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Abstract

We present a variational integration of nonlinear shape statistics into a Mumford–Shah based segmentation process. The
nonlinear statistics are derived from a set of training silhouettes by a novel method of density estimation which can be
considered as an extension of kernel PCA to a probabilistic framework.

We assume that the training data forms a Gaussian distribution after a nonlinear mapping to a higher-dimensional feature
space. Due to the strong nonlinearity, the corresponding density estimate in the original space is highly non-Gaussian.

Applications of the nonlinear shape statistics in segmentation and tracking of 2D and 3D objects demonstrate that the
segmentation process can incorporate knowledge on a large variety of complex real-world shapes. It makes the segmentation
process robust against misleading information due to noise, clutter and occlusion.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the challenges in the =eld of image segmentation
is the incorporation of prior knowledge on the shape of the
segmenting contour. A common approach is to learn the
shape of an object statistically from a set of training shapes,
and to then restrict the segmenting contour to a submanifold
of familiar shapes during the segmentation process. For the
problem of segmenting a speci=c known object this approach
was shown to drastically improve segmentation results
(cf. [1,2]).
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Although the shape prior can be quite powerful in com-
pensating for misleading information due to noise, clutter
and occlusion in the input image, most approaches are lim-
ited in their applicability to more complicated shape vari-
ations of real-world objects. Commonly, the permissible
shapes are assumed to form a multivariate Gaussian distri-
bution, which essentially means that all possible shape de-
formations correspond to linear combinations of a set of
eigenmodes, such as those given by principal component
analysis (cf. [1,3–6]). In particular, this means that for any
two permissible shapes, the entire sequence of shapes ob-
tained by a linear morphing of the two shapes is permissible
as well. Once the set of training shapes exhibits highly non-
linear shape deformations—such as di;erent 2D views of a
3D object—one =nds distinct clusters in shape space corre-
sponding to the stable views of an object. Moreover, each of
the clusters may by itself be quite non-Gaussian. The Gaus-
sian hypothesis will then result in a mixing of the di;erent
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views, and the space of accepted shapes will be far too large
for the prior to sensibly restrict the contour deformation.

A number of models have been proposed to deal with
nonlinear shape variation. However, they often su;er from
certain drawbacks. Some involve a complicated model con-
struction procedure [7]. Some are supervised in the sense
that they assume prior knowledge on the structure of the
nonlinearity [8]. Others require prior classi=cation with the
number of classes to be estimated or speci=ed beforehand
and each class being assumed Gaussian [9,10]. And some
cannot be easily extended to shape spaces of higher dimen-
sion [11].

In the present paper, we present a density estimation ap-
proach which is based on Mercer kernels [12,13] and which
does not su;er from any of the mentioned drawbacks. Our
work has been inspired by recent developments in the ma-
chine learning community [14]. It comprises and extends
results which were presented on two conferences [15,16].
In Section 2, we review the variational integration of a lin-
ear shape prior into Mumford–Shah based segmentation. In
Section 3, we give an intuitive example for the limitations of
the linear shape model. In Section 4, we present the nonlin-
ear density estimate which was =rst introduced in Ref. [15].
We compare it to related approaches and give estimates of
the involved parameters. In Section 5, we illustrate its ap-
plication to arti=cial 2D data and to silhouettes of real ob-
jects. In Section 6, this nonlinear shape prior is integrated
into segmentation. We propose a variational integration of
similarity invariance. In Section 7, numerous examples of
segmentation with and without shape prior on static images
and tracking sequences =nally con=rm the properties of the
nonlinear shape prior: It can encode very di;erent shapes
and generalizes to novel views without blurring or mixing
di;erent views. Furthermore, it improves segmentation by
reducing the dimension of the search space, by stabilizing
with respect to clutter and noise and by reconstructing the
contour in areas of occlusion.

2. Di�usion snakes: statistical shape prior in
Mumford–Shah based segmentation

In Ref. [6], we presented a variational integration of sta-
tistical shape knowledge in a Mumford–Shah based seg-
mentation. A segmentation u of a given input image f was
obtained by minimizing a joint energy functional

E(C; u) = Eimage(C; u) + �Eshape(C); (1)

which takes into account both the low-level grey value in-
formation of the input image and a higher-level knowledge
about the expected shape of the segmenting contour C. We
suggested modi=cations of the Mumford–Shah functional
Eimage and its cartoon limit [17] which facilitate the im-
plementation of the segmenting contour as a parameterized

spline curve:

Cz : [0; 1] → 
 ⊂ R2; Cz(s) =
N∑
n=1

(
xn

yn

)
Bn(s); (2)

where Bn are quadratic, uniform and periodic B-spline basis
functions [18], and z= (x1; y1; : : : ; xN ; yN )t denotes the vec-
tor of control points. Shape statistics can then be obtained by
estimating the distribution of the control point vectors cor-
responding to a set of contours which were extracted from
binary training images.

