the e�ciency of the MCMC algorithm. Too small or too broad
support regions may a�ect the ergodicy of the MCMC simulation and may lead to a
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Figure 4.29.: Di�erent values for p0 and the resulting c.o.v. values for the SDOF exam-
ple with target PF = 10−3 (top) and PF = 10−4 (bottom).

biased failure probability estimator and/or higher c.o.v. values.

If the proposal distribution is aligned at the current sample in the MH-algorithm, the
proposal distribution is called adaptive. However it is also possible to choose a non-
adaptive proposal PDF, i.e., it is independent of the current sample. In this case the
shape of the PDF should be close to p (x|Fi) [4]. This approach is then similar to
the choice of the ISD in importance sampling, but this requires knowledge about the
failure region, which is not available in the general case. Using an adaptive symmetric
proposal distribution, that is, q (x|x′) = q (x′|x), the Metropolis-Hastings algorithm
reduces to the original Metropolis algorithm. As described in subsection 2.4.2, the
proposal function should be used independently for each dimension of x in order to

4. Evaluation 79



UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA

avoid the zero-acceptance phenomenon. Two di�erent proposal functions, that is, a
local uniform proposal PDF and a Gaussian PDF have been tested.

Uniform proposal function

The uniform distribution is de�ned locally over the interval of size 2lj and centered at
the mother sample ui−1

j :

qj
(
u′j|ui−1

j

)
= U

[
ui−1
j − lj, ui−1

j + lj
]

= 2lj · U [0, 1] + ui−1
j − lj (4.36)

where U [·] is the uniform distribution over the speci�ed interval. The parameter lj
should then be chosen appropriately, e.g. as a fraction of the standard deviation σ of
the input PDF p (u).

Gaussian proposal function

qj
(
u′j|ui−1

j

)
=

1√
2πσj

exp

[
−1

2

(u′j − ui−1
j )2

σ2
j

]
(4.37)

Similar to the parameter lj in the uniform proposal, the parameter σj controls the size
of the support region of the proposal PDF.

Note, that the input u for the dynamic examples is standard Gaussian stretched by the
factor g =

√
2πS0/∆t, i.e. u = g · z. In this case, the Metropolis algorithm is actually

applied to zj and each new candidate sample z′j is then back-transformed to u′j. In
this way the choice of the proposal function support by lj or σj is independent of the
spectral intensity of the chosen input u.

Figures 4.30 - 4.33 give an overview about the di�erences of the two proposal functions
as well as their support region during the sampling process with SS/MCMC applied to
the SDOF example in which N = 1000 samples have been used in each of the 4 stages
and over 50 independent simulation runs.

Figure 4.30 shows that the values lj should be between 0.8 and 1.2 and a value of lj = 1
is a reasonable choice for the uniform distribution. While the bias of the estimator
is not e�ected, this parameter has signi�cant in�uence on the estimator variance. In
comparison to the uniform proposal function, Figure 4.31 shows the results for the
Gaussian proposal function. It can be seen that the results look very similar to the
ones for the uniform distribution, with the di�erence that the values σj with the lowest
c.o.v. are smaller. According to the �gure a value σj = 0.6 seems to be a good choice.

By comparing the absolute c.o.v. values of both proposal functions in Figure 4.32,
it can be seen that the Gaussian proposal function leads approximately to the same
results. Consequently, it is natural to select the uniform proposal distribution, because
it is simpler and more e�cient in the implementation.

In the same experiment, the corresponding average rejection rates have been recorded
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Figure 4.30.: Di�erent values of lj for the SDOF example with SS/MCMC, 1000 sam-
ples, 50 runs. Shown is the failure probability PF and the estimation c.o.v.
δ.

and are shown in Figure 4.33. More precisely, the �gure shows the relative frequency
of rejected candidate samples generated by MCMC simulation which had the desired
distribution of the input, but did not lie in the desired intermediate failure region (the
second step in algorithm 3). This rejection rate gives information about the e�ciency
advantage to generate samples with MCMC rather than with direct MCS, where the
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Figure 4.31.: Di�erent values of σj for the SDOF example with SS/MCMC, 1000 sam-
ples, 50 runs. Shown is the failure probability PF and the estimation c.o.v.
δ.

expected rejection rate to generate conditional samples would be 1 − 1/P (Fi). It can
be seen in the �gure that the rejection rate is much better, but it is also unsatisfying
to see that more than half of the generated samples are rejected together with their
corresponding expensive system analysis. This is the contradiction which determines
the best size of the support region of the proposal function, because every rejected
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Figure 4.33.: Rejection rates for each sampling stage corresponding to (a) Figure 4.30
and (b) Figure 4.31.

sample introduces strong dependencies in the Markov chain due to the repetition of
samples which reduces the e�ciency of the simulation. On the other hand, if the
rejection rate is reduced by a smaller support region, consecutive samples will lie closer
to each other and will slow down the exploration of the failure region, which in turn
also leads to an e�ciency reduction.

In order to investigate the in�uence of the proposal function to SS/H and to compare
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the results with SS/MCMC the same experiments have been done with SS/H. Figure
4.34 shows robust estimation for both proposal functions except of a small bias for
σj = 4.0 with the Gaussian proposal PDF.
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Figure 4.34.: Failure Probability for di�erent values of (a) lj (b) σj for the SDOF ex-
ample with SS/H.

More interesting are the c.o.v. values of the estimation which are shown in Figure 4.35.
It can be seen that the c.o.v. values vary less compared to values which have been
obtained with SS/MCMC. This supports the assumption that SS/H is more robust to
the choice of the proposal function due to the combination with the splitting method,
which makes the method less dependent of MCMC simulation to explore the failure
region. One can also see that the both proposal function again lead roughly to the
same estimation variances and the shape of the proposal function therefore seems to be
much less important than its support region.

The rejection rates of SS/H for both proposal functions are similar to the ones of
SS/MCMC shown in Figure 4.33 since both methods work similar until the rejection
step.
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Figure 4.35.: Estimator c.o.v. for di�erent values of (a) lj (b) σj for the SDOF example
with SS/H.

4.4.2. First Passage Point Times

In view of the subset simulation methods SS/S and SS/H, the �rst passage point time
gives information about where direct Monte Carlo simulation starts and where the copy
process or the MCMC simulation ends. This in turn in�uences both, the computational
e�ciency and c.o.v. of the estimator. Therefore, this subsection gives an overview of the
average time for the �rst excursion of the system response over the intermediate limit
values. This issue is highly related to the sampling problem and is thus investigated for
all three dynamic system examples. For the examples the same parameters have been
used (p0 = 0.1, N = 1000, 50 runs) except of the number of sampling stages which
has been set to m = 6. In order to illustrate the problem dependency and e�ciency
di�erences, the �rst passage point is compared with a similar SDOF oscillator which
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only has a damping ratio of 2% (instead of 5%). The lower damping ratio leads to
higher system responses during the duration of study, which can be seen by comparing
the response standard deviations as shown in Figure 4.36.
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Figure 4.36.: Response standard deviation of the SDOF with 2% and 5% damping.

Figure 4.37 shows the minimum, average and maximum times for the �rst passage points
for the SDOF oscillator with the two di�erent damping ratios using both sampling
methods, SS/S and SS/H.

1 2 3 4 5 6
0

300

600

900

1200

1500

1800

Sampling Stage i

T
im

e
St

ep
l

SS/S min/avg/max FPP time

SS/H min/avg/max FPP time

1 2 3 4 5 6
0

300

600

900

1200

1500

1800

Sampling Stage i

T
im

e
St

ep
l

SS/S min/avg/max FPP time

SS/H min/avg/max FPP time

(a) (b)

Figure 4.37.: Minimum, maximum and average FPP times for the SDOF oscillator with
(a) 5% damping (b) 2% damping using SS/S and SS/H at di�erent sam-
pling stages

Figure 4.37 illustrates, that the �rst passage point times with SS/H are generally earlier
than with SS/S. This is due to the additional use of MCMC simulation in each stage,
which leads to a better exploration of the failure region before the �rst passage point.
In comparison, the failure region before the the �rst passage point time in SS/S is only
explored in the �rst stage by direct MCS.

Figure 4.37 also shows that the reduction of the damping ratio moved the average �rst
point time into the last third of the duration of study. Due to the reduced damping,
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the system responses sum up over longer time periods and the highest system response
is reached later in the duration of study.

The standard deviation of the output over time is therefore strongly related to the
�rst passage point times that will occur during a sampling with the splitting method.
This in turn highly in�uences the computational e�ciency of SS/S, since the part of
the trajectory and the corresponding response is larger the later the �rst passage point
occurs. The change of the damping ratio from 5% to 2% had comparatively only a
little e�ect on the �rst passage point time, but leads to a run time di�erence for SS/S
of 12% over 50 independent simulation runs. This number can be expected to increase
with the complexity of the problem under study, since the computational e�ort for the
response calculation is little for SDOF. Clearly, the �rst passage point time has no e�ect
on SS/MCMC and thus the run time di�erence for the hybrid method is also smaller
(2% in this example), because the �rst part of trajectory is only copied in case of a
rejection of the sample candidate generated with MCMC simulation.

Figure 4.38 shows the �rst passage point times for the linear and non-linear shear
building examples. The �rst passage point times of both examples are mainly ruled by
the in�uence of the envelope function. Therefore, the �rst passage point times are only
distributed in the center part and limit excursions do not occur close to the end of the
duration of study.
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Figure 4.38.: Minimum, maximum and average �rst passage point times for the (a)
linear shear building - case 2 (b) non-linear shear building

All diagrams have shown, that SS/H leads to a better distribution of the �rst pas-
sage point times over the duration of study. Therefore, the combination of SS/S with
SS/MCMC leads to a better exploration of the failure region, because the minimum
FPP times are always found earlier in comparison with SS/S.

The examples have shown, that the structure characteristics in�uence the performance
simulation methods SS/S and SS/H. Especially for SS/S the computational e�ort can
change drastically for systems with di�erent �rst passage point characteristics.
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4.4.3. Limits of the Splitting Method

As shown in subsection 4.4.1.2 the choice of the proposal function does not a�ect the
bias, but the c.o.v. of the subset simulation estimator using MCMC. It has been shown
that proposal function support needs to be chosen appropriately in order to obtain
estimations with small c.o.v. values. With the invention of the splitting method to
generate conditional samples this problem can be avoided for causal dynamic systems,
because SS/S does not have any additional parameters. However, the way in which
the conditional samples are generated in the SS/S method introduces problems with
respect to the robustness of the method and actually reduces its generality, because in
some way assumptions about the shape response function over time are introduced by
this method. In subsection 4.3.3 the di�erences of the conditional sample generation
process for SS/MCMC and SS/S have been compared in Figures 4.25 and 4.26. The
MCMC method explores the failure region over the whole time space in every sampling
stage. In contrast, SS/S explores the failure region only after the �rst passage point.
Over consecutive sampling stages, SS/S always needs to �nd new �rst passage points
with higher response values in later time steps. Consequently, SS/S can explore a
particular elementary failure region only once within a chain of consecutive samples
with a mother-child relationship. A single elementary failure region can hence only be
explored by independent samples which are not ancestors and a better exploration can
only be achieved by using a larger number of samples.

This property indirectly introduces the assumption that the failure region is somehow
distributed over the duration of study, which means that SS/S needs some 'time space'
to e�ciently explore the failure region over several sampling stages. In the case, that
the failure region is concentrated within a small time interval, the SS/S method will
have performance problems in comparison with SS/MCMC and poor ability to explore
the failure region may lead to a biased estimation.