In the present paper, we focus on signi=cantly improving
the shape statistics. For the low-level image information,
we will therefore restrict ourselves to the somewhat simpler
cartoon limit of the Mumford–Shah functional. The segmen-
tation of a given grey value input image f :
 → [0; 255] is
obtained by minimizing the energy functional

Eimage(C; {ui}) = 1
2

∑
i

∫

i

(f − ui)
2 dx + �L(C) (3)

with respect to the constants ui and the segmenting contour
C. This enforces a segmentation of the image plane into a
set of regions 
i, such that the variation of the grey value
is minimal within each region. 1

In Ref. [6], we proposed to measure the length of the
contour by the squared L2-norm

L(C) =
∫ 1

0

(
dC
ds

)2
ds; (4)

which is more adapted to the implementation of the contour
as a closed spline curve than the usual L1-norm, because
it enforces an equidistant spacing of control points. This
length constraint induces a rubber-band like behavior of the
contour and thereby prevents the formation of cusps during
the contour evolution. Since it is the same length constraint
which is used for the classical snakes [23], we obtain a
hybrid model which combines the external energy of the
Mumford–Shah functional with the internal energy of the
snakes. For this reason, we refer to the functional (3) with
length constraint (4) as di3usion snake.
Beyond just minimizing the length of the contour, one

can minimize a shape energy Eshape(C), which measures
the dissimilarity of the given contour with respect to a set
of training contours. Minimizing the total energy (1) will
enforce a segmentation which is based on both the input
image and the similarity to a set of training shapes.

In order to study the interaction between statistical shape
knowledge and image grey value information we restricted
the shape statistics in Ref. [6] to a common model by as-
suming the training shapes to form a multivariate Gaussian

1 The underlying piecewise-constant image model (3) can easily
be generalized to incorporate higher-order grey value statistics [19],
edge information [20] or motion information [21,22]. In this paper,
however, we focus on modeling shape statistics and therefore do
not consider these possibilities.
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Fig. 1. Segmentation with linear shape prior on an image of a partially occluded hand: Initial contour (left), segmentation without shape
prior (center), and segmentation with shape prior (right). The statistical shape prior compensates for misleading information due to noise,
clutter and occlusion. Integration into the variational framework e;ectively reduces the dimension of the search space and enlarges the
region of convergence.

distribution in shape space. This corresponds to a quadratic
energy on the spline control point vector z:

Ec(Cz) = 1
2 (z − z0)

t�−1(z − z0); (5)

where z0 denotes the mean control point vector and � the
covariance matrix after appropriate regularization [6]. The
e;ect of this shape energy 2 in dealing with clutter and oc-
clusion is exempli=ed in Fig. 1. For the input image f of
a partially occluded hand, we performed a gradient descent
to minimize the total energy (1) without (� = 0) and with
(�¿ 0) shape prior. Incorporating the shape prior draws the
evolving contour to a submanifold of familiar shapes. Thus
the resulting segmentation process becomes insensitive to
misleading information due to clutter and occlusion.

3. Limitations of the linear shape model

Unfortunately, the linear shape statistics (5) are limited
in their applicability to more complicated shape deforma-
tions. As soon as the training shapes form distinct clusters
in shape space—such as those corresponding to the stable
views of a 3D object—or if the shapes of a given cluster
are no longer distributed according to a hyperellipsoid, the
Gaussian shape prior tends to mix classes and blur details
of the shape information in such a way that the resulting
shape prior is no longer able to e;ectively restrict the con-
tour evolution to the space of familiar shapes.

A standard way to numerically verify the validity of
the Gaussian hypothesis is to perform statistical tests such
as the �2-test. In the following, we will demonstrate the
“non-Gaussianity” of a set of sample shapes in a di;erent
way, because it gives a better intuitive understanding of
the limitations of the Gaussian hypothesis in the context of
shape statistics.

2 A similarity invariant shape energy Eshape is obtained by ap-
plying the statistical energy Ec in Eq. (5) to the shape vector z after
aligning it with respect to the training set. This will be detailed in
Section 6.2.

Fig. 2, left side, shows the training shapes corresponding
to nine views of a right hand and nine views of a left hand,
projected onto the =rst two principal components and the
level lines of constant energy for the Gaussian model (5).
Note that if the training set were Gaussian distributed, then
all projections should be Gaussian distributed as well. Yet in
the projection in Fig. 2, left side, one can clearly distinguish
two separate clusters containing the right hands (+) and the
left hands (•).

As suggested by the level lines of constant energy, the =rst
principal component—i.e. the mayor axis of the ellipsoid—
corresponds to the deformation between right and left hands.
This morphing from a left hand to a right hand is visualized
in more detail in the right images of Fig. 2: Sampling along
the =rst principal component around the mean shape shows
a mixing of shapes belonging to di;erent classes. Obviously
the Gaussian model does not accurately represent the distri-
bution of training shapes. In fact, according to the Gaussian
model, the most probable shape is the mean shape given by
the central shape in Fig. 2. In this way, sampling along the
di;erent eigenmodes around the mean shape can give an in-
tuitive feeling for the quality of the Gaussian assumption.