To illustrate this problem an arti�cial dynamic sampling problem is constructed in
which the average �rst passage point times are concentrated over a small time inter-
val. For example, by using a strictly monotonic increasing response function r (·) the
average �rst passage point times are moved close to the end of the time series. This is
accomplished, by simply summing up the absolute values of the Gaussian white noise
input function. Using the iterative description for causal dynamic systems (Equation
2.4) the response function is then de�ned by

tl+1 = h
(
x(tl), u(tl), tl

)
= x(tl) + |u(tl)| (4.38)

Two di�erent di�erent lengths of input excitations u(t) are investigated in the following,
a long term study: T = 30s, nt = 1501 and a short term study: T = 2s, nt = 101 with
a system input u(t) similarly de�ned as in section 4.2 with ∆t = 0.02 s. The spectral
intensity is chosen to be S0 = ∆t/2π, which means that simply the realizations of a
standard Gaussian are summarized. For the experiments with SS/MCMC, SS/S, SS/H
N = 2000 samples have been used to estimate each partial failure probability. Together
with a �xed total number of m = 5 stages, the total number of samples is NT = 9200.
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The results are compared with MCS using 1 000 000 samples.

The following Figure 4.39 shows minimum, average and maximum FPP times for SS/S
compared to the ones obtained with SS/H. It can be seen that the �rst passage point
times are on average within the last 5% of the duration of study for both excitation
lengths, which means that the failure region is concentrated in a small period of time.
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Figure 4.39.: Average, minimum and maximum FPP times for the intermediate thresh-
olds during SS/S and SS/H estimation for the (a) long term study (b)
short term study.

The curve for the minimum FPP time again shows that the hybrid method �nds samples
with earlier FPPs, because SS/MCMC is also able to �nd higher response values in
the same or at earlier time points over consecutive simulation stages. Due to the
concentration of the failure region in time, the SS/S estimator cannot properly explore
it, which �nally leads to a bias of the SS/S estimator. The bias is shown in the graphs of
Figure 4.40, which compares the average failure probability estimates of 50 independent
runs of SS/S with MCS, SS/MCMC and SS/H. While the estimations from SS/MCMC,
SS/H and MCS show almost identical results, the failure probability graph for SS/S
shows a bias which increases as the failure probability decreases.

Also, the failure probability estimation of SS/S for the shorter duration of study shows
that the bias is larger and starts with larger failure probabilities compared to the
long excitation, because the failure region is even more concentrated in fewer time
steps. Although, the e�ect is comparably little with respect to the length di�erence
of the two di�erent excitations. Due to the fact that SS/S lacks to e�ciently explore
single elementary failure regions, it is not able to generate new o�spring samples with
responses that exceed the maximum response value from the previous sampling stage.
Consequently, a large number of samples generated in the next sampling stage have the
same maximum response value. The estimation of the corresponding conditional failure
probability is then based on a set of samples that contains a large number of samples
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Figure 4.40.: Average failure probabilities showing the biased SS/S estimator compared
with SS/MCMC, SS/H and MCS for the (a) long term study (b) short
term study.

with equal maximum response values. This �nally results in a biased estimation of the
conditional failure probability.

The subset simulation framework ampli�es this e�ect extremely, because most of the
samples with an equivalent maximum response will have the highest response values
among all generated responses. These samples in turn are then selected as mother
samples for the next stage. As a result, the number of samples with an equivalent
maximum response value grows exponentially over the sampling stages, which leads
to stronger biases of the estimated conditional failure probabilities of higher sampling
stages. Figure 4.41 shows the stepwise failure probability graph of the SS/S method
compared with the other simulation methods. The steps in the failure probability graph
are due to large number of samples with similar maximum response values.

This example has shown, that the SS/S method may be biased if the failure region is
concentrated in a short time period. This may not be a common scenario in structural
engineering practice, but the same problem also occurs in a di�erent scenario which
has more practical relevance. For this purpose the non-linear shear building example
is considered for further investigation. The response standard deviation over time is
very broad and �at as the maximum response values are quickly approached in the �rst
part of the duration of study. The shape of the response standard standard deviation
is mainly ruled by the envelope function and the failure region of this example almost
has the opposite properties compared to the last example, because the failure region
is as broad as the envelope function is equal to one. The failure region is hence not
concentrated in time and one should expect the SS/S method to work properly.
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Figure 4.41.: Single estimation run for the short term study.

However, the same problem occurs if the failure probability graph gets steeper, which
means that subset simulation procedure reaches small failure probabilities faster. This
can be achieved by increasing the sti�ness of the structure. Therefore, the non-linear
shear building example has been considered with di�erent values of the device sti�ness
kd.
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Figure 4.42.: Response standard deviation for the �rst story of the non-linear shear
building.

Figure 4.42 shows estimations of the response standard deviation σ1l for the �rst story
over time. The functions have been estimated with 1000 samples and the standard
deviations for the other stories are very similar. Due to the estimation the standard
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deviation consists of oscillations which would vanish, if more samples are being used.
However, the oscillations also illustrate the e�ect of the change of the parameter kd,
that is, for larger values of kd the response amplitudes are smaller, but the response
frequencies are larger.

The following two Figures 4.43 and 4.44 show the average of 50 independent simulation
runs for all three subset simulation methods for di�erent values of kd. Furthermore,
Figure 4.44 (b) shows the results of a single simulation run for all three methods. The
same structure and sampling parameters as above have been used for the simulation
(NT = 3700 samples).

0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

10
−4

10
−3

10
−2

10
−1

10
0

Threshold Level b

Fa
ilu

re
P

ro
ba

bi
lit

y
P

F

SS/MCMC: kd = 0.1 ×106

SS/MCMC: kd = 0.5 ×106

SS/MCMC: kd = 1 ×106

SS/MCMC: kd = 2 ×106

SS/MCMC: kd = 4 ×106

0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

10
−4

10
−3

10
−2

10
−1

10
0

Threshold Level b

Fa
ilu

re
P

ro
ba

bi
lit

y
P

F

SS/S: kd = 0.1 ×106

SS/S: kd = 0.5 ×106

SS/S: kd = 1 ×106

SS/S: kd = 2 ×106

SS/S: kd = 4 ×106

(a) (b)

Figure 4.43.: Di�erent values of kd: (a) SS/MCMC (b) SS/S.
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Figure 4.44.: Di�erent values of kd: (a) SS/H (average) (b) single simulation run.