4. Density estimation in feature space

In the following, we present an extension of the above
method which incorporates a strong nonlinearity at almost
no additional e;ort. Essentially we propose to perform a
density estimation not in the original space but in the fea-
ture space of nonlinearly transformed data. The nonlinearity
enters in terms of Mercer kernels [13], which have been ex-
tensively used in pattern recognition and machine learning
(cf. [24,25]). In the present section, we will introduce the
method of density estimation, discuss its relation to kernel
principal component analysis (kernel PCA) [14], and pro-
pose estimates of the involved parameters. Finally, we will
illustrate the density estimate in applications to arti=cial 2D
data and to 200-dimensional data corresponding to silhou-
ettes of real-world training shapes. In order not to break the
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Fig. 2. Left: Projection of the training shapes and the estimated energy onto the =rst two principal components for a set containing right
(+) and left (•) hands. Right images: Sampling along the =rst principal component shows the mixing of di;erent classes in the Gaussian
model. Note that according to the Gaussian model the mean shape (central shape) is the most probable shape.

Qow of the argument, further remarks on the relation of
distances in feature space to classical methods of density
estimation are postponed to Appendix A.

4.1. Gaussian density in kernel space

Let z1; : : : ; zm ∈Rn be a given set of training data. Let �
be a nonlinear mapping from the input space to a potentially
higher-dimensional space Y . The mean and the sample co-
variance matrix of the mapped training data are given by

�0 =
1
m

m∑
i=1

�(zi);

�̃� =
1
m

m∑
i=1

(�(zi)− �0)(�(zi)− �0)
t : (6)

Denote the corresponding scalar product in Y by the Mercer
kernel [13]

k(x; y) := (�(x); �(y)) for x; y∈Rn: (7)

Denote a mapped point after centering with respect to the
mapped training points by

�̃(z) := �(z)− �0 (8)

and the centered kernel function by

k̃(x; y) := (�̃(x); �̃(y))

= k(x; y)− 1
m

m∑
k=1

(k(x; zk) + k(y; zk))

+
1
m2

m∑
k;l=1

k(zk ; zl): (9)

We estimate the distribution of the mapped training data
by a Gaussian probability density in the space Y—see Fig. 3.
The corresponding energy, given by the negative logarithm
of the probability, is a Mahalanobis type distance in the
space Y :

E�(z) = �̃(z)t�−1
� �̃(z): (10)

Fig. 3. Nonlinear mapping into Y =F ⊕ SF and the distances DIFS
and DFFS.

It can be considered a nonlinear measure of the dissimilarity
between a point z and the training data. The regularized co-
variance matrix �� is obtained by replacing all zero eigen-
values of the sample covariance matrix �̃� by a constant �⊥:

�� = V!V t + �⊥(I − VV t); (11)

where ! denotes the diagonal matrix of nonzero eigenval-
ues �16 · · ·6 �r of �̃ and V is the matrix of the corre-
sponding eigenvectors V1; : : : ; Vr . By de=nition of �̃�, these
eigenvectors lie in the span of the mapped training data:

Vk =
m∑
i=1

�ki �̃(zi); 16 k6 r: (12)

Sch(olkopf et al. [14] showed that the eigenvalues �k of the
covariance matrix and the expansion coeTcients {�ki }i=1; :::;m

in Eq. (12) can be obtained in terms of the eigenvalues and
eigenvectors of the centered kernel matrix as follows. Let
K be the m × m kernel matrix with entries Kij = k(zi; zj).
Moreover, let K̃ be the centered kernel matrix with entries
K̃ ij = k̃(zi; zj). With Eq. (9), one can express the centered
kernel matrix as a function of the uncentered one:

K̃ = K − KE − EK + EKE;

where Eij =
1
m

∀i; j = 1; : : : ; m: (13)

With these de=nitions, the eigenvalues �1; : : : ; �r of the sam-
ple covariance matrix are given by �k = (1=m)�̃k , where �̃k
are the eigenvalues of K̃ . And the expansion coeTcients
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{�ki }i=1; :::;m in Eq. (12) form the components of the eigen-
vector of K̃ associated with the eigenvalue �̃k .

Inserting (11) splits energy (10) into two terms:

E�(z) =
r∑

k=1

�−1
k (Vk ; �̃(z))

2

+ �−1
⊥

(
|�̃(z)|2 −

r∑
k=1

(Vk ; �̃(z))
2

)
: (14)

With expansion (12), we obtain the =nal expression of our
energy:

E�(z) =
r∑

k=1

(
m∑
i=1

�ki k̃(zi; z)

)2

· (�−1
k − �−1

⊥ )

+ �−1
⊥ · k̃(z; z): (15)

As in the case of kernel PCA, the nonlinearity � only ap-
pears in terms of the kernel function. This allows to specify
an entire family of possible nonlinearities by the choice of
the associated kernel. For all our experiments we used the
Gaussian kernel:

k(x; y) =
1

(2'(2)n=2
exp
(
−‖x − y‖2

2(2

)
: (16)

For a justi=cation of this choice, we refer to Appendix A,
where we show the relation of the proposed energy with the
classical Parzen estimator.