In Figure 4.43 (b) one can observe a similar biased estimation as in the previous ex-
ample and Figure 4.44 (b) clari�es that the bias is again due to occurrence of many
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samples with similar response values. This in turn is due to the steepness of the failure
probability graph which can also be seen in the �gures. For larger values of kd the failure
probability graph gets steeper and the subset simulation method approach the areas
of smaller failure probabilities faster. This means that samples with high maximum
response values are sampled with higher probability and the probability to generate
a sample with a higher response value is very small. Therefore, all subset simulation
methods will have di�culties to generate samples with higher response values in the
next sampling stage. However, the lack of SS/S to e�ciently explore a single elementary
failure event increases the problem signi�cantly. Remember, that SS/S always needs
to �nd higher response values at later time steps, which is achieved by direct MCS.
This means, if a sample with a high response value is selected as mother sample, SS/S
actually needs to start from scratch to �nd a higher response value in a later time step.
In contrast, SS/MCMC can easily increase the maximum response value in a particular
time step due to MCMC simulation. Compare also Figures 4.25 and 4.25 in subsection
4.3.3, which show the principles of o�spring generation with SS/MCMC and SS/S, re-
spectively. Consequently, SS/MCMC (and so SS/H) has much better abilities to push
a sample further into the failure region, in case that the response standard deviation is
broad and �at and the corresponding failure probability graph steep.

The two examples have shown that the SS/S method has drawbacks which should be
considered, if the method is used to estimate the reliability of structures. Especially,
the last example has shown that the problem can occur in engineering practice. It has
been shown that the SS/S method is biased if one of the two cases occur. However, it
has turned out in experiments that the e�ciency of the SS/S method decreases if one
of the two cases is approached, that is, the estimator c.o.v. increases. Therefore, the
c.o.v. values of the estimators for di�erent values of kd is studied in the following.

In order to understand the following �gures, it is noted that the c.o.v. values for the
subset simulation methods cannot be directly calculated, because all subset simulation
methods actually sample structure response values. In a single simulation run NT

(likely di�erent) response values are generated. Bringing them into an order, each of
the response values can be assigned a probability between 0 and 1 in steps of 1/NT . For
the next independent simulation run the same number of samples are generated which
can be assigned to the same values of failure probabilities, but the response values will
be di�erent. Actually, it is likely to end up with n×NT di�erent system response values
after n independent simulation runs. Thus, the mean and variance of the responses for
each of the NT probability values can be readily calculated, but the mean and variance
of the failure probabilities for a given response threshold value cannot be calculated
directly. With the de�nition of particular response values the failure probability mean
and variance can be calculated by means of interpolation methods. In order to do this a
special case at the borders of the response-range intervals needs to be considered. Each
independent simulation run will have a minimum and maximum response value that
occurred during the simulation. In the range of the smallest minimum and the largest
maximum response values for all independent simulation runs, the mean value can still
be calculated, but the calculation of the variance in this range is not meaningful. The
same problem occurs in the interval of the maximum response values. Therefore, the
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response values smaller than the largest minimum response and the ones larger than
the smallest maximum response are not accounted for the variance calculation. In
the implementation, NT equidistant response values in the interval between the largest
minimum response and smallest maximum response are accounted for the variance
calculation and their corresponding probabilities are found by linear interpolation.

This leads to the problem that large ranges of threshold values cannot be accounted for
the failure probability c.o.v. estimation, if the failure probability graph varies signi�-
cantly over the threshold domain. In the considered example, this happens in regions
where the failure probability graph consists of large steps which highly vary in indepen-
dent simulation runs. Consequently, the higher the variation of the failure probability
graph is, the smaller will be the accounted threshold interval for the c.o.v. estimation
and the shorter will be the c.o.v. graph over the failure probability domain as shown
in the following.

Figures 4.45 and 4.46 show the c.o.v. values of the failure probability estimations of
50 independent simulation runs. It can be seen that c.o.v. values for SS/S are also
higher for the values of kd, where the estimator is still unbiased. Furthermore, the
c.o.v. graphs are cut as described above, because for larger values of kd, the estimator
gets biased for smaller failure probabilities. This demonstrates, that the drawback of
the splitting method also in�uences the estimation with smaller sti�ness values, which
means that the c.o.v. values for SS/S in the experiments for the non-linear and even
for the linear shear building may be increased due to this problem.
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Figure 4.45.: c.o.v. for di�erent values of kd: (a) SS/MCMC (b) SS/S.

Furthermore, Figure 4.46 depicts that SS/H is again the most robust method, because
it obtained the lowest c.o.v. values among all subset simulation methods. Finally, note
that SS/MCMC and SS/H also deliver biased estimation for larger values of kd (e.g.
kd = 20× 106 N/m) and only for very high sti�ness values of (e.g. kd = 40× 106 N/m)
the probability graphs have a stepwise shape.
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Figure 4.46.: c.o.v. for di�erent values of kd: SS/H.

4.5. E�ciency of the Sampling Methods

4.5.1. Computational E�ciency vs. Estimation E�ciency

The subset simulation methods are found to have di�erent run times for the same
number of samples. As already mentioned, this is due to the fact that SS/MCMC
performs exactly one system analysis per sample, SS/S performs less and SS/H performs
more than one system analysis per sample on average. The actual di�erences depend
on the sampling problem and are shown in Table 4.3. Note that the run times are also
di�erent for sequential and parallel computing.

linear shear building non linear
Method SDOF - case 2 - shear building

sequential parallel sequential parallel sequential parallel
SS/MCMC 1.277 1.360 1.382 1.257 1.631 1.642
SS/S 1.838 1.597 1.530 1.604 1.815 1.840
SS/H 1 1 1 1 1 1

Table 4.3.: Proportional computational e�ort for di�erent variants of the subset simu-
lation methods.

Due to the runtime di�erences, a faster method could use more samples in the same
run time to reduce the estimator c.o.v.. As shown in chapter 2 the relation between the
number of samples and the estimator c.o.v. is approximately quadratically for all subset
simulation methods. For instance, to reduce the c.o.v. by half, four times more samples
are needed. Figure 4.47 shows the c.o.v. values of the methods weighted according to
their computational e�ort. Since the majority of the experiments have been made in
parallel computing mode, the c.o.v. in Figure 4.47 have been divided by the square
root of the parallel proportion values in table 4.3.
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Figure 4.47.: Weighted c.o.v. for the SDOF example.

It can be seen that the estimation results for all three variants of the subset simulation
method are similar and show only little di�erences. Correspondingly, Figure 4.48 shows
the weighted c.o.v. for the linear shear building example (case 2). The results for case
1 have been found to be very similar and are not shown here.
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Figure 4.48.: Weighted c.o.v. for the linear shear building example - case 2.

The weighted c.o.v. for the non-linear shear building example is shown in Figure 4.49.
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Figure 4.49.: Weighted c.o.v. for the non-linear shear building example.

All �gure show that c.o.v. values weighted with the method run time lead to very similar
results. The bad performance of the splitting method on the non-linear shear building
in Figure 4.49 may be due to the problem described in subsection 4.4.3. Therefore, no
clear winner can be identi�ed for the examples studied in this thesis.

4.5.2. Parallelization

This section gives an overview of the performance gain due to symmetric multiprocess-
ing. The test were run on a notebook with an Intel Core2 Duo T7500 processor with
2.2 GHz frequency, 2 GB RAM and OS: Windows Vista Business. The computer has
two processor cores which can work independently on di�erent tasks.

In the following diagrams the di�erent sampling methods are identi�ed by the numbers
shown in Table 4.4.

Number sampling method
1 MCS
2 SS/MCMC
3 SS/S
4 SS/H
5 IS / ISD A
6 IS / ISD B

Table 4.4.: Short terms for the sampling methods.
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Figure 4.50 shows the time percentage which has been spent in the parallel program
section for the SDOF oscillator example and for the linear shear building example - case
1. Case 2 is shown in Figure 4.51 (a), together with the results for the non-linear shear
building in Figure 4.51 (b). The parallel program proportion describes indirectly the
maximum speedup that can be achieved with parallelization techniques. In comparison,
the �gure also shows the percental time being spent in the parallel program proportion
when the program was actually running in parallel. This percentage in comparison
with the sequential result provides information about how the proportions between
sequential and parallel program proportions have changed. For large parallel program
proportions a small change in this relation gives information about the potential for
further parallelization.
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Figure 4.50.: Percentual time spent in parallel program proportions in sequential and
parallel simulation runs. (a) SDOF example (b) linear shear building
example - case 1.

One can see in both Figures 4.50, 4.51 that the proportion between sequential and par-
allel does only slightly change for MCS. This is natural since MCS is fully parallelizable
and the maximum rate for parallelization can be expected. Also, the importance sam-
pling method with ISD A led to similar results. This may be due to several reasons.
Generally, one can say that the importance sampling methods have better sequential
performance, because the subset sampling methods deal with much more data and some
of the statistic data is written to the hard disk during the sampling process. This is
not necessary for the importance sampling methods. The in�uence of this issue on
the parallelization is, however, di�cult to predict. On the one hand parallel physical
writing to the disk is not possible and on the other hand all input/output operations
are cached by the operation system.

The di�erence between the the importance sampling methods is due to the di�erent
complexity of the estimator. While the importance sampling with ISD A spends nearly
all the time in the sampling process (step 3), the importance sampling procedure with
ISD B usually has the largest program proportion within the precalculation (step 2).
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Figure 4.51.: Parallel program proportions for (a) the linear shear building example -
case 2 (b) non-linear shear building.

This step has in turn some sequential synchronization steps in between, because the
precalculated values partially depend on each other. In general one can say, that the
sequential code parts of the importance sampling method have higher proportions due
to the high e�ciency of the the estimator using ISD B. Therefore, the parallel program
proportion is less. This is also true for the subset methods shown in the �gures. For
instance, by comparing Figure 4.50 (a) and Figure 4.51, one can see that the parallel
program proportions increase with the complexity level of the sampling problem.

However, the most important measure is the speedup, which simply tells how much
faster the parallel processing in comparison to the pure sequential program is. The
obtained speedup values for the SDOF example and the linear shear building are shown
in Figure 4.52 (a) and (b), respectively.

The speedup rates are between 1.4 and 1.7 which are under the limits that have been
obtained by Amdahl's law (Equation 3.2). As stated above, this may be due to the
program sections which cannot run in parallel. However, the parallel program propor-
tion of all subset simulation methods is high and a better parallel performance can be
expected for more complex response functions. This can also be seen in the �gures as
the the parallel portion increases with the complexity of the sampling problem. The
reliability analysis of industry size structures can therefore be expected to be highly
parallelizable.
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Figure 4.52.: Maximum speedup by Amdahl's law and real speedup. (a) SDOF example
(b) linear shear building example - case 1.
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Figure 4.53.: Maximum and real speedup - (a) linear shear building example - case 2
(b) non-linear shear building.
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4.6. Summary

All simulation methods have been studied with respect to their estimator bias and
their estimation as well as their computational e�ciency. All of them have proved to
be much more e�cient than direct Monte Carlo simulation in order to estimate small
failure probabilities.

Subset simulation methods

The choice of the parameters for subset simulation has been studied empirically. It
has been found that subset simulation methods are widely independent of the a priori
choice p0 of the conditional failure probabilities. However, in order to avoid high c.o.v.
values, p0 should be chosen to be greater than 0.1.