4.2. Relation to kernel PCA

Just as in the linear case (cf. [26]), the regularization (11)
of the covariance matrix causes a splitting of the energy
into two terms (14), which can be considered as a distance
in feature space (DIFS) and a distance from feature space
(DFFS)—see Fig. 3. For the purpose of pattern reconstruc-
tion in the framework of kernel PCA, it was suggested to
minimize a reconstruction error [27], which is identical with
the DFFS. This procedure is based on the assumption that
the entire plane spanned by the mapped training data corre-
sponds to acceptable patterns. However, this is not a valid
assumption: Already in the linear case, moving too far along
an eigenmode will produce patterns which have almost no
similarity to the training data, although they are still ac-
cepted by the hypothesis. Moreover, the distance DFFS is
not based on a probabilistic model. In contrast, energy (15)
is derived from a Gaussian probability distribution. It mini-
mizes both the DFFS and the DIFS.

The kernel PCA approach has been studied in the frame-
work of statistical shape models [28,29]. Our approach dif-
fers from these two in three ways: Firstly, our model is based
on a probabilistic formulation of kernel PCA (as discussed
above). Secondly, we derive a similarity invariant nonlin-
ear shape model, as will be detailed in Section 6.2. Thirdly,
we introduce the nonlinear shape dissimilarity measure as a
shape prior in a variational framework for segmentation.

4.3. On the regularization of the covariance matrix

A regularization of the covariance matrix in the case of
kernel PCA—as done in Eq. (11)—was =rst proposed in
Ref. [15] and has also been suggested more recently in [30].
The choice of the parameter �⊥ is not a trivial issue. For
the linear case, such regularizations of the covariance ma-
trix have also been proposed [15,26,31,32]. There [26,32],
the constant �⊥ is estimated as the mean of the replaced
eigenvalues by minimizing the Kullback–Leibler distance
of the corresponding densities. However, we believe that in
our context this is not an appropriate regularization of the
covariance matrix. The Kullback–Leibler distance is sup-
posed to measure the error with respect to the correct den-
sity, which means that the covariance matrix calculated from
the training data is assumed to be the correct one. But this
is not the case because the number of training points is lim-
ited. For essentially the same reason this approach does not
extend to the nonlinear case considered here: Depending on
the type of nonlinearity �, the covariance matrix is poten-
tially in=nite-dimensional such that the mean over all re-
placed eigenvalues will be zero. As in the linear case [6],
we therefore propose to choose

0¡�⊥¡�r; (17)

which means that unfamiliar variations from the mean are
less probable than the smallest variation observed on the
training set. In practice, we =x �⊥ = �r=2.

4.4. On the choice of the hyperparameter (

The last parameter to be =xed in the proposed density
estimate is the hyperparameter ( in Eq. (16). Let * be the
average distance between two neighboring data points:

*2 :=
1
m

m∑
i=1

min
j �=i

|zi − zj|2: (18)

In order to get a smooth energy landscape, we propose to
choose ( in the order of *. In practice, we used

( = 1:5* (19)

for most of our experiments.We chose this somewhat heuris-
tic measure * for the following favorable properties:

• * is insensitive to the distance of clusters, as long as each
cluster has more than one data point,

• * scales linearly with the data points,
• * is robust with respect to the individual data points.

5. Density estimate for silhouettes of 2D and 3D objects

Although energy (10) is quadratic in the space Y of
mapped points, it is generally not convex in the original
space, showing several minima and level lines of essen-
tially arbitrary shape. Fig. 4 shows arti=cial 2D data and the
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Fig. 4. Density estimate (10) for arti8cial 2D data. Distributions of variable shape are well estimated by the Gaussian hypothesis in feature
space. We used the kernel (16) with ( = 1:5*.

Fig. 5. Model comparison. Density estimates for a set of left (•) and right (+) hands, projected onto the =rst two principal components.
From left to right: Aligned contours, simple Gaussian, mixture of Gaussians, Gaussian in feature space (10). Both the mixture model and
the Gaussian in feature space capture the two-class structure of the data. However, the estimate in feature space is unsupervised and produces
level lines which are not necessarily ellipses.

corresponding lines of constant energy E�(z) in the origi-
nal space: The modes of the associated density are located
around the clusters of the input data.

For a set of binarized views of objects we automatically
=t a closed quadratic spline curve around each object. All
spline curves have N =100 control points, set equidistantly.
The polygons of control points z=(x1; y1; x2; y2; : : : ; xN ; yN )
are aligned with respect to translation, rotation, scaling and
cyclic permutation [6]. This data was used to determine the
density estimate E�(z) in Eq. (15).

For the visualization of the density estimate and the
training shapes, all data was projected onto two of the
principal components of a linear PCA. Note that due to
the projection, this visualization only gives a very rough
sketch of the true distribution in the 200-dimensional shape
space.