Furthermore, the subset simulation methods which make use of MCMC simulation are
also robust to the choice of reasonable proposal functions. The shape of the proposal
function seems to have little in�uence on the estimation procedure and therefore the
most simply proposal function can be readily used. For the examples considered in
this thesis, the size of the support region does also not in�uence the estimator bias,
but the estimator c.o.v. has been found to reach its minimum for values around 1 for
the uniform proposal and 0.6 for the Gaussian proposal function. The hybrid method
of subset simulation has shown to be more robust to the choice of any parameter
and usually delivers lower c.o.v. values in comparison to SS/MCMC and SS/S. The
SS/S method has the best computational e�ciency, but it has drawbacks to explore
particular elementary failure regions, which may e�ect the estimator c.o.v. or bias in
some scenarios.

For the reliability investigation of general systems subset simulation is a powerful tool to
decrease the c.o.v. of the estimator signi�cantly for small probabilities. For the failure
probability estimation of large systems the computational e�ciency can be improved
by magnitudes in comparison to direct MCS estimation.

In [14] the three di�erent subset simulation methods have already been discussed and
compared in an analytical way. It is stated, that the c.o.v. values for the estimation us-
ing either SS/MCMC or SS/S are problem dependent and each method may outperform
the other. The hybrid method, SS/H, combines the advantages of both methods and
ensures that the estimator c.o.v. will always be lower or equal than that of SS/MCMC
or SS/S. These statements are mathematically grounded and have also been veri�ed
empirically in several experiments in this work.

Importance Sampling

The advantages of the described importance sampling method are obvious. The method
is very fast and extremely e�cient to estimate small failure probabilities for linear
systems. The importance sampling method highly exploits the knowledge about the
shape of the failure region and is free of any parameters. It has been shown that the
construction of an ISD from conditional elementary failure probabilities (ISD B) leads
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to a major advantage in e�ciency, because the choice is close to the optimal sampling
density. Therefore, this ISD should be preferred, because it is much more e�cient
in both ways, estimation e�ciency and computational e�ciency. However, for larger
failure probabilities (> 0.5) and especially for failure probabilities close to one, the
importance sampling method with both ISDs have bad performance, that is, the c.o.v.
values are higher compared to direct MCS. However, the methods are made to estimate
small failure probabilities, but one should consider the limited generality.

Therefore, the importance sampling methods are perfectly suited within a framework
where small failure probabilities need to be calculated rapidly, e.g. reliability-based
optimization [5, 15]. However, note that the described importance sampling method is
only applicable to linear systems. Moreover, the method is less suitable to get broad and
accurate information about the whole failure probability range for a given structure.
That is, in order to construct the whole failure probability graph the estimation must
be repeated at prede�ned steps, which also need to be found before. Considering this
aspect, the subset simulation methods are much better suited for this task and they
also have good performance on large failure probability estimates.

E�ciency and Parallelization

It has been shown that the three variants of the subset simulation methods have dif-
ferent e�ciency with respect to the estimator c.o.v. as well as with respect to the
computational e�ort. Based on the examples studied in this thesis no clear winner
could be identi�ed, because all three methods roughly led to similar results if both cri-
teria are considered. In comparison with the importance sampling methods the subset
simulation methods are clearly outperformed, but their e�ciency is bought by a much
lower level of generality.

It has been shown that the subset simulation procedure has little in�uence on the par-
allelizable program proportion and thus on the scalability of the parallelization. Hence,
all subset simulation methods are well suited to solve failure probability estimations
in a parallel way. The importance sampling methods are also parallelizable, but the
speedup factor for the e�cient ISD B is moderate due to sequential code parts and
numerous data synchronization steps in the precalculation step. This is because of the
e�cient sampling process and the su�ciency of a small number of samples for a good
estimation and therefore most of the processing time is spent in the preprocessing step.
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5. Summary and Outlook

In this thesis some recent failure probability estimation techniques have been reviewed.
According to literature, these methods are currently one of the most e�cient for their
corresponding level of generality. However, research on this topic is in progress and
several extensions (e.g.[29]) and combinations of methods exist. For instance, a com-
bination of Markov chain Monte Carlo simulation and importance sampling has been
studied in [10].

All described subset simulation methods signi�cantly reduce the estimator c.o.v. for
small failure probabilities. Observing the c.o.v. over the logarithm of decreasing failure
probabilities, the c.o.v. of the subset simulation methods approximately grows linearly,
while in contrast, the c.o.v. for MCS grows exponentially on the same scale.

It has been shown that the usage of memory resources of all subset simulation methods
can be reduced considerably (by factor 10) without noticeable loss of performance.
This is an important improvement, since most of the memory resources are usually
needed to store the �nite element model of the structure under study. Moreover, several
possibilities for runtime improvements of the simulation methods have been discussed
and incorporated in the proposed implementation.

In this work a general purpose software framework for failure probability estimation has
been developed which is widely problem independent and expendable for other methods.
Furthermore, data structures and methods have been integrated to facilitate a parallel
processing scheme. The presented methods have been implemented in a sequential as
well as in a parallel manner. The sampling methods have been implemented in an
object orientated way according to their generality. This software structure facilitates
the application of the methods to new sampling problems and provides a high rate of
source code re-usability. Due to the parallel processing integration the de�nition of new
sampling problems is widely independent of complex parallelization techniques. That is,
for example, if a sampling problem does not make use of thread-unsafe methods, the user
only has to move the algorithm state data into a prede�ned data structure for sensitive
data and the sampling problem can be readily analyzed by parallel computation.

The proposed software implementation has been tested in order to investigate the ap-
plicability of the sampling methods to parallel computation. Furthermore, the compu-
tational e�ciency as well as the estimation e�ciency has been investigated on several
examples and their in�uences are discussed. Moreover, the choice of the algorithm
parameters has been investigated empirically and the corresponding results agree with
other empirical studies or support theoretical derivations. During the investigation of
the implemented simulation methods a drawback of the subset simulation method with
splitting has been identi�ed and studied empirically. A more fundamental investiga-
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tion of the identi�ed problems is left for future work. Alternatives, in order to prevent
incorrect failure probability estimations are already given by the other two variants of
subset simulation.

In short, the advantages, disadvantages and limits of the described methods have been
identi�ed and veri�ed by empirical studies.

This study has shown that the subset simulation methods are generally well suitable
for parallelization. Their application to distributed computing over several computers,
however, is more complicated. The higher complexity of synchronization and workload
distribution will increase the sequential program proportion and increase the parallel
overhead, but with an increasing complexity of the problem under study this will be
worth the e�ort and is left for future work.

It has been shown that knowledge about the system under study - if used in a proper way
- can enormously increase the e�ciency to estimate small failure probabilities. However,
the e�ciency is bought by less generality of the method and therefore especially better
estimation methods for non-linear systems need to be developed in order to increase
the e�ciency of the reliability estimation. Therefore, the combination of the estimation
methods with approximation concepts is under investigation (e.g. [5, 15]) and promising
to further improve the e�ciency of reliability methods with little loss of accuracy. In
view of this work, it then needs to be investigated how approximation methods or other
improvement concepts can be incorporated with the parallelization.
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A. Appendix

A.1. Numerical Integration

A.1.1. Newmark Method

The Newmark method or Newmark-beta method describes actually a class of di�erent
numerical integration methods to solve di�erential equations. The parameters β, γ
eventually de�ne which numerical integration method is applied.

Given are the parameters

∆t size of the time fraction
β, γ method parameters

and the di�erential equation:

ẍ(t) + 2ζωẋ(t) + ω2x(t) = u(t) (A.1)

The base equations of the Newmark method are given by

ẋ(t+ ∆t) = ẋ(t) + [(1− γ)ẍ(t) + γẍ(t+ ∆t)] ∆t (A.2)

x(t+ ∆t) = x(t) + ẋ(t)∆t+

[(
1

2
− β

)
ẍ(t) + βẍ(t+ ∆t)

]
∆t2 (A.3)

With these equations the following iterative procedure can be derived to numerically
solve Equation (A.1).

Initialization of the iteration:

x(0) = x0 (A.4)
ẋ(0) = ẋ0 (A.5)
ẍ(0) = u(0)− 2ζωẋ(0)− ω2x(0) (A.6)
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Iteration:

x(t+ ∆t) =
βu(t)∆t2 + (1 + 2γζω)x(t) +

(
∆t+ 2 (γ − β) ζω∆t2

)
ẋ(t)

1 + 2γζω∆t+ βω2∆t2

+

(
(0.5− β)∆t2 + ∆t3(γ − 2β)ζω

)
ẍ(t)

1 + 2γζω∆t+ βω2∆t2
(A.7)

ẍ(t+ ∆t) =
x(t+ ∆t)− x(t)

β∆t2
− ẋ(t)

β∆t
−
(

1

2β
− 1

)
ẍ(t) (A.8)

ẋ(t+ ∆t) =ẋ(t) +
(
(1− γ)ẍ(t) + γẍ(t+ 1)

)
∆t (A.9)

Popular choices of the method parameters are

- β = 1/6 γ = 1/2 - assumes linearity of accelerations and is conditionally stable
- β = 1/4 γ = 1/2 - assumes constant accelerations and is unconditionally stable

For the examples in this thesis, the latter choice has been used.

A.1.2. Numerical Integration of Non-Linear Systems

In section 4.2.3 the solution of two coupled di�erential equations is necessary in order
to obtain the response of the non-linear structure. An iterative numerical integration
scheme has been adopted from [6], which is explained in the following. After the modal
analysis of the di�erential equation, the solution for the linear case is given by means
of the modal responses due to the substitution

{x(t)} = [φ] {η(t)} (A.10)

However, for non-linear systems, the behavior of the non-linear restoring force {q (t)}
is also described by a di�erential equation, that is,

{q̇ (t)} = {g ({x(t)} , {ẋ(t)} , {q (t)})} (A.11)

It can be seen that the solution of Equation (A.11) depends on {x(t)} and {ẋ(t)}, which
in turn can be obtained from the solution of the equation of motion

η̈j(t) + 2ζjωj η̇j(t) + ω2
j ηj(t) = −{φj}

T [M ] {1}
Mj

ä(t)− {φj}
T [R]

Mj

{q ({x(t)})}

j = 1, 2, . . . , n (A.12)
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With the Newmark method the solution of the equation of motion at time t + ∆t can
be computed, given the solution at time t. In order to do that the value of {q (·)} is
required at time t + ∆t. Therefore, the two di�erential equations have to be solved in
an iterative solution scheme. First, the iteration starts (k = 0) with the assumption
that the value of {q (·)} at the next time step is close to the value at the previous time
step, that is

{
q(0) ({x(t+ ∆t)} , {ẋ(t+ ∆t)})

}
= {q ({x(t)} , {ẋ(t)})} (A.13)

Using this initial value for {q (·)} a solution for
{
x(k+1)(t+ ∆t)

}
and

{
ẋ(k+1)(t+ ∆t)

}
can be obtained by solving Equation (A.12) and using Equation (A.10). With these
results Equation (A.11) can be integrated using the Crank-Nicolson method [26], given
by

{
q(k+1) (t+ ∆t)

}
= {q (t)}+

∆t

2

(
{q̇ (t)}+

{
q̇(k+1) (t+ ∆t)

})
(A.14)

where

{
q̇(k+1) (t+ ∆t)

}
=
{
g
({
x(k+1)(t+ ∆t)

}
,
{
ẋ(k+1)(t+ ∆t)

}
,
{
q(k) (t+ ∆t)

})}
(A.15)

The new estimate of {q (·)} can in turn be used to solve Equation (A.12) again and
the iteration starts over again (k := k + 1). Finally, the iteration is stopped, if two
consecutive estimations for the vector {q (·)} are su�ciently close to each other, that
is, ∥∥{q(k+1) (t+ ∆t)

}
−
{
q(k) (t+ ∆t)

}∥∥
‖{q(k+1) (t+ ∆t)}‖ ≤ ε (A.16)

where ε is a prede�ned tolerance. For the example in section 4.2.3 a tolerance value of
ε = 0.001 has been used. The applied Crank-Nicolson method is unconditionally stable
and works perfectly with the constant acceleration Newmark method.
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A.2. Derivations