Fig. 5 shows density estimates for a set of right hands
and left hands. The estimates correspond to the hypothe-
ses of a simple Gaussian in the original space, a mixture of
Gaussians and a Gaussian in feature space. Although both
the mixture model and our estimate in feature space capture
the two distinct clusters, there are several di;erences: Firstly
the mixture model is supervised—the number of classes
and the class membership must be known—and secondly it
only allows level lines of elliptical shape, corresponding to
the hypothesis that each cluster by itself is a Gaussian dis-

tribution. The model of a Gaussian density in feature space
does not assume any prior knowledge and produces level
lines which capture the true distribution of the data even if
individual classes do not correspond to hyperellipsoids.

This is demonstrated on a set of training shapes which
correspond to di;erent views of two 3D objects. Fig. 6 shows
the two objects, their contours after alignment and the level
lines corresponding to the estimated energy density (10) in
appropriate 2D projections.

6. Nonlinear shape statistics in Mumford–Shah based
segmentation

6.1. Minimization by gradient descent

Energy (10) measures the similarity of a shape Cz param-
eterized by a control point vector z with respect to a set of
training shapes. For the purpose of segmentation, we com-
bine this energy as a shape energy Eshape with the Mumford–
Shah energy (3) in the variational approach (1).

The total energy (1) must be simultaneously minimized
with respect to the control points de=ning the contour and
with respect to the segmenting grey values {ui}. Minimiz-
ing the modi=ed Mumford–Shah functional (3) with respect
to the contour Cz (for =xed {ui}) results in the evolution
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Fig. 6. Density estimate for views of two 3D objects. The training shapes of the duck (white +) and the rabbit (black •) form distinct
clusters in shape space which are well captured by the energy level lines shown in appropriate 2D projections.

equation

@Cz(s; t)
@t

=−dEimage
dCz

= (e+s − e−s ) · ns + �
d2Cz

ds2
; (20)

where the terms e+s and e−s denote the energy density e =
(f−ui)2, inside and outside the contour Cz(s), respectively,
and ns denotes the normal vector on the contour. The con-
stants {ui} are updated in alternation with the contour evo-
lution to be the mean grey value of the adjoining regions
{
i}. The contour evolution equation (20) is transformed
into an evolution equation for the control points z by intro-
ducing de=nition (2) of the contour as a spline curve. By
discretizing on a set of nodes sj along the contour we obtain
a set of coupled linear di;erential equations. Solving for the
coordinates of the ith control point and including the term
induced by the shape energy we obtain:

dxi(t)
dt

=
N∑
j=1

(B−1)ij[(e
+
j − e−j )nx(sj; t)

+ �(xj−1 − 2xj + xj+1)]− �
[
dEshape(z)

dz

]
2i−1

;

dyi(t)
dt

=
N∑
j=1

(B−1)ij[(e
+
j − e−j )ny(sj; t)

+ �(yj−1 − 2yj + yj+1)]− �
[
dEshape(z)

dz

]
2i

:

(21)

The cyclic tridiagonal matrix B contains the spline basis
functions evaluated at these nodes.

The three terms in the evolution equation (21) can be
interpreted as follows:

• The =rst term forces the contour towards the object bound-
aries, by maximizing a homogeneity criterion in the ad-
joining regions, which compete in terms of their energy
densities e+ and e−.

• The second term enforces an equidistant spacing of con-
trol points, thus minimizing the contour length. This pre-
vents the formation of cusps during the contour evolution.

• The last term pulls the control point vector towards the
domains of familiar shapes, thereby maximizing the sim-
ilarity of the evolving contour with respect to the training
shapes. It will be detailed in the next section.



1936 D. Cremers et al. / Pattern Recognition 36 (2003) 1929–1943

6.2. Invariance in the variational framework

By construction, the density estimate (10) is not invari-
ant with respect to translation, scaling and rotation of the
shape Cz . We therefore propose to eliminate these degrees
of freedom in the following way: Since the training shapes
were aligned to their mean shape z0 with respect to transla-
tion, rotation and scaling and then normalized to unit size,
we shall do the same to the argument z of the shape energy
before applying our density estimate E�.

We therefore de=ne the shape energy by

Eshape(z) = E�(z̃) with z̃ =
R.zc
|R.zc| ; (22)

where zc denotes the control point vector after centering:

zc =
(
In − 1

n
A
)
z

with A=




1 0 1 0 · · ·
0 1 0 1 · · ·
1 0 1 0 · · ·
...

...
...

...
. . .




(23)

and R. denotes the optimal rotation of the control point
polygon zc with respect to the mean shape z0. We will not go
into details about the derivation of R.. Similar derivations
can be found in Refs. [33,34]. The =nal result is given by
the formula:

z̃ =
Mzc
|Mzc|

with M = In ⊗
(

zt0zc −z0 × zc

z0 × zc zt0zc

)
; (24)

where ⊗ denotes the Kronecker product and z0 × zc :=
zt0R'=2zc.

The last term in the contour evolution equation (21) is
now calculated by applying the chain rule:

dEshape(z)
dz

=
dE�(z̃)
dz̃

· dz̃
dz

=
dE�(z̃)
dz̃

· dz̃
dzc

· dzc
dz

: (25)

Since this derivative can be calculated analytically, no
additional parameters enter the above evolution equation to
account for scale, rotation and translation.

Other authors (cf. [35]) propose to explicitly model a
translation, an angle and a scale and minimize with respect
to these quantities (e.g. by gradient descent). In our opinion
this has several drawbacks: Firstly, it introduces four ad-
ditional parameters, which makes numerical minimization
more complicated—parameters to balance the gradient de-
scent must be chosen. Secondly this approach mixes the de-
grees of freedom corresponding to scale, rotation and shape

deformation. And thirdly potential local minima may be
introduced by the additional parameters. On several seg-
mentation tasks we were able to con=rm these e;ects by
comparing the two approaches.

Since there exists a similar closed form solution for the
optimal alignment of two polygons with respect to the more
general aTne group [33], the above approach could be ex-
tended to de=ne a shape prior which is invariant with respect
to aTne transformations. However, we do not elaborate this
for the time being.

7. Numerical results

In the following, we will present a number of numer-
ical results obtained by introducing the similarity invari-
ant nonlinear shape prior from Eqs. (22) and (15) into the
Mumford–Shah based segmentation process as discussed
above. The results are ordered so as to demonstrate di;erent
properties of the proposed shape prior.

7.1. Linear versus nonlinear shape prior

Compared to the linear case (5), the nonlinear shape en-
ergy is no longer convex. Depending on the input data, it
permits the formation of several minima corresponding to
di;erent clusters of familiar contours. Minimization by gra-
dient descent will end up in the nearest local minimum. In
order to obtain a certain independence of the shape prior
from the initial contour, we propose to =rst minimize the
image energy Eimage by itself until stationarity and to then
include the shape prior Eshape. This approach guarantees that
we will extract as much information as possible from the
image before “deciding” which of the di;erent clusters of
accepted shapes the obtained contour resembles most.

Fig. 7 shows a simple example of three arti=cial objects.
The shape prior (22) was constructed on the three aligned
silhouettes shown on the top left. The mean of the three
shapes (second image) indicates that the linear Gaussian is
not a reliable model for this training set. The next images
show the initial contour for the segmentation of a partially
occluded image of the =rst object, the =nal segmentation
without prior knowledge, the =nal segmentation after intro-
ducing the linear prior and the =nal segmentation upon in-
troduction of the nonlinear prior. Rather than drawing the
contour towards the mean shape (as does the linear prior),
the nonlinear one draws the evolving contour towards one
of the encoded shapes. Moreover, the same nonlinear prior
permits a segmentation of an occluded version of the other
encoded objects.

The bottom right image in Fig. 7 shows the training shapes
and the density estimate in a projection on the =rst two axes
of a (linear) PCA. The white curves correspond to the path
of the segmenting contour from its initialization to its con-
verged state for the two segmentation processes respectively.
Note that upon introducing the shape prior the correspond-
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Fig. 7. Segmenting partially occluded images of several objects. While the linear prior draws the segmenting contour towards the mean
shape, the nonlinear one permits the segmentation process to distinguish between the three training shapes. Introduction of the shape prior
upon stationarity of the contour (top right) causes the contour to evolve normal to the level lines of constant energy into the nearest local
minimum, as indicated by the white curves in the projected density estimate (bottom right).

ing contour descends the energy landscape in direction of
the negative gradient to end up in one of the minima. The
example shows that, in contrast to the linear shape prior,
the nonlinear one can well separate di;erent objects without
mixing them. Since each cluster in this example contains
only one view for the purpose of illustration, the estimate
(19) for the kernel width ( does not apply; instead we chose
a smaller granularity of ( = *=4.

7.2. Simultaneous encoding of several training objects

The following example is an application of our method
which shows how the nonlinear shape prior can encode a
number of di;erent alphabetical letters and thus improve the
segmentation of these letters in a given image.

We want to point out that there exists a vast number of
di;erent methods for optical character recognition. We do
not claim that the present method is optimally suited for this
task, and we do not claim that it outperforms existing meth-
ods. The following results only show that our rather general
segmentation approach with the nonlinear shape prior can
be applied to a large variety of tasks and that it permits to
simultaneously encode the shape of several objects.

A set of 7 letters and digits were segmented (several
times) without any shape prior in an input image as the one
shown in Fig. 8(a). The obtained contours were used as a
training set to construct the shape prior. Fig. 9 shows the
set of aligned contours and their projection into the plane
spanned by the =rst and third principal component (of a

linear PCA). The clusters are labeled with the correspond-
ing letters and digits. Again, the mean shape, shown in Fig.
8(c), indicates that the linear model is not an adequate model
for the distribution of the training shapes.

In order to generate realistic input data, we subsampled
the input image to a resolution of 16× 16 pixels, as shown
in Fig. 8(b). Such low resolution input data are typical in
this context. As a =rst step, we upsampled this input data
using bilinear interpolation, as shown in Fig. 8(c).