A.2.1. E�cient Evaluation of the Importance Sampling

Estimator

The failure probability estimator for importance sampling using ISD A can be trans-
formed to be computational more e�cient. The estimator has been derived as

P̂F =
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)
φ
(
zk
)∑n

i=1

∑nt

l=1wil · φ (zk − z∗il)
(A.17)

with the joint probability function

φ (z) = (2π)−q/2 exp

[
−1

2

q∑
j=1

z2
j

]
(A.18)

The evaluation of the exponential function is computationally very expensive and should
thus be avoided if possible. Their number of evaluations can be reduced by combining
the exponential functions of the numerator and the denominator. Applying Equation
(A.18) to (A.17) leads to

P̂F =
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)
exp

[
−1

2

∑q
j=1(zkj )

2
]
· exp

[
1
2

∑q
j=1(zkj )

2
]

(∑n
i=1

∑nt

l=1wil · exp
[
−1

2

∑q
j=1(zkj − z∗ilj)

2
])

exp
[

1
2

∑q
j=1(zkj )

2
] (A.19)

=
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)∑n
i=1

∑nt

l=1wil · exp
[
−1

2

∑q
j=1(zkj − z∗ilj)

2 + 1
2

∑q
j=1(zkj )

2
] (A.20)

=
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)∑n
i=1

∑nt

l=1wil · exp
[

1
2

(∑q
j=1(zkj )

2 − (zkj − z∗ilj)
2
)] (A.21)

The derived form of the estimator is much more e�cient. However, further improve-
ments are possible. Remember that q = p · nt is the dimension of each design point.
With the de�nition q̄ = p · l Equation (A.21) can be written as
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P̂F =
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)
∑n

i=1

∑nt

l=1wil exp
[

1
2

(∑q̄
j=1(zkj )

2 − (zkj − z∗ilj)
2 +

q∑
j=q̄+1

(zkj )
2 − (zkj − z∗ilj)

2

︸ ︷︷ ︸
0

)]

(A.22)

=
1

N

N∑
k=1

I
(
r
(
zk
)
∈ F

)∑n
i=1

∑nt

l=1wil exp
[

1
2

(∑q̄
j=1(zkj )

2 − (zkj − z∗ilj)
2
)] (A.23)

This means that it is su�cient to sum up the design points only until their corresponding
design point index l, because all values of the design point with larger index values
are zero. Only this transformation easily doubles the computational e�ciency of the
estimator. Moreover, many transformations in the importance sampling procedure
for both ISDs can be simpli�ed in the same manner to exploit the special shape of
the design points in order to improve the computational e�ciency. For instance, the
reduction to do all design point calculations only until the corresponding design point
index yield a speedup of factor 16 for the SDOF example with ISD A and 1000 samples.
For importance sampling with ISD B the sampling process has little proportion to the
overall runtime and the transformation has less impact, but still led to a speedup of
factor 2 for the same number of samples. This impressively illustrates that such details
can be more important than the parallelization of the algorithm which costs more e�ort
and special hardware.
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Notation

b limit value to de�ne failure region F
[C] damping matrix
e(t) envelope function to model non-stationary random processes

for seismic system input
E [·] expected value of the argument
F failure region F ⊆ X , which de�nes undesired system states
g (·) maps a system state to an engineering demand parameter
gij (·, ·) discrete unit impulse response function for input j and output i
hij (·, ·) continuous unit impulse response function for input j and output i
h
(
·, ·, ·

)
function which describes the system dynamics of a causal system

H (·) Heaviside step function (unit step function)
I (·) indicator function, is 1 if the argument is true,otherwise 0

[K] sti�ness matrix
kd sti�ness of the non-linear device
lj half interval size for the uniform proposal function for dimension j
m number of subset simulation stages
M number of modes used in modal analysis of the structure
[M ] mass matrix
n dimension of the system state vector x
nt number of discrete time steps within the duration of study
N number of samples
Ni number of samples in subset simulation stage i
NT total number of samples used/needed to estimate PF
O (·) big o-notation: describes a class of functions/algorithms with their

order which is given by the function argument
p dimension of the input vector u
p0 a priori value for partial failure probabilities (stages i = 1, . . . ,m− 1)
p (·) probability density function evaluated at its argument
P percentage of the parallelizable program proportion
PF failure probability
P (·) probability or probability content of a region given by the argument
q (·) conditional proposal PDF for the Metropolis-Hastings algorithm
q1, q2 plastic elongation of the non-linear device
r exponent describing the sample correlation in MCMC simulation
r (·) response function
Ri number of samples lying in failure region i
rN (t) vector of the non-linear restoring force
[R] transformation matrix for the non-linear response
S �rst passage point
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Sj white noise signal spectral intensity for input j
T duration of study for dynamical problems
[T ] local - global coordinate transformation matrix
u input vector / excitation (realization of random vector U)
up, uy model parameters of the non-linear device
U random input vector
U input domain: set of all input vectors
Var [·] variance of the argument
Z (tl) series of zero-mean, unit-variance Gaussian variables
x system state vector / trajectory (realization of random vector X)
X random state vector
X system state domain: set of all state vectors
α conditional random Gaussian vector in importance sampling
δ coe�cient of variance
φ (·) q-dimensional joint Gaussian PDF
Φ (·) ,Φ−1 (·) cumulative standard Gaussian distribution function and its inverse
γ correlation factor of samples generated by MCMC
σ, σ2 standard deviation and variance, respectively
ω frequency
ζ damping factor

List of Abbreviations

c.o.v. coe�cient of variation
FPP �rst passage point
GUI graphical user interface
i.i.d. independent and identically distributed
IS importance sampling
ISD importance sampling density
MDOF multi-degree of freedom
MCMC Markov chain Monte Carlo
MCS Monte Carlo simulation
MH Metropolis-Hastings
PDF probability density function
UML uni�ed modeling language
SDOF single-degree of freedom
SMP symmetric multiprocessing
SS subset simulation
wrt. with respect to
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