Given such an input image, we initialized the contour, it-
erated the segmentation process without prior until station-
arity and then introduced either the linear or the nonlin-
ear shape prior. Fig. 10 shows segmentation results with-
out prior, with the linear prior and with the nonlinear prior.
Again, the convergence of the segmenting contour towards
one of the learnt letters is visualized by appropriate projec-
tions onto the =rst two linear principal components of the
training contours. 3

Fig. 11 shows results of the segmentation approach with
the same nonlinear shape prior, applied to two more shapes.
Again, the nonlinear shape prior improves the segmentation
results. This demonstrates that one can encode informa-
tion on a set of fairly di;erent shapes into a single shape
prior.

3 For better visibility, the projection planes were shifted along
the third principal component, so as to intersect with the cluster of
interest.
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Fig. 8. (a) Original image region of 200× 200 pixels. (b) Subsampled to 16× 16 pixels (used as input data). (c) Upsampled low-resolution
image using bilinear interpolation.

Fig. 9. (a) Aligned training shapes. (b) Projection onto the =rst and third (linear) principal component. (c) Mean shape.

Fig. 10. Initial contour (a), =nal segmentation without prior (b), segmentation upon introduction of the linear prior (c), and =nal segmentation
with the nonlinear prior (d). Appropriate projections of the contour evolution with nonlinear prior into the space of contours show the
convergence of the contour towards one of the learnt letters (e).

7.3. Generalization to novel views

In all of the above examples, the nonlinear shape prior
merely permitted a reconstruction of the training shapes (up
to similarity transformations). The power of the proposed

shape prior lies in the fact that not only it can encode several
very di;erent shapes, but also that the prior is a statistical
prior: It has the capacity to generalize and abstract from the
=xed set of training shapes. As a consequence, the respec-
tive segmentation process with the nonlinear prior is able to
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Fig. 11. Initial contour (a), =nal segmentation without prior (b), and =nal segmentation upon introduction of the nonlinear prior (c). With
a single nonlinear prior, a number of fairly di;erent shapes can be reconstructed from the subsampled and smoothed input image.

segment novel views of an object which were not present in
the training set. This aspect of the nonlinear statistical shape
prior will be demonstrated in the following examples.

The training set consists of nine right and nine left hands,
shown together with the estimated energy density in a pro-
jection onto the =rst two principal components in Fig. 12,
right side. Rather than mixing the two classes of right and
left hands, the shape prior clearly separates several clusters
in shape space. The =nal segmentations without (left) and
with (center) prior shape knowledge show that the shape
prior compensates for occlusion by =lling up information
where it is missing. Moreover, the statistical nature of the
prior is demonstrated by the fact that the hand in the im-
age is not part of the training set. This can be seen in the
projection (Fig. 12, right side), where the =nal segmenta-
tion (white box) does not correspond to any of the training
contours (black crosses).

7.4. Tracking 3D objects with changing viewpoint

In the following, we present results of applying the non-
linear shape statistics for an example of tracking an object
in 3D with a prior constructed from a large set of 2D views.
For this purpose we binarized 100 views of a rabbit—two of
them and the respective binarizations are shown in Fig. 13.
For each of the 100 views we automatically extracted the
contours and aligned them with respect to translation, rota-
tion, scaling and cyclic permutation of the control points.
We calculated the density estimate (10) and the correspond-
ing shape energy (22).
In a =lm sequence we moved and rotated the rabbit in

front of a cluttered background. Moreover, we arti=cially
introduced an occlusion afterwards. We segmented the =rst

image by the modi=ed Mumford–Shah model until conver-
gence before the shape prior was introduced. The initial con-
tour and the segmentations without and with prior are shown
in Fig. 14. Afterwards we iterated 15 steps in the gradient
descent on the full energy for each frame in the sequence. 4

Some sample screen shots of the sequence are shown in
Fig. 15. Note that the viewpoint changes continuously.

The training silhouettes are shown in 2D projections with
the estimated shape energy in Fig. 16. The path of the chang-
ing contour during the entire sequence corresponds to the
white curve. The curve follows the distribution of training
data well, interpolating in areas where there are no training
silhouettes. Note that the intersection of the curve and of the
training data in the center (Fig. 16, left side) are only due
to the projection on 2D. The results show that—given suf-
=cient training data—the shape prior is able to capture =ne
details such as the ear positions of the rabbit in the various
views. Moreover, it generalizes well to novel views not in-
cluded in the training set and permits a reconstruction of the
occluded section throughout the entire sequence.

4 The gradient of the shape prior in Eq. (15) has a complexity
of O(rmn), where n is the number of control points, m is the
number of training silhouettes and r is the eigenvalue cuto;. For
input images of 83 kpixels and m= 100, we measured an average
runtime per iteration step of 96 ms for the prior, and 11 ms for the
cartoon motion on a 1:2 GHz AMD Athlon. This permitted to do 6
iterations per second. Note, however, that the relative importance
of the cartoon motion increases with the size of the image: For
an image of 307 kpixels the cartoon motion took 100 ms per
step. Note, however, that we did not put much e;ort into runtime
optimization.
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Fig. 12. Segmentation with a nonlinear shape prior containing right (+) and left (•) hands—shown in the projected energy plot on the right.
The input image is a right hand with an occlusion. After the Mumford–Shah segmentation becomes stationary (left image), the nonlinear
shape prior is introduced, and the contour converges towards the =nal segmentation (center image). The contour evolution in its projection
is visualized by the white curve in the energy density plot (right). Note that the =nal segmentation (white box) does not correspond to any
of the training silhouettes, nor to the minimum (i.e. the most probable shape) of the respective cluster.

Fig. 13. Example views and binarization used for estimating the shape density.

Fig. 14. Begin of the tracking sequence. Initial contour, segmentation without prior, segmentation upon introducing the nonlinear prior on
the contour.

8. Conclusion

We presented a variational integration of nonlinear shape
statistics into a Mumford–Shah based segmentation process.
The statistics are derived from a novel method of density es-

timation which can be considered as an extension of the ker-
nel PCA approach to a probabilistic framework. The original
training data is nonlinearly transformed to a feature space. In
this higher dimensional space the distribution of the mapped
data is estimated by a Gaussian density. Due to the strong
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Fig. 15. Sample screen shots from the tracking sequence.

Fig. 16. Tracking sequence visualized. Training data (•), estimated energy density and the contour evolution (white curve) in appropriate
2D projections. The contour evolution is restricted to the valleys of low energy induced by the training data.

nonlinearity, the corresponding density estimate in the orig-
inal space is highly non-Gaussian, allowing several shape
clusters and banana-or ring-shaped data distributions.

We integrated the nonlinear statistics as a shape prior in
a variational approach to segmentation. We gave details on
appropriate estimations of the involved parameters. Based
on the explicit representation of the contour, we proposed
a closed-form, parameter-free solution for the integration of
invariance with respect to similarity transformations in the
variational framework.

Applications to the segmentation of static images and im-
age sequences show several favorable properties of the non-
linear prior:

• Due to the possible multimodality in the original space,
the nonlinear prior can encode a number of fairly di;erent
training objects.

• It can capture even small details of shape variation without
mixing di;erent views.

• It copes for misleading information due to noise and clut-
ter, and enables the reconstruction of occluded parts of
the object silhouette.

• Due to the statistical nature of the prior, a generaliza-
tion to novel views not included in the training set is
possible.

Finally we showed examples where the 3D structure of an
object is encoded through a training set of 2D projections.

By projecting onto the =rst principal components of the
data, we managed to visualize the training data and the es-
timated shape density. The evolution of the contour during
the segmentation of static images and image sequences can
be visualized by a projection into this density plot. In this
way we veri=ed that the shape prior e;ectively restricts the
contour evolution to the submanifold of familiar shapes.
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Fig. 17. Sample vectors randomly distributed on two spirals (left), corresponding estimates of Parzen (middle) and generalized Parzen
(right) for appropriate values of the kernel width (.

Appendix A. From feature space distance to the Parzen
estimator

In this section, we will link the feature space distances
which induce our shape dissimilarity measure to classical
methods of density estimation. The derivation of the energy
(15) was based on the assumption that the training data after
a nonlinear mapping corresponding to the kernel (16) are
distributed according to a Gaussian density in the space Y .
The =nal expression (15) resembles the well-known Parzen
estimator [36,37], which estimates the density of a distribu-
tion of training data by summing up the data points after con-
volution with a Gaussian (or some other kernel function).

In fact, the energy associated with an isotropic (spherical)
Gaussian distribution in feature space is (up to normaliza-
tion) equivalent to a Parzen estimator in the original space.
With the de=nitions (8) and (9), this energy is given by the
Euclidean feature space distance

Esphere(z) = |�̃(z)|2 = k̃(z; z)

=− 2
m

m∑
i=1

k(z; zi) + const: (A.1)

Up to scaling and a constant, this is the Parzen estimator.
The proposed energy (10) can therefore be interpreted as

a generalization of the Parzen estimator obtained by mov-
ing from a spherical distribution in feature space to an el-
lipsoidal one. Due to the regularization of the covariance
matrix in (11), energy (10) contains a (dominant) isotropic
component given by the last term in (15). We believe that
this connection to the Parzen estimator justi=es the assump-
tion of a Gaussian in feature space and the choice of local-
ized (stationary) kernels such as (16).
Numerical simulations show that the remaining anisotropic

component in (15) has an important inQuence. Fig. 17
shows the example of a set of 2D points which were ran-
domly sampled along two spirals (left). Middle and right
image show the Parzen and the generalized Parzen for ap-
propriate values of the kernel width (. Note that the spiral
structures are more pronounced by the generalized Parzen.

However, a more detailed theoretical study of the di;erence
between the Euclidean distance in feature space (A.1) and
the Mahalanobis distance in feature space (10) is beyond
the scope of this paper.
